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ABSTRACT: Excited-state catalysis, a process that involves one or more excited catalytic species, has emerged as a powerful tool in
organic synthesis because it allows access to the excited-state reaction landscape for the discovery of novel chemical reactivity.
Herein, we report the first excited-state palladium-catalyzed 1,2-spin-center shift reaction that enables site-selective functionalization
of carbohydrates. The strategy features mild reaction conditions with high levels of regio- and stereoselectivity that tolerate a wide
range of functional groups and complex molecular architectures. Mechanistic studies suggest a radical mechanism involving the
formation of hybrid palladium species that undergoes a 1,2-spin-center shift followed by the reduction, deuteration, and iodination to
afford functionalized 2-deoxy sugars. The new reactivity will provide a general approach for the rapid generation of natural and
unnatural carbohydrates.

Visible-light-induced excited-state palladium catalysis has
emerged as a promising strategy for developing valuable

reactions.1 Seminal work by Gevorgyan,2 Fu,3 and Yu4 showed
that photoexcited Pd-complexes undergo rapid, radical
oxidative addition into aryl/alkyl−halide bonds, forming
aryl/alkyl-Pd species with hybrid reactivity in which the
closed-shell Pd(II) complex is in equilibrium with an open-
shell alkyl radical/Pd(I) intermediate through a reversible
photoexcitation/recombination process (Figure 1).5 This
hybrid reactivity has been exploited in a range of trans-
formations, such as desaturation reactions,2a,6 Mizoroki−Heck
reactions,2b,3,7 difunctionalization of conjugated dienes,8 and
others.4,9 Despite these recent advances, the application of
either ground-state or excited-state Pd-catalysis to mediate a
1,2-spin-center shift (SCS)10 remains elusive. We envisioned
that, with a functional group such as acyloxy at the β-position,

the alkyl radical/Pd(I) species could undergo a 1,2-SCS,
accessing a new reaction site for further functionalization
(Figure 1).11 The establishment of such reactivity is significant
because it will (i) enable unique reactions capable of the rapid
generation of molecular complexity and late-stage functional-
ization of complex molecules; (ii) provide new strategic bond
formation that leads to otherwise difficult or unobtainable
molecular architecture; and (iii) guide the design and
development of new chemical reactions.
Carbohydrates, the most abundant biomolecules, have

indispensable roles in a wide range of biological processes,
including cell−cell recognition, protein folding, inflammation,
and infection.12 The possibility of modifying sugar structure(s)
to enhance or otherwise alter the physiological properties of
the parent molecule is therefore highly attractive.13 Selective
C-2 functionalization of carbohydrates has attracted significant
interest because the resulting 2-deoxy sugar derivatives, in
which the C-2 hydroxyl group of sugar has been replaced by
other functional groups, are ubiquitous in nature and are found
in medicine, molecular imaging, cell engineering, and
catalysis.14 Conventional methods to access C-2 functionalized
2-deoxy sugars rely on the derivatization of advanced
intermediates such as glycals and 1,2-epoxy- or 1,2-cyclo-
propyl-sugars.15 These protocols often involve multistep
precursor syntheses and harsh reaction conditions, and have
limited reaction scope. We envisaged that the establishment of
excited-state Pd-catalyzed 1,2-SCS reactivity would enable a

Received: October 28, 2020
Published: January 19, 2021

Figure 1. Development and exploitation of excited-state palladium-
catalyzed 1,2-spin-center shift for selective C-2 functionalization of
carbohydrates.
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general, controllable, and selective catalytic strategy for C-2
functionalization of carbohydrates using readily available 1-
halosugars.16

The mechanistic hypothesis of the proposed transformation
is outlined in Figure 2. We envisioned that photoexcited

palladium catalyst [Pd(0)]* undergoes radical oxidative
addition with 1-halo sugar 1, generating the hybrid 1-
glycosyl-Pd-X complexes IIa and IIb.2b,3 The glycosyl radical
IIa favors the B2,5 boat conformation (IIIa) because of the
hyperconjugation between the singly occupied molecular
orbital (SOMO) and σ*C−O orbital of the C-2−OAc
group.17 Such an interaction is more pronounced in glycosyl
radicals because the lone pair electron of the endocyclic-O (ηO,
anomeric interaction) raises the SOMO energy level. Such an
extended anomeric interaction weakens the C-2−OAc bond
and promotes the 1,2-SCS through a concerted [2,3]-acyloxy
rearrangement with a cyclic five-membered ring transition state
IIIb,11b,17a forming the deoxypyranosan-2-yl radical IVa that
prefers the 4C1 chair conformation.18 Although the anomeric
radical is more stable than the secondary alkyl radical, the
molecular stability gained from the formation of an anomeric
C−O bond in IVa drives the desired 1,2-SCS.19 Under visible-
light irradiation, the intermediate IVa is in equilibrium with
alkyl-Pd(II)X complex IVb, which allows access to both open-
and closed-shell reactivities. We anticipate that these hybrid Pd
species can engage in a wide range of cross-coupling reactions
through processes such as (i) transmetalation followed by
reductive elimination or (ii) radical coupling or atom/group
transfer followed by reduction of Pd(I)X to furnish the desired
C-2 functionalized carbohydrate 2 and regenerate Pd(0)
catalyst, completing the catalytic cycle.
With this hypothesis in mind, we started our investigations

using readily available α-glucosyl bromide (1a) as a model
substrate. Initial experiments showed that upon exposing 1a to

24 W blue light-emitting diodes (LED) in the presence of
Pd(PPh3)4 (5.00 mol %), N,N-diisopropylethylamine (DIPEA,
2.00 equiv) in isopropyl acetate (i-PrOAc, 0.05 M) at room
temperature for 20 h, we observed a 94% yield of α-only
product 2a with >20:1 C-2 selectivity (Table S1, entry 1). The
Pd(PPh3)4 catalyst was shown to be critical for the desired
reactivity because replacing it with PPh3 or Pd(PPh3)Cl2, led
to no reaction or a significantly lower yield and selectivity
(entries 2 and 3). We recognized that the relative rates of the
intramolecular 1,2-SCS and the intermolecular hydrogen atom
transfer must be controlled to achieve high levels of
regioselectivity. It was envisioned that the unique inner-sphere
coordination interaction between the Pd catalyst and alkyl
radical could stabilize and modulate the reactivity of radical
intermediates, thus minimizing the premature C-1 reduc-
tion.1e,20 Indeed, the use of other common Ru-, Ir-, and
organic-based photoredox catalysts, where inner-sphere coor-
dination is not feasible, proved to be ineffective and afforded
the product with low yields and selectivity (entries 4−6).
Reactions in acetonitrile were sluggish and were accompanied
by the erosion of the regioselectivity (entry 7). Control
experiments showed that DIPEA, an oxygen-free environment,
and light were all essential for the desired reactivity (entries 8−
10).
With the optimized conditions in hand, we next examined

the scope of the reaction. In general, a wide range of α-
bromosugars afforded the desired 2-deoxy sugars in up to 95%
yield with >20:1 regioselectivity (Table 1A).21 α-Glucosyl
bromides with different ester protecting groups such as acetyl,
benzoyl, or pivaloyl worked well (2a−2c). Other α-
bromosugars, including those derived from acetylated L-fucose,
D-xylose, and D-galactose, were also viable substrates (2d−
2f).22 Substrates with benzyl-, methyl-, and the acid-sensitive
tert-butyldimethylsilyl-protected C-6 hydroxyl groups were
well tolerated, affording the desired products 2g−2i in 72−
91% yields with >20:1 C-2 selectivity. A free C-6 hydroxyl
group, which is useful for further functionalization and often
serves as a glycosyl acceptor, reacted smoothly and gave
product 2j in 72% yield. A fused ring structure also proved to
be compatible with the reaction conditions (2k). The structure
of the migratory ester group has little effect on the reaction
efficiency because C-2 esters substituted with alkyl, aryl, or
heteroaryl groups underwent excited-state Pd-catalyzed 1,2-
SCS smoothly, forming the corresponding products 2l−2q in
74−90% yields. A melibiose derivative gave the desired 2-
deoxy-disaccharide 2r in 89% yield. Notably, the reaction
affords the α-2-deoxyglycosides exclusively, and the corre-
sponding β-isomers were not observed.
The synthetic utility of this process is further highlighted by

its amenability to (i) a late-stage modification of functionally
dense natural product- and drug-conjugated sugar derivatives
and (ii) the synthesis of deuterated 2-deoxy sugars (Table 1).
For example, α-Bromoglucose derivatives of oleanolic acid,
Indomethacin, Probenecid, Bezafibrate, Febuxostat, Zaltopro-
fen, Ibuprofen, and Adapalene reacted and afforded the desired
products 2s−2z in good yields and excellent levels of
regioselectivity, demonstrating that the method can be used
in the preparation of pharmaceutically relevant compounds.
Furthermore, deuterium-labeled sugars are versatile probes for
the study of biological processes such as metabolic and
biosynthetic pathways,23 and useful chiral building blocks for
the synthesis of chiral deuterated precursors of bioactive
molecules.24 Using d8-THF as the solvent and Cs2CO3 as the

Figure 2. Proposed catalytic cycle for the excited-state Pd-catalyzed
C-2 functionalization of carbohydrates.
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Table 1. Scope of C-2 Reduction, Deuteration, and Iodination of α-Glycosyl Halides via Excited-State Pd-Catalysisa

aSee Supporting Information for experimental details. % of deuterium incorporation, C-2:C-1 ratio, and equatorial:axial (eq:ax) ratio were
determined by 1H NMR. bBenzene instead of tBuOH was used as a solvent.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://dx.doi.org/10.1021/jacs.0c11209
J. Am. Chem. Soc. 2021, 143, 1728−1734

1730

https://pubs.acs.org/doi/10.1021/jacs.0c11209?fig=tbl1&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c11209/suppl_file/ja0c11209_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c11209?fig=tbl1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c11209?ref=pdf


base under otherwise identical reaction conditions, we
successfully obtained a series of (2-2H1)-2-deoxy sugars d-2a,
d-2d, d-2e, d-2i, d-2k, and d-2r in yields of 88−98% and with
high levels of regioselectivity and deuterium incorporation
(Table 1B).
The reaction can be further extended to the synthesis of 2-

iodo-2-deoxy sugars using α-iodosugars as starting materials
(Table 1C). For example, α-iodosugar derivatives of D-
galactose, D-glucose, L-fucose, and D-xylose were converted to
the corresponding 2-iodo-2-deoxy sugars 4a−4d with good
yields and up to >20:1 equatorial/axial selectivity. The
electronic nature of the migrating group had a negligible
impact on reaction efficiency and stereoselectivity, as
demonstrated by substrates 3e−3f that afforded the desired
products 4e−4f in similar yields and diastereoselectivity.
Disaccharide and D-galactose derivatives of pharmaceuticals
such as Ibuprofen, Probenecid, Febuxostat, and Zaltoprofen
could be used to generate the corresponding products 4h−4l
with >20:1 equatorial/axial ratios in good yield. Notably, other
photocatalysts such as Ru(bpy)3

2+, Ir(ppy)3, and Eosin Y failed
to catalyze this iodination reaction. Given that 2-iodo-2-deoxy
sugars are (i) excellent glycosyl donors that control the
stereochemistry of the newly formed glycosidic bond25 and (ii)
versatile intermediates for further sugar derivatizations,26 our
protocol will find a useful application in the synthesis of
complex glycans for the discovery and development of new
bioactive compounds.

Our mechanistic hypothesis of the excited-state Pd-catalyzed
C-2 functionalization of carbohydrates depicted in Figure 2 is
supported by UV−vis measurements, Stern−Volmer quench-
ing studies, radical trapping experiments, deuterium labeling
studies, quantum yield measurements, radical clock and
crossover experiments, and kinetic studies (Figure 3). UV−
vis measurements showed the absence of any reaction between
the acetylated α-glucosyl bromide (1a) and the ground-state
Pd(PPh3)4 (Figure 3A). Irradiation of the reaction mixture
with blue LED light for 5 min, however, led to a significant
bathochromic shift (Δλabs = 43 nm) with a λabs at 362 nm. The
UV−vis data suggested that an excited Pd(PPh3)4 catalyst
readily undergoes a radical oxidative addition with 1a,
generating a putative Pd(II)-species.4 Stern−Volmer quench-
ing studies demonstrated that only 1-halosugar quenches the
excited Pd(PPh3)4 (Figure S2). The radical nature of the
reaction is further supported by a radical trapping experiment
(Figure 3B). Deuterium labeling studies where Cs2CO3 was
replaced by DIPEA under deuteration reaction conditions
shifted the 2a:d-2a ratio from 1.0:7.3 to 1.9:1.0, showing that
DIPEA serves as a hydrogen atom donor (Figure 3C). Because
the quantum yields of the C-2 reduction and iodination
reactions were 0.09 and 0.24, respectively, an extended radical
chain propagation is unlikely under our reaction conditions
(Figure S9 and Figure S10).
The key 1,2-spin-center shift involving the acyloxy migration

may proceed through one of the following reaction pathways:

Figure 3. Mechanistic studies of excited-state Pd-catalyzed C-2 functionalization of carbohydrates. See Supporting Information for experimental
details. % of deuterium incorporation, C-2:C-1 ratio, and reaction yields were determined by 1H NMR using CH2Br2 as an internal standard.
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(P1) fragmentation to an acyloxy radical and an alkene with
subsequent recombination; (P2) formation of a cyclic 1,3-
dioxolanyl radical followed by ring opening; (P3) fragmenta-
tion to an alkene radical cation and an acyloxy anion followed
by recombination; or (P4) a concerted process involving a
cyclic five-membered ring transition state (Figure 3D).11b The
P1 pathway can be eliminated because the decarboxylation of
an acyloxy radical (k = 109 s−1)27 is much faster than the
migration (k = 102 s−1),19 and no decarboxylation was
observed in the reaction. Pathway P2 is also unlikely because
a radical clock experiment using a substrate bearing the
cyclopropyl acetate group (1m) afforded the desired product
2m without the formation of a ring-opening side product 2m′.
No crossover products 5a and 5b were formed in crossover
experiments using substrates 1a and 1b, indicating that the
reaction could proceed through either pathway P3 with an “in-
cage” recombination or pathway P4. Since the electronics of
the migrating group has a negilible effect on the reaction rate,
the acyloxy migration most likely proceeds through the natural,
concerted pathway P4, and this agrees with the DFT
calculations.28

In summary, we established and exploited the first excited-
state Pd-catalyzed 1,2-SCS reaction for the synthesis of C-2
reduced, deuterated, and iodinated carbohydrates from readily
available 1-halosugars. The reaction features high levels of
regio- and stereoselectivity, broad substrate scope, and mild
reaction conditions that tolerate a wide range of functional
groups and complex molecular structures. Detailed mechanistic
studies suggest a nonchain radical reaction mechanism
involving an excited Pd catalytic species and a 1,2-SCS via a
concerted [2,3]-acyloxy rearrangement. Given the versatile
reactivity of Pd catalysts in carbon−carbon and carbon−
heteroatom bond forming reactions, we anticipate that our
strategy will (i) offer a general, catalytic approach for the C-2
selective functionalization of carbohydrates to access a wide
array of unexplored carbohydrate mimics, establish tools that
tackle fundamental questions in glycobiology, and aid the
discovery and development of new therapeutics and (ii) guide
the design and development of new synthetic strategies beyond
carbohydrate chemistry.
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B. Electron Spin Resonance Spectroscopic Investigation of Carbohy-
drate Radicals. Part 3. Conformation in Deoxypyranosan-2-, −3-, and
−4-yl Radicals. J. Chem. Soc., Perkin Trans. 2 1986, 2, 1461−1464.
(19) Korth, H. G.; Sustmann, R.; Groeninger, K. S.; Leisung, M.;
Giese, B. Electron Spin Resonance Spectroscopic Investigation of
Carbohydrate Radicals. 4. 1, 2-Acyloxyl Migration in Pyranosyl
Radicals. J. Org. Chem. 1988, 53, 4364−4369.
(20) Engl, S.; Reiser, O. Copper Makes the Difference: Visible-
Light-Mediated Atom Transfer Radical Addition (ATRA) Reactions
of Iodoform with Olefins. ACS Catal. 2020, 10, 9899−9906.
(21) In some cases, we observed a trace amount of elimination and/
or C-1 reduction side products.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://dx.doi.org/10.1021/jacs.0c11209
J. Am. Chem. Soc. 2021, 143, 1728−1734

1733

https://dx.doi.org/10.1002/anie.201309535
https://dx.doi.org/10.1002/anie.201309535
https://dx.doi.org/10.1002/anie.201309535
https://dx.doi.org/10.1021/acscentsci.6b00187
https://dx.doi.org/10.1021/acscentsci.6b00187
https://dx.doi.org/10.1021/jacs.8b03530
https://dx.doi.org/10.1021/jacs.8b03530
https://dx.doi.org/10.1021/jacs.8b03530
https://dx.doi.org/10.1021/jacs.7b08459
https://dx.doi.org/10.1021/jacs.7b08459
https://dx.doi.org/10.1021/jacs.8b00488
https://dx.doi.org/10.1021/jacs.8b00488
https://dx.doi.org/10.1038/s41467-018-07694-w
https://dx.doi.org/10.1038/s41467-018-07694-w
https://dx.doi.org/10.1038/s41467-018-07694-w
https://dx.doi.org/10.1021/acs.orglett.7b03591
https://dx.doi.org/10.1021/acs.orglett.8b00023
https://dx.doi.org/10.1021/acs.orglett.8b00023
https://dx.doi.org/10.1002/chem.201800813
https://dx.doi.org/10.1002/chem.201800813
https://dx.doi.org/10.1002/chem.201800813
https://dx.doi.org/10.1002/anie.201811439
https://dx.doi.org/10.1002/anie.201811439
https://dx.doi.org/10.1002/anie.201811439
https://dx.doi.org/10.1002/anie.201812398
https://dx.doi.org/10.1002/anie.201812398
https://dx.doi.org/10.1038/s41929-020-0434-0
https://dx.doi.org/10.1038/s41929-020-0434-0
https://dx.doi.org/10.1021/jacs.0c03239
https://dx.doi.org/10.1021/jacs.0c03239
https://dx.doi.org/10.1021/jacs.0c03239
https://dx.doi.org/10.1021/jacs.0c03993
https://dx.doi.org/10.1021/jacs.0c03993
https://dx.doi.org/10.1021/jacs.0c03993
https://dx.doi.org/10.1002/anie.201712775
https://dx.doi.org/10.1002/anie.201712775
https://dx.doi.org/10.1002/anie.201712775
https://dx.doi.org/10.1038/s41467-018-07694-w
https://dx.doi.org/10.1038/s41467-018-07694-w
https://dx.doi.org/10.1038/s41467-018-07694-w
https://dx.doi.org/10.1002/anie.201911012
https://dx.doi.org/10.1002/anie.201911012
https://dx.doi.org/10.1002/anie.201911012
https://dx.doi.org/10.1002/anie.201915962
https://dx.doi.org/10.1002/anie.201915962
https://dx.doi.org/10.1002/ejoc.200600915
https://dx.doi.org/10.1002/ejoc.200600915
https://dx.doi.org/10.1038/nature14885
https://dx.doi.org/10.1038/nature14885
https://dx.doi.org/10.1021/jacs.7b12768
https://dx.doi.org/10.1021/jacs.7b12768
https://dx.doi.org/10.1039/C9SC05173B
https://dx.doi.org/10.1039/C9SC05173B
https://dx.doi.org/10.1021/ja01054a068
https://dx.doi.org/10.1021/ja01054a068
https://dx.doi.org/10.1021/cr950207o
https://dx.doi.org/10.1021/cr950207o
https://dx.doi.org/10.1021/cr950207o
https://dx.doi.org/10.1021/cr950207o
https://dx.doi.org/10.1038/nrd2852
https://dx.doi.org/10.1038/nrd2852
https://dx.doi.org/10.1002/chem.201500831
https://dx.doi.org/10.1002/chem.201500831
https://dx.doi.org/10.1002/chem.201500831
https://dx.doi.org/10.1016/S0920-5861(00)00500-9
https://dx.doi.org/10.1016/S0920-5861(00)00500-9
https://dx.doi.org/10.1016/S0920-5861(00)00500-9
https://dx.doi.org/10.1021/ja002962b
https://dx.doi.org/10.1021/ja002962b
https://dx.doi.org/10.1016/S0065-2318(07)61004-X
https://dx.doi.org/10.1016/S0065-2318(07)61004-X
https://dx.doi.org/10.3390/ijms21010234
https://dx.doi.org/10.3390/ijms21010234
https://dx.doi.org/10.1055/s-1990-26854
https://dx.doi.org/10.1055/s-1990-26854
https://dx.doi.org/10.1515/pac-2014-0403
https://dx.doi.org/10.1021/acs.chemrev.7b00731
https://dx.doi.org/10.1002/anie.198702331
https://dx.doi.org/10.1016/S0040-4039(01)80281-1
https://dx.doi.org/10.1016/S0040-4039(01)80281-1
https://dx.doi.org/10.1002/ejoc.201402441
https://dx.doi.org/10.1002/ejoc.201402441
https://dx.doi.org/10.1002/anie.198408961
https://dx.doi.org/10.1002/anie.198408961
https://dx.doi.org/10.1021/ja011321t
https://dx.doi.org/10.1021/ja011321t
https://dx.doi.org/10.1021/ja011321t
https://dx.doi.org/10.1021/ja011321t
https://dx.doi.org/10.1021/ja011321t
https://dx.doi.org/10.1039/P29860001461
https://dx.doi.org/10.1039/P29860001461
https://dx.doi.org/10.1039/P29860001461
https://dx.doi.org/10.1021/jo00253a032
https://dx.doi.org/10.1021/jo00253a032
https://dx.doi.org/10.1021/jo00253a032
https://dx.doi.org/10.1021/acscatal.0c02984
https://dx.doi.org/10.1021/acscatal.0c02984
https://dx.doi.org/10.1021/acscatal.0c02984
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c11209?ref=pdf


(22) We also tested a mannose derivative where the B2,5 boat
confirmation is less favorable; we only observed trace amount of C-2
reduction product.
(23) (a) He, X.; Agnihotri, G.; Liu, H.-w. Novel Enzymatic
Mechanisms in Carbohydrate Metabolism. Chem. Rev. 2000, 100,
4615−4662. (b) Zhang, L.; Shi, L.; Shen, Y.; Miao, Y.; Wei, M.; Qian,
N.; Liu, Y.; Min, W. Spectral Tracing of Deuterium for Imaging
Glucose Metabolism. Nat. Biomed. Eng. 2019, 3, 402−413.
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