
Single C−F Transformations of o‑Hydrosilyl Benzotrifluorides with
Trityl Compounds as All-in-One Reagents
Rika Idogawa, Youngchan Kim, Ken Shimomori, Takamitsu Hosoya, and Suguru Yoshida*

Cite This: https://dx.doi.org/10.1021/acs.orglett.0c03529 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: A facile method to prepare difluoromethylenes, including α,α-
difluorobenzyl chlorides, by single C−F transformations of benzotrifluorides
is disclosed. The C−F cleavage followed by chlorination proceeded smoothly
using trityl chloride through the generation of trityl cation as an activator and
chloride anion as a nucleophile. Diverse difluoromethylenes such as
difluorobenzyl ethers were efficiently prepared by virtue of the good
versatility of the resulting chloro and fluorosilyl groups.

Organofluorines are of great significance in a broad range
of disciplines such as materials chemistry, pharmaceut-

ical sciences, and chemical biology.1 In particular, difluoro-
methylenes are attractive as bioactive compounds and organic
materials because of the properties affected by the introduction
of fluorine atoms.2−8 In spite of continuous efforts to develop
synthetic methods for difluoromethylenes, synthesizing a broad
range of difluoromethylenes is still challenging because of the
limitation of available building blocks and transformations.2−8

Herein we disclose a practical method for preparing α,α-
difluorobenzyl chlorides as versatile organofluorine building
blocks. This facile synthesis was achieved by single C−F
chlorination of o-hydrosilyl benzotrifluorides with trityl
chloride as an all-in-one reagent for generating trityl cation
as an activator and chloride anion as a nucleophile.
In contrast to benzyl halides as fundamental building blocks

in synthetic organic chemistry, transformations of α,α-
difluorobenzyl halides are still limited because of their poor
accessibility (Figure 1).8 Pioneering works by Yoshida and
coworkers in the 1990s showed potentially versatile trans-
formability of α,α-difluorobenzyl chlorides as electrophiles and
α,α-difluorobenzyl radical precursors, but the synthesis of α,α-
d ifluorobenzy l ch lor ides f rom arenes and bi s -
(chlorodifluoroacetyl) peroxide was not easy (Figure 1A).8a

In 2020, Young and coworkers reported that single C−F
functionalization of benzotrifluorides could be achieved using a
frustrated Lewis pair from 2,4,6-triphenylpyridine and a
catalytic amount of tris(pentafluorophenyl)boron and follow-
ing treatment with nucleophiles, including chloride anion
(Figure 1B).6 We independently accomplished single C−F
transformations of benzotrifluorides assisted by activation of an
o-hydrosilyl group with a trityl cation in the presence of
nucleophiles such as allylsilanes.7a We also achieved the
synthesis of an o-fluorosilyl-substituted α,α-difluorobenzyl
chloride in moderate yield by treating an o-hydrosilyl
benzotrifluoride with trityl tetrafluoroborate and a diethyl
ether solution of hydrochloric acid.7a Recently, C−F thiolation
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Figure 1. Background and plan of this study. (A) Conventional
methods. (B) Young’s work. (C) This work. (D) Working hypothesis
of this study.
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of o-hydrosilyl benzotrifluorides was achieved using trityl
sulfides as all-in-one reagents to generate a trityl cation and
thiolate anions activated by ytterbium catalysis.7b Considering
the higher stability of chloride anion compared with thiolates,9

we envisioned that C−F chlorination of o-hydrosilyl
benzotrifluorides would take place with trityl chloride (1a)
through equilibrium generation of trityl cation and chloride
anion without any Lewis acid catalysis (Figure 1C).10 The
generation of trityl cation and chloride anion would trigger
hydride abstraction from benzotrifluoride 2 and fluoride
migration followed by nucleophilic attack of chloride anion
to difluorobenzyl cation II to provide difluorobenzyl chloride 3
(Figure 1D). Since the resulting chloro and fluorosilyl groups
can be transformed to various functional groups, a wide range
of difluoromethylenes can be synthesized from difluorobenzyl
chlorides 3.
As expected, C−F chlorination of o-hydrosilyl benzotri-

fluoride 2a with trityl chloride proceeded without any Lewis
acid catalysis (Table 1).11 We found that the desired o-

fluorosilyl-substituted difluorobenzyl chloride 3a was obtained
in good yield when benzotrifluoride 2a was treated with trityl
chloride dissolved in dichloromethane and 1,1,1,3,3,3-hexa-
fluoro-2-propanol (HFIP)12 (1:1 v/v) and that further C−F
transformations of 3a did not occur (entry 1). Decreasing the
amount of HFIP to 5 or 2 vol % slightly reduced the yield of 3a
(entries 2 and 3). On the other hand, no reaction proceeded in
the reaction without HFIP, similar to our previous reports
(entry 4).7 In addition, difluorobenzyl chloride 3a was
prepared in moderate yield when HFIP was solely used as a
solvent (entry 5). Difluorobenzyl chloride 3a was not obtained
when other polar solvents such as DMSO, DMF, and
nitromethane were used (entries 6−8). Furthermore, 2,2,2-
trifluoroethanol (TFE) instead of HFIP slightly facilitated C−
F chlorination (entry 9). Chlorobenzene instead of dichloro-
methane improved the efficiency (entry 10). The good
scalability was demonstrated by a gram-scale synthesis of 3a
in high yield.
A broad range of fluorosilyl-substituted difluoromethylenes

3b−j were successfully prepared by C−F functionalizations
with trityl compounds (Figure 2A). For example, difluor-
obenzyl chlorides 3b−e were prepared from benzotrifluorides

in high yields without damaging methoxy, methoxycarbonyl,
and bromo groups. The yield of defluorochlorination product
3b was significantly improved from our previous result using
trityl tetrafluoroborate and hydrochloric acid.7a,13 It is
noteworthy that the selective C−F chlorination afforded
difluorobenzyl chlorides 3f and 3g having an unreacted
trifluoromethyl group in good yields. Not only chlorination
but also bromination, tosyloxylation, and thiocyanation
proceeded smoothly without any Lewis acid catalysis.14 It is
noteworthy that various transformations from C−F to C−Cl,
C−Br, C−OTs, and C−SCN were achieved by this simple
procedure using only trityl compounds.
The generation of trityl cation from trityl compounds 1a and

1d−f was confirmed by absorption spectra in dichloromethane

Table 1. Optimization of the Reaction Conditions

entry solvent yield (%)a

1 CH2Cl2/HFIP (1:1 v/v) 88
2 CH2Cl2/HFIP (19:1 v/v) 83
3 CH2Cl2/HFIP (49:1 v/v) 62
4 CH2Cl2 0
5 HFIP 50
6 DMSO 0
7 DMF 0
8 CH3NO2 0
9 CH2Cl2/TFE (1:1) 10
10 PhCl/HFIP (1:1) quant. (90b)

aYields based on 1H NMR analysis. bThe isolated yield for the
reaction conducted on a 3.0 mmol scale is shown in parentheses.

Figure 2. C−F transformations using trityl compounds. (A) Scope of
C−F transformations using trityl compounds. (B) Absorption spectra
of trityl compounds 1 in CH2Cl2/HFIP (1:1 v/v) at 50 μM (red line,
X = Cl; pink line, X = OTs; orange line, X = Br; green line, X = SCN;
blue line, X = N3; purple line, X = SAr). (C) Absorbance at 408 nm in
CH2Cl2/HFIP (100:0 to 0:100 v/v) at 50 μM. (D) Absorbance at
408 nm in PhCl/HFIP (100:0 to 0:100 v/v) at 50 μM. aData from ref
9a. bData from ref 9b. cData from ref 9c.
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and HFIP, while a small concentration of trityl cation was
generated from trityl thiolate 1b or trityl azide 1c (Figure 2B).
The cleavabilities of trityl compounds to generate trityl cation
and the corresponding counteranions were attributed to the
stability of the counteranions, which were clearly shown by pKa
values of the conjugate acids.9 The concentration of trityl
cation was increased by increasing the amount of HFIP, and
trityl cation was not detected when only dichloromethane or
chlorobenzene was used (Figure 2C,D).
Various ortho-functionalized difluorobenzyl chlorides were

synthesized by transformations of the fluorosilyl group (Figure
3A). Indeed, we succeeded in the synthesis of difluorobenzyl

chlorides 4−8 by protonation with wet tetrabutylammonium
fluoride, arylation by palladium-catalyzed Hiyama cross-
coupling with aryl iodide,15 and halogenations with N-
halosuccimides.16 These results clearly show that the single
defluorochlorination of the trifluoromethyl group and
subsequent C−Si transformations based on the good reactivity
of the fluorosilyl group can be used to prepare a broad range of
ortho-substituted difluorobenzyl chlorides.

The C−F chlorination and C−Si bromination sequence
enabled us to prepare a wide variety of o-bromo-substituted
difluorobenzyl chlorides (Figure 3B). For example, not only o-
bromo-α,α-difluorobenzyl chloride (7b) but also 4-anisyl- and
4-(methoxycarbonyl)phenyl-substituted difluorobenzyl chlor-
ides 7c and 7d were efficiently prepared from 3b−d,
respectively. We also synthesized heteroaromatic-substituted
difluorobenzyl chlorides 7e and 7f by C−F chlorination and
C−Si bromination of o-hydrosilyl-substituted benzotrifluorides
in two steps. Electron-deficient 2,5-dibromo-α,α-difluoroben-
zyl chloride (7g) was successfully prepared in good yield. It is
noteworthy that we accomplished the synthesis of difluor-
obenzyl chlorides 7h and 7i bearing a trifluoromethyl group
keeping the difluoromethylene group intact. These results
clearly indicated an advantage of this study since the facile
synthesis of α,α-difluorobenzyl chlorides having a trans-
formable o-bromo group was a challenging issue in the
previous C−F transformations.5,6 Additionally, the preparation
of α-fluorobenzyl chloride 11 was also achieved via C−F
chlorination of the difluoromethyl group of 9 and subsequent
C−Si bromination (Figure 3C).5c,17

The good transformability of the chloro group enabled the
synthesis of a wide range of difluorobenzyl ethers from
alcohols under basic conditions (Figure 4A). Such ethers are
difficult to prepare by conventional methods because of the

Figure 3. C−F chlorination and C−Si transformations. (A) C−Si
transformations of 3a. (B) Synthesis of o-bromo-substituted
difluorobenzyl chlorides 7. (C) C−F chlorination and C−Si
bromination of 9.

Figure 4. Transformations of the chloro group. (A) Synthesis of
various difluorobenzyl ethers 12. (B) Radical addition using 7a. aSmI2
was added in two portions. See the Supporting Information for details.
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limited accessibility of difluorobenzyl chlorides.8h Indeed,
heating difluorobenzyl chloride 7a possessing a bulky bromo
group at the ortho position with phenol in the presence of
cesium carbonate in DMSO furnished difluorobenzyl ether 12a
in high yield, and no side product formed by C−F cleavage was
observed.18 Difluorobenzyl ethers 12b and 12c were also
prepared from 4- and 2-methoxyphenol, respectively. We also
succeeded in the synthesis of difluorobenzyl ether 12d in
moderate yield leaving the ester moiety untouched. It is
noteworthy that O-benzylation proceeded selectively to
provide 12e when difluorobenzyl chloride 7a was treated
with 2-pyridone, and the N-benzylation product was not
detected. Unfortunately, cyclohexyl difluorobenzyl ether 12f
was not detected in the reaction of 7a with cyclohexanol.
Furthermore, various difluorobenzyl chlorides participated in
the difluorobenzyl ether synthesis. For instance, 4-methox-
yphenyl-substituted difluorobenzyl ether 12g was efficiently
synthesized by O-benzylation of phenol. In addition,
methoxycarbonyl-substituted difluorobenzyl ether 12h was
prepared, albeit in low yield. O-Benzylation of phenol allowed
for the preparation of difluorobenzyl ethers 12i and 12j
possessing heteroaromatic rings. We also accomplished the
synthesis of electron-deficient difluorobenzyl ethers 12k−m
having bromo- and trifluoromethyl groups. The difluorobenzyl
ether synthesis would be useful in pharmaceutical sciences and
agrochemistry since a broad range of benzyl ethers are
bioactive compounds and replacing hydrogen atoms with
fluorines has gained attention as a means to modulate the
properties such as bioactivity, lipophilicity, and stability toward
oxidation.
Samarium-mediated reductive radical addition between

difluorobenzyl chloride 7a and styrene (13) realized further
C−C bond formation through difluorobenzyl radical III
(Figure 4B). Indeed, treatment of 7a and 13 with samarium
iodide in the presence of HMPA and TMEDA in methanol
afforded difluoromethylene 14 in good yield without C−F
cleavage or damage to the bromo group.8d Thus, the significant
versatility of difluorobenzyl chlorides allowed us to synthesize a
wide range of organofluorines by not only substitution
reactions but also radical reactions.
In summary, we have developed an efficient method for the

synthesis of α,α-difluorobenzyl chlorides through single C−F
chlorination of benzotrifluorides with trityl chloride assisted by
an o-hydrosilyl group. Equilibrium generation of trityl cation
and chloride anion from trityl chloride facilitated the efficient
C−F chlorination leaving the difluoromethylene group intact,
whereas it is not easy to prepare difluoromethylenes by
previously reported defluorohalogenation methods.10 The
good transformabilities of the chloro and fluorosilyl groups
realized the synthesis of diverse difluorobenzyl ethers having a
transformable o-bromo group. Further studies to expand
synthesizable organofluorines involving the development of
synthetic methods for o-hydrosilyl-substituted benzotrifluor-
ides are ongoing in our group.
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