ACS Chemical Neuroscience

Article

Subscriber access provided by MT ROYAL COLLEGE

Discovery of Selective, Substrate-Competitive, and Passive Membrane Permeable Glycogen Synthase Kinase-3# Inhibitors: Synthesis, Biological Evaluation, and Molecular Modeling of New C-Glycosylflavones

Zhibin Liang, and Qing X. Li

ACS Chem. Neurosci., Just Accepted Manuscript • DOI: 10.1021/acschemneuro.8b00010 • Publication Date (Web): 30 Jan 2018 Downloaded from http://pubs.acs.org on January 31, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Chemical Neuroscience is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 2		
3 4		
5 6 7	1	Discovery of Selective, Substrate-Competitive, and Passive Membrane Permeable
8 9 10	2	Glycogen Synthase Kinase-3 β Inhibitors: Synthesis, Biological Evaluation, and
11 12 13	3	Molecular Modeling of New C-Glycosylflavones
14 15 16 17	4	Zhibin Liang and Qing X. Li*
18 19 20	5	Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa,
21 22	6	Honolulu, Hawaii 96822, United States
23 24 25	7	
26 27		
28 20		
29 30		
31		
32 33		
34		
35		
36 37		
38		
39		
40 41		
42		
43		
44		
45 46		
47		
48		
49 50		
50 51		
52		
53		
54 57		
55 56		
57		
58		
59		

2	
3	
4	
5	
6	
7	
, 8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
∠U 21	
21	
22	
23	
24	
25	
26	
27	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
22	
50	
57	
58	
59	

1

8 **ABSTRACT:** Glycogen synthase kinase-3β (GSK-3β) is a key enzyme responsible for tau 9 hyperphosphorylation and is a viable therapeutic target of Alzheimer's disease (AD). We 10 developed a new class of GSK-3 β inhibitors based on the 6-C-glycosylflavone isoorientin (1). 11 The new inhibitors are passive membrane permeable and constitutively attenuate GSK-3 β 12 mediated tau hyperphosphorylation and amyloid neurotoxicity in an AD cellular model. 13 Enzymatic assays and kinetic studies demonstrated that compound **30** is a GSK-3β substrate-14 competitive inhibitor with distinct kinase selectivity, isoform-selectivity and over 310-fold 15 increased potency as compared to 1. Structure-activity relationship analyses and *in silico* 16 modeling suggest the mechanism of actions by which the hydrophobic, π -cation and orthogonal 17 multipolar interactions of **30** with the substrate site are critical for the GSK-3 β inhibition and 18 selectivity. The results provide new insights into GSK-3β drug discovery. The new inhibitors are 19 valuable chemical probes and drug leads with therapeutic potential to tackle AD and other GSK-20 3β relevant diseases.

21 Keywords: *C*-Glycosylflavone, computer-aided drug design, glycogen synthase kinase-3,
22 substrate-competitive inhibitor, kinase selectivity, tauopathy, Alzheimer's disease

23 Introduction

Alzheimer's disease (AD) is an irreversible and progressive neurological disorder that causes
memory loss, cognitive decline, and eventually death due to severe brain degeneration.¹ This
devastating and fatal disease, unfortunately, cannot be prevented, cured or even slowed.
Although the exact cause of AD remains unclear, increasing evidence suggests that β-amyloid
(Aβ) is plausibly the pathogenic initiator of AD and tau aggregation and distribution in the brain
cortices correlate closely with neuronal loss and cognitive decline in AD progression.¹⁻² The tau

Page 3 of 63

ACS Chemical Neuroscience

protein stabilizes the structural integrity of microtubules in neurons to maintain healthy axonal transport. In AD, aberrant phosphorylation of tau proteins disrupts their association, leading to destabilization of microtubules and mislocalization of the abnormal tau to the soma and dendrites.³ The subsequent aggregation of hyperphosphorylated tau results in formation and disposition of toxic neurofibrillary tangles (NFTs), triggering synaptic dysfunction, neuronal cell death and cognitive impairment. This aberrant signaling cascade gives rise to the tauopathy in AD.⁴ The continued failures of anti-A β approaches in AD clinical studies⁵⁻⁶ drive researchers embrace an alternative approach to investigate anti-tau strategies for AD treatment.^{4,7} Glycogen synthase kinase-3 β (GSK-3 β) is a key protein kinase in the cascade leading to aberrant tau hyperphosphorylation. Elevated GSK-3 β activity has been implicated in AD and other tauopathies.⁸ Overactive GSK-3β hyperphosphorylates over 70% of the potential phosphorylation sites on tau proteins in AD brains, which impairs the healthy interactions of tau proteins with microtubules.⁹ The development of selective GSK-3ß inhibitors modulating aberrant tau phosphorylation is therefore a promising strategy for AD chemotherapy.¹⁰⁻¹¹ To date, the US-FDA has approved four AD drugs, but they only ameliorate temporary symptoms, and none targets GSK-3_β.¹⁰ Traditional GSK-3β inhibitors target the highly conserved ATP site. However, the limited selectivity of those inhibitors raises safety concerns owing to off-target effects and, therefore,

48 remains a major challenge in GSK-3 β based drug development.¹¹ Despite substantial efforts in

developing GSK-3^β inhibitors in the past decades, to date only lithium carbonate and tideglusib

50 (a TDZD compound) have been studied in clinical trials for AD.¹⁰ Lithium carbonate shows a

- 51 weak inhibition (IC₅₀, 2 mM),¹¹ while tideglusib (IC₅₀, 100 nM) is an irreversible and time-
 - 52 dependent inhibitor of GSK-3 β .¹²⁻¹³ In recent years, strategies have been employed to search for

ACS Chemical Neuroscience

60

1

53

54

55

56

57

58

selective and reversible GSK-3 β inhibitors, particularly those that are not ATP-site directed. It is known that the substrate domain of GSK-3β is less conserved with a unique folding different from other kinases.^{11, 14} Inhibitors targeting this site are thought to be more specific and selective than the ATP-competitive inhibitors.^{11, 14} Yet few substrate-competitive inhibitors of GSK-3β have been reported.¹⁵⁻¹⁸ New, potent, selective and reversible inhibitors targeting the substrate site on GSK-3 β are potential disease-modifying therapies for AD.

59 We have undertaken a different approach to discover potential substrate-competitive inhibitors 60 of GSK-3 β from natural sources. Natural products are valuable starting points for drug discovery 61 as they have been naturally selected and optimized under evolutionary pressure and obtained privileged structures for protein binding.¹⁹ C-Glycosylflavones and their aglycones (Figure 1) 62 63 omnipresent in plants are important phytochemicals noted for anti-oxidation, anti-inflammation, anti-cancer, anti-cardiovascular diseases, and cognitive enhancement.²⁰⁻²² We recently screened 64 corn silks for GSK-3 β inhibitors and isolated a 6-C-glycosylflavone, isoorientin (1).²³ Compound 65 1 alleviates tau hyperphosphorylation and amyloid neurotoxicity through selective and reversible 66 GSK-3β inhibition,²³ by which the mechanism of action is substrate competition rather than the 67 common ATP competition.²³ In addition, a recent study showed that **1** and related natural 68 69 flavones attenuate Aß burden and neuroinflammation in an APPswe/PSEN1dE9 mouse model of AD.²⁴ 1 from maize crop²³ is conceivably safe as supported by *in vivo* subchronic toxicity studies 70 of corn silk-derived flavones in mice and rats.²⁵ **1** is a promising medicinal natural product with a 71 novel mode of action for reducing AD burdens.²³⁻²⁵ However, the lack of druggable potency 72 $(IC_{50}, 185 \mu M)$, commonly suffered by bioactive natural products, makes it challenging in 73 74 pharmaceutical applications. Potency improvement, through structure-activity relationship 75 (SAR)-based optimization, pharmacological and pharmacokinetic evaluations, as well as testing

ACS Chemical Neuroscience

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17 20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
3/	
25	
22	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

administration routes *in vivo* are therefore necessary to develop analogues of 1 with therapeutic
potential.

78 In our recent paper, preliminary examination of the predicted 3D structure of the GSK-3 β -1 79 complex revealed that the substrate pocket of GSK-3ß favors specific interactions with both the C-glycone and flavone moieties in 1^{23} In particular, a cleft comprised of Phe67, Val87, Leu88 80 and Phe93 on GSK-3ß is critical for substrate recognition.²⁶ This concave cleft could 81 82 accommodate a hydrophobic moiety favoring ligand binding, which is in the vicinity of the 83 primary hydroxyl group on C-glycone of 1. This raises our hypothesis that introduction of a 84 hydrophobic functional group at this primary alcohol enhances affinity and selectivity of 1 to 85 GSK-3^β. In addition, methylation of the phenolic hydroxyls can improve bioavailability, metabolic stability and potency of flavones.²⁷ 86 87 In the present study, a new series of 1 analogues containing a 6-C-glycosylflavone scaffold 88 were semi-synthesized to target the substrate site on GSK-3 β . Potency, selectivity, passive 89 membrane permeability, anti-tau hyperphosphorylation, and anti-A β neurotoxicity of the new 90 inhibitors were evaluated with molecular and cellular studies, SAR analysis and molecular 91 modeling. 92 93 Results 94 Chemistry 95 Design and Synthesis. A series of new analogues of 1 were designed and synthesized (Table 1). The semi-synthesis of 6-C-glycosylflavones from 1 was carried out according to the route 96

97 outlined in Scheme 1. The four phenolic hydroxyls on the flavone core of 1 were first selectively

methylated by TMSCHN₂ in a methanolic toluene solution according to a previously described method.²⁸ The resulting tetra-methylated product (5) then underwent an oxoammonium salt-mediated oxidation. We optimized an oxidation protocol²⁹ using a $[TEMPO]^+[BF_4]^-$ salt in a pyridine base solution at room temperature, which chemoselectively transformed the primary alcohol to a carboxylic acid without affecting the secondary hydroxyls on the C-glycone. This method successfully afforded the desired product (6) in over 95% yield which was confirmed by ESI-TOF-MS and NMR analyses. The carboxylic acid derivative 6 was then subjected to methyl esterification to afford 7. It is known that an ester bond is susceptible to metabolic hydrolysis. Our chemical design was focused on amide analogues with better physiochemical stability. A small library of hydrophobic amides (8-31) was generated by coupling 6 with a series of organic amines via HCTU catalysis. Aliphatic, alicyclic, aromatic and fluorinated amines were selected for the solution-phase amidation (Table 1). The resulting hydrophobic amides were evaluated on their SAR, cytotoxicity, anti-AD activity, and passive membrane permeability. All final products were characterized by NMR and HRMS, and were over 95% purity determined by HPLC-UV at 210, 254, and 340 nm.

)			
1			

cmpd			Function	al group
no.	R ₁	X ₁	X ₂	R ₂
1	Н	H ₂	0	Н
5	CH ₃	H_2	Ο	Н
6	CH ₃	0	Ο	Н
7	CH ₃	0	Ο	CH ₃
8	CH ₃	0	NH	3005 Starter
9	CH ₃	0	NH	are a second sec
10	CH ₃	0	NH	- ra-ra-
11	CH ₃	0	NH	and the second sec
12	CH ₃	0	NH	25 ²⁵
13	CH ₃	0	NH	300 ⁵
14	CH ₃	0	NH	zzzzz
15	CH ₃	0	NH	2005
16	CH ₃	0	NH	and the second s

ACS Chemical Neuroscience

2					
3 4 5 6	17	CH ₃	Ο	NH	2 Are
7 8 9	18	CH ₃	Ο	NH	- sos
10 11 12 13 14	19	CH ₃	Ο	NH	- Society of the second
15 16 17 18 19	20	CH ₃	0	NH	2 Processing and a second seco
20 21 22	21	CH ₃	0	NH	soc ⁵
23 24 25 26 27	22	CH ₃	0	NH	N
28 29 30 31	23	CH ₃	Ο	NH	S N
32 33 34 35	24	CH ₃	0	NH	F
36 37 38	25	CH ₃	0	NH	- F
40 41	26	CH ₃	0	NH	s ^{ss} F
42	27	CH ₃	0	NH	₅s ^s CF ₃
44 45 46	28	CH ₃	0	NH	s ^{s^s} F
47 48 49	29	CH ₃	0	NH	SSS CF3
50 51 52 53	30	CH ₃	Ο	NH	ره) CF ₃ ≟ ≞
55 54 55 56 –	31	CH ₃	0	NH	J ^{S^S (R)} CF ₃
57 58					

1

59

Biological Activities and Relevance

117	Structure-Activity Relationship and Ligand-Lipophilic Efficiency of C-Glycosylflavones
118	to GSK-3 β . The semi-synthetic 6- <i>C</i> -glycosylflavones (5-31) were assayed on GSK-3 β inhibition
119	in comparison to four natural flavones with structural similarities (two 6-C-glycosylflavones
120	isoorientin 1 and isovitexin 2, one 8-C-glycosylflavone orientin 3, and a flavone aglycone
121	luteolin 4). Among the four flavones (1-4, Figure 1), 4 showed the highest potency against GSK-
122	3β (IC ₅₀ , 3.1 μ M in Table 2), but it is nonspecific and promiscuous as noted in the literature and
123	our previous studies. ^{23, 30} 1 and 2 with C-glycosides at 6-position showed a moderate potency
124	against GSK-3 β with an IC ₅₀ value of 185 and 194 μ M, respectively (Figure 1 and Table 2). In
125	contrast, 3 with an 8- <i>C</i> -glycoside was inactive (IC ₅₀ , $>$ 5 mM). The results demonstrated that the
126	presence and position of <i>C</i> -glycone on the flavone core are critical for GSK-3β inhibition, which
127	agrees with our previous observation. ²³
128	The tetra-methylated alcohol (5) and tetra-methylated carboxylic acid (6) slightly decreased
129	the potency (IC ₅₀ , 237 and 239 μ M, respectively) in comparison with 1, indicating a trivial
130	contribution of the phenolic hydroxyl groups to GSK-3 β inhibition. However, a methyl ester (7)
131	(IC $_{50},135~\mu M$) increased the potency by 1.37-fold as compared to 1 (IC $_{50},185~\mu M$), suggesting
132	hydrophobic groups at the primary hydroxyl position are preferred for GSK-3β inhibition.
133	Remarkably, transforming the primary alcohol to corresponding hydrophobic amides (8-31)
134	(Table 2) significantly increased the potency against GSK-3 β as most analogues displayed IC ₅₀
135	values less than 50 μ M and ten of them (9, 13, 16, 17, 20, 21, 27, 29, 30 and 31) were less than
136	20 μ M. As shown in Figure 2A, the aliphatic (e.g., 9 and 13) and alicyclic amides (e.g., 16 and
137	17) exhibited a higher affinity to GSK-3 β than the aromatic amides (e.g., 20-23). Small (14 and
138	15) or large (18 and 19) alicyclic rings showed a less affinity than the cyclopentyl (16) or

3 4	139	cyclohexyl (17) analogues, plausibly due to the size of the hydrophobic concave cleft in the
5 6 7	140	substrate site on GSK-3 β . A branched isopropyl group (9, 30, and 31) showed a higher affinity
/ 8 9	141	than a linear propyl group (8, 28, and 29). Mono-fluorination of phenyl (24), benzyl (25), ethyl
10 11	142	(26) or propyl (28) groups did not improve affinity as compared to non-fluorinated counterparts
12 13	143	(e.g., 8 , 20 , and 21). It is interesting that a trifluoromethyl (CF ₃) group has a significant effect on
14 15 16	144	potency. Compounds 27, 29, 30 and 31 containing a CF ₃ moiety consistently improved binding
10 17 18	145	affinity to GSK-3 β in comparison with no fluorine or mono-fluorinated counterparts (e.g., 8, 9,
19 20	146	26 and 28) (Figure 2A). In particular, 30 (IC ₅₀ , 0.59 μ M) with a (S)-CF ₃ group increased the
21 22 22	147	potency against GSK-3 β by 310-fold in comparison with 1, and is about 4-fold more potent than
23 24 25	148	its epimer 31 with a (<i>R</i>)-CF ₃ group (IC ₅₀ , 2.3 μ M). All new analogues were not pan-assay
26 27	149	interference compounds to GSK-3 β as determined with a detergent-based assay. ^{23, 30-31}
28 29	150	Ligand-lipophilic efficiency (LiPE) is a parameter commonly used in drug design to assess the
30 31 32	151	quality of compound candidates. Lipophilicity is the most important druglike physiochemical
33 34	152	property that highly correlates to absorption, distribution, metabolism, excretion and toxicity
35 36	153	(ADMET) profiles and ultimately to the pharmacological response for oral drugs. ³² High potency
37 38 20	154	(large pIC_{50}) is a desirable feature in drug candidates, as it reduces the risk of off-target and
39 40 41	155	nonspecific pharmacology. Correlation between lipophilicity ($CLogP$) and potency (pIC_{50})
42 43	156	provides a valuable parameter to estimate druglikeness. ³³ Many of the semi-synthetic analogues
44 45	157	clustered in an upper-right range of the LiPEs between 2 and 4, indicating that both lipophilicity
46 47 48	158	(CLog <i>P</i>) and GSK-3 β inhibitory potency (pIC50) have been increased relative to 1 (Figure 2B).
49 50	159	Particularly, 30 has the highest LiPE value (> 4) among the analogues, suggesting a unique
51 52	160	contribution of the CF_3 moiety of 30 to improving potency and lipophilicity.
53 54 55 56 57 58	161	

1	
2	
3	
4 5	
6	
7	
8 9	
10	
11	
12	
14	
15	
16	
18	
19	
20 21	
22	
23	
24 25	
26	
27	
28 29	
30	
31 22	
33	
34	
35	
37	
38	
39 ⊿0	
41	
42	
43 44	
45	
46	
47 48	
49	
50	
51 52	
53	
54	
55 56	

162 **Table 2.** Comparison of Natural and Semi-Synthetic *C*-Glycosylflavones on GSK-3β Inhibition

163 and CLog*P*

cmpd	GSK-3β inhibition	CLogP ^b	cmpd	GSK-3β inhibition	CLogP ^b
no.	IC ₅₀ (μM) ^a	-	no.	IC ₅₀ (μM) ^a	-
1	184.9 ± 1.4	0.21	17	9.0 ± 1.3	2.55
2	194.1 ± 1.0	0.80	18	26.0 ± 1.2	3.16
3	5153 ± 31	0.21	19	33.5 ± 0.8	3.17
4	3.1 ± 1.3	2.31	20	19.7 ± 1.1	2.21
5	239.2 ± 1.2	1.28	21	15.8 ± 1.2	2.34
6	237.3 ± 1.4	0.80	22	35.6 ± 1.3	1.54
7	135.0 ± 1.3	1.21	23	35.1 ± 1.0	1.45
8	29.2 ± 1.1	1.57	24	56.2 ± 1.2	2.61
9	5.4 ± 0.1	1.35	25	21.7 ± 1.2	2.48
10	33.3 ± 1.1	2.10	26	34.8 ± 1.0	0.77
11	31.1 ± 1.2	1.97	27	19.3 ± 0.8	1.31
12	28.0 ± 1.1	2.63	28	49.5 ± 1.2	1.00
13	9.4 ± 0.9	3.16	29	17.2 ± 0.9	1.29
14	25.8 ± 1.1	1.10	30	0.59 ± 0.04	1.62
15	61.9 ± 1.2	1.43	31	2.3 ± 0.5	1.62
16	13.1 ± 1.1	1.99			

164 $\overline{}^{a}$ IC₅₀ values were the mean of quadruplicate of each of two independent experiments. b CLog*P* values were calculated by a fragment-based method.³⁴ cmpd, compound.

¹³ 166

57 58 59

60

167 Evaluations of 1, 9, 17, 21, 30 on Anti-Tau Hyperphosphorylation Mediated by GSK-3β.

168 Compounds 9, 17, 21 and 30 were selected for further evaluation on their effect against GSK-3β

169 mediated tau hyperphosphorylation relative to $\mathbf{1}$, as they are the most potent GSK-3 β inhibitors

170 within each of the aliphatic, alicyclic, aromatic and fluorinated amide analogues, respectively.

171 We recently established an *in vitro* GSK-3β assay using a whole-cell lysate of human SH-SY5Y

2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I つつ	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
21	
5Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
22	
56	
57	
58	
59	
60	

1

172	neuroblastomas and demonstrated that the pS396 site on tau protein is GSK-3 β specific. ²³ Direct
173	GSK-3 β inhibition by isoorientin 1 led to its consequent effect against GSK-3 β mediated tau
174	hyperphosphorylation on the pS396 site in an <i>ex vivo</i> protein matrix of the SH-SY5Y lysate. ²³ In
175	analogy, an aliquot of lysate was fortified with GSK-3 β (wt/wt 0.25%), and incubated with 9, 17,
176	21 , or 30 at different concentrations (2, 10, and 50 μ M) for 2 h followed by an enzyme linked
177	immunosorbent assay (ELISA) with an anti-tau pS396 antibody. TDZD-8 (10 $\mu M)$ and 1 (100
178	μ M) were used as reference controls. Quantitative ELISA measurements substantiated that
179	introducing exogenous GSK-3 β significantly increased phosphorylation by approximately 2.5-
180	fold ($p < 0.0001$) at the site pS396 on tau proteins as compared to their basal levels (lysate
181	fortified with heat-inactivated GSK-3 β) (Figure 3). In contrast, treatment of 9, 17, 21, or 30
182	effectively attenuated tau hyperphosphorylation in a dose-dependent manner ($p < 0.0001$). All
183	four analogues showed vast improvements of anti-tau hyperphosphorylation in comparison to the
184	natural product 1. Compound 30 at 10 μ M exerted an anti-tau effect comparable to TDZD-8 (a
185	known potent GSK-3 β inhibitor, IC ₅₀ = 2 μ M) at the same concentration ($p < 0.05$). These results
186	demonstrated that the new 6-C-glycosylflavone analogues indeed alleviate tau
187	hyperphosphorylation, of which 30 is the most promising candidate suitable for further <i>in vivo</i>
188	pharmacological assessments.
189	
190	GSK-3β Kinetic Studies on the Inhibition Mode of 30. To determine the GSK-3β inhibitory
191	mechanism, the most potent analogue 30 (Figure 4A) was assayed to competitively replace ATP
192	or the GSK-3β substrate GS2 (a peptide derived from human muscle glycogen synthase). Under

194 μ M and **30** concentrations varied from 0 to 5 μ M. The Lineweaver–Burk plots show a

a constant concentration of the substrate GS2 (17 μ M), ATP concentrations varied from 2 to 50

Page 13 of 63

ACS Chemical Neuroscience

convergence of intersecting lines on the x-axis, indicating an unaltered Michaelis-Menten constant (K_m) but a reduced GSK-3 β activity (increased 1/ V_{max}) when the concentration of 30 increased (Figure 4B(a)). This suggested no competition between ATP and 30. In the second set of experiments under a constant concentration of ATP (10 µM), substrate GS2 concentrations varied from 8 to 66 µM and 30 concentrations varied from 0 to 5 µM. The Lineweaver–Burk plots show that all lines intersected at the same point on the y-axis, suggesting an unchanged $1/V_{max}$ but an increase of K_m when the concentration of **30** increased (Figure 4B(b)). The data demonstrated that 30 competed with the substrate GS2. The enzyme inhibitory behaviors of 30 are similar to that of the parent compound 1^{23} and therefore confirm that the new analogues are indeed reversible and substrate-competitive inhibitors of GSK-3β.

Kinase Selectivity Profile of 30. It is prudent to evaluate kinase selectivity in the early phases of drug discovery. Compound **30** was screened against a panel of 41 human protein kinases for selectivity relevant to AD and other CNS disorders.⁹ **30** at 5 µM showed an overall good selectivity as it effectively inhibited GSK-3 β by decreasing 92.3% kinase activity (p < 0.0001) in comparison to the control (100% kinase activity), whereas it showed only marginal or weak inhibition against 40 out of 41 kinases in the test panel (Figure 4C). Notably, between the two GSK-3 isoforms (GSK-3 α and GSK-3 β), **30** at 5 μ M displayed a 12.3-fold selectivity to GSK-3 β (92.3% inhibition) versus GSK- 3α (7.5% inhibition). The exceptional selectivity of **30** to GSK- 3β could minimize risk of off-target effects.

Evaluation of 30 on Cytotoxicity and Anti-Amyloid Neurotoxicity. To investigate whether
 semi-synthetic 6-*C*-glycosylflavone analogues exert neuroprotection against Aβ-induced

2
3
Δ
5
ر د
6
7
8
9
10
10
11
12
13
14
15
16
17
17
18
19
20
21
22
~~ >>
23
24
25
26
27
20
20
29
30
31
32
22
24
54
35
36
37
38
30
39
40
41
42
43
44
15
45
46
47
48
49
50
50
21
52
53
54
55
56
50
5/
58

1

218	neurotoxicity, 30 was assayed in an AD cellular model where $A\beta_{42}$ oligomers were administrated
219	in human SH-SY5Y neuroblastomas. ^{23, 35} Compound 30 displayed a good tolerability profile
220	similar to 1 as no observable cytotoxicity up to a dose of 1000 μ M (Figure 5A). ²³ On the other
221	hand, treatment of 10 μM $A\beta_{42}$ oligomers decreased cell viability to 40% compared with the
222	controls (Figure 5B). However, such A β_{42} neurotoxicity was greatly relieved, as pretreatment of
223	SH-SY5Y cells with 30 at concentrations from 1.25 to 20 μ M for 1 h followed by co-incubation
224	with 10 μ M A β_{42} for 72 h recovered cell viability from 40% to 100% in a dose-dependent
225	manner. The neuroprotective potency of 30 (EC ₅₀ , 8.7 μ M) (Figure 5C) was a 5.4-fold increase
226	in comparison to its parent compound 1 (EC ₅₀ , 47 μ M). ²³
227	Morphological observations also illustrated that pretreatment by 30 at 10 μ M effectively
228	protected the SH-SY5Y cells from $A\beta_{42}$ intoxication, as the neuronal cells were healthy and well
229	differentiated with extended axons and dendrites (Figure 5D). Although a similar neuroprotective
230	activity was observed to 1, 30 exhibited approximately 20-fold improvement of effectiveness in
231	comparison to its parent compound (effective dose: 30 in 10 μ M versus 1 in 200 μ M). ²³ In a
232	good agreement with our previous findings, 30 and the other 6-C-glycosylflavone analogues
233	exerted anti-A β neurotoxicity through protecting neurite outgrowth and neuronal differentiation,
234	whose functions are constitutively regulated by GSK-3 β and tau protein within axonal
235	microtubules. ⁷
236	

Evaluations of 1, 4, 9, 17, 21, 30 on Passive Membrane Permeability. Oral administration is
noninvasive and is preferred for chronical diseases such as AD and other CNS disorders. It is
advantageous to discover passive membrane permeable AD drugs targeting GSK-3β upon oral
administration. The parallel artificial membrane permeability assay (PAMPA) is used to assess

Page 15 of 63

ACS Chemical Neuroscience

passive and transcellular permeability, which is well correlated with *in vivo* oral absorption rates for drugs that cross the gastrointestinal barrier.³⁶ In the PAMPA model, the amount of target compounds diffused from a donor compartment to an acceptor compartment through a tri-layer phospholipid pre-coated membrane was measured to assess oral-absorption potential of drug candidates. In the present study, 1, 4, 9, 17, 21 and 30 were evaluated with the PAMPA assay. Theophylline and atenolol known for their low permeability were used as negative controls. Designation between the permeability was used as a positive control. The measured P_e values were compared with the literature data.³⁶ The new analogues 9, 17, 21 and 30 demonstrated a significant increase of permeability upon 5 h of incubation in comparison with their parent compound 1 (Table 3). Methylation of phenolic hydroxyls and transformation of the primary hydroxyl to hydrophobic amides on the C-glycone of 1 increased the PAMPA permeability (P_e) ranging from 2.6 to 4.4-fold relative to 1. Such P_e changes agreed well with the CLogP changes (Table 3). The best PAMPA permeability of **30** is probably attributed to the CF_3 group. Multiple hydroxyl groups in C-glycone and flavone moieties make 1 poorly permeable, which is consistent with the literature reports.³⁷ For comparison, luteolin (4), an aglycone flavone, had a medium PAMPA permeability similar to 9, 17, and 21, indicating the liability of the polar C-glycone of 1 in respect to passive diffusion. Regardless, it is indispensable to assess pharmacokinetics of the new GSK-3 β inhibitors for their *in vivo* bioavailability which involves the complexity of active and facilitated transports in addition to passive diffusion.

3 ⊿	262
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25 26	
20	
28	
29	202
30	203
31	264
32	265
33	266
34	267
35	207
37	200
38	268
39	
40	200
41	269
42	270
43	270
44 45	0.51
45 46	271
47	
48	272
49	
50	273
51	
52	274
53	
54 55	275
55 56	
57	
58	
59	
60	

62	Table 3.	PAMPA	Permeability	and CLo	ogP Values	of Compounds	Tested
----	----------	-------	--------------	---------	------------	--------------	--------

cmpd	Р	CLog <i>P</i>		
no.	$P_{\rm e}$ (× 10 ⁻⁶ cm/s) ^{<i>a</i>}	R (%) ^b	Permeability classification ^c	
Isoorientin (1)	0.51 ± 0.01	48	low	0.21
Luteolin (4)	1.42 ± 0.07	43	medium	2.31
9	1.55 ± 0.06	46	high	1.35
17	1.77 ± 0.07	20	high	2.55
21	1.35 ± 0.08	30	medium	2.34
30	2.23 ± 0.21	30	high	1.62
Theophylline	0.04 ± 0.01	n/a	low	-0.03
Atenolol ^d	0.29 ± 0.09	40	low	-0.11
Desipramine ^d	13.43 ± 0.91	96	high	4.47

^{*a*} $P_{\rm e}$ values were the mean of PAMPA measurements (n = 3-4) with \pm SD. ^{*b*} Percent recovery (R%) measures mass retention of compounds trapped inside the PAMPA membrane. ^{*c*} PAMPA permeability classification: high ($P_{\rm e} > 1.5 \times 10^{-6}$ cm/s), medium (1.0×10^{-6} cm/s $\leq P_{\rm e} \leq 1.5 \times 10^{-6}$ ^{*b*} cm/s), low ($P_{\rm e} < 1.0 \times 10^{-6}$ cm/s). ^{*d*} The measured $P_{\rm e}$ values are comparable to the data in ref.³⁶

268 Computational Modeling

69 Key Molecular Interactions between New C-Glycosylflavones and the Substrate Site of

270 **GSK-3β.** To elucidate the molecular mechanisms by which the new 6-*C*-glycosylflavones

271 increase the binding affinity and selectivity to GSK-3 β relative to 1, compounds 5-31 were

272 docked into GSK-3β enzyme. The AutoDock Vina program was used in the present study

273 because it has shown good accuracies for binding pose prediction and scoring function.³⁸⁻⁴⁰ This

docking tool has been widely used in drug design and applied in many cases of GSK-3β inhibitor

⁴ 275 discovery.^{17, 41}

Page 17 of 63

276

ACS Chemical Neuroscience

Two X-ray crystallographic structures of GSK-3 β (PDB codes 1PYX⁴² and 1H8F⁴³) were

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>Δ1</u>	
17	
42	
45 44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
$n_{\rm U}$	

277 chosen to take into account for potential induced fit effects upon ligand binding. The GSK-3ß in 1PYX contains two Mg²⁺ ions and a ligand ANP, a non-hydrolyzed ATP derivative, at the ATP 278 site. Upon binding of Mg^{2+} ions and an ATP-mimic ligand, it is postulated that GSK-3 β 279 280 undergoes subtle conformational changes in both the ATP and substrate sites for an optimal kinase reaction, a phenomenon known as induced fit effects.⁴⁴⁻⁴⁵ The GSK-3ß structure in 1PYX 281 282 hence adopts a conformation that resembles the native enzyme ready for substrate recognition. 283 Docking 5-31 into the substrate site of GSK-3 β using 1PYX would give more reliable binding 284 poses. On the other hand, the GSK-3β in 1H8F is by far the only available X-ray crystallographic 285 structure containing the ligand HEPES in the substrate site. HEPES in 1H8F may cause induced 286 fit changes of GSK-3^β conformation, particularly for the substrate site. Given the new 6-C-287 glycosylflavones are substrate competitive, we used 1PYX and 1H8F in molecular docking. The 288 docking method was validated by re-docking and cross-docking experiments using both ATP-289 competitive and substrate-competitive inhibitors (Supporting Information S1). 290 The synthetic 6-C-glycosylflavones (5-31) and their parent 1 were thus docked into 1PYX and 1H8F. Docking scores of 1PYX show a better linear fit to the experimental pIC50 values ($R^2 =$ 291 0.7844) than that of 1H8F ($R^2 = 0.6999$), suggesting more accurate predictions of binding poses 292 293 using 1PYX than 1H8F (Supporting Information S2). The 1PYX docking dataset was therefore 294 used in the remainder of the study to analyze the molecular interactions responsible for the 295 improved potency and selectivity to GSK-3β.

The docking results of 1PYX showed that the *C*-glycone moiety of **5-31** forms hydrogen bonds
with GSK-3β residues Gln89, Asn95, Arg96 and Glu97 within the substrate pocket, which is
similar to **1** (Supporting Information S3). Moreover, the newly introduced hydrophobic groups

59

2		
2 3 4	299	indeed exhibit a favorable ligand pose to the concave surface comprised of Phe67, Val87, Leu88
5 6	300	and Phe93 on GSK-3 β . The most potent compounds 30 and 31 (IC ₅₀ , 0.59 and 2.3 μ M,
/ 8 9	301	respectively) contain a CF ₃ moiety, which may form orthogonal multipolar interactions for
10 11	302	protein binding. ⁴⁶⁻⁴⁷ To visualize such molecular interactions, we conducted flexible-residue
12 13	303	docking ^{40, 48} to refine binding poses of 9 , 30 and 31 in 1PYX. To prepare GSK-3 β structure, side
14 15 16	304	chains of Ser66, Phe67, Leu88, Gln89, Asp90, Phe93, Asn95 and Lys183 within the substrate
10 17 18	305	site were treated flexible. The docking results of 30 suggested formation of orthogonal
19 20	306	multipolar interactions. The (S)-CF ₃ in 30 shows a favorable geometry within typical $F \cdots C$
21 22	307	distances to Leu88 (backbone amide carbonyl carbon, 3.3 Å), Gln89 (backbone amide carbonyl
23 24 25	308	carbon, 3.6 Å) and Asp90 (side chain carbonyl carbon, 3.3 and 3.8 Å) (Figure 6C). It also forms
26 27	309	a polar interaction with the backbone NH of Asp90 (F \cdots H distance, 2.6 Å). In contrast, the (<i>R</i>)-
28 29	310	CF_3 group of 31 is absent from these interactions probably owing to the orientation and steric
30 31 32	311	hindrance by switching CH ₃ and CF ₃ positions at the stereocenter (Figures 6B-6C). Therefore,
33 34	312	only hydrophobic interactions with Phe67, Val87 and Leu88 of GSK-3 β exist in 31 (improper
35 36	313	configuration of CF_3 for orthogonal multipolar interactions) as well as 9 (lack of CF_3) (Figures
37 38 39	314	6A-6B).
40 41	315	Interestingly, the docking results showed that the catechol B-ring of the flavone core in 9, 30
42 43	316	and 31 appears to have a π -cation interaction with Lys183. ⁴⁹⁻⁵⁰ The distance between the catechol
44 45 46	317	B-ring center and ϵ -NH ₃ ⁺ cation of Lys183 is 4.1 Å at an angle of 71.5° (Figure 6C and
40 47 48	318	Supporting Information S4). In conjunction, the side chain ϵ -NH ₃ ⁺ of Lys183 forms weak
49 50	319	hydrogen bonds with two methoxy oxygen atoms of catechol B-ring (distances of 3.1 and 3.2 Å).
51 52	320	The orthogonal multipolar and π -cation interactions potentially enhance the binding affinity to
53 54 55 56 57 58	321	GSK-3β.

2	
3	322
4	522
5	323
6	525
/ 8	324
9	541
10	325
11	525
12	326
13	520
14	227
15	321
16	220
17 18	328
10	•••
20	329
21	
22	330
23	
24	331
25	
26	332
2/ วง	
20 29	333
30	
31	334
32	
33	335
34	
35	336
36	
3/ 20	337
39	001
40	338
41	550
42	330
43	557
44	340
45	540
40 47	2/1
47 48	541
49	212
50	342
51	242
52	545
53	244
54	544
55 56	
50 57	
58	
59	

60

323	Potential Causes for the Isoform-Selectivity of 30 between GSK-3α and GSK-3β. Isoform-
324	selectivity of 30 to GSK-3 β over GSK-3 α (Figure 4C) was assessed with comparative molecular
325	modeling. Yet no X-ray crystallographic structures of GSK-3α available in PDB, a homology
326	model of GSK-3 α was built with the SWISS-MODEL server ⁵¹ (Supporting Information S5). A
327	full human GSK-3α amino acid sequence (UniProt code: P49840) was searched against protein
328	databases in BLAST and HHblits and overall 4470 templates were found. A GSK-3 β template
329	(PDB code 1PYX) resulted in a top ranking with an overall sequence identity of 82.97%, thereby
330	selected for homology modeling of GSK-3a. A sequence alignment between the two GSK-3
331	isoforms indicated that GSK-3 α has extra amino acid portions flanking the N- and C-termini of
332	GSK-3β (Supporting Information S6). Within the matched sequence portion, most amino acid
333	differences occur in the N- and C-terminal regions. In contrast, both the ATP and substrate
334	domains of GSK-3 α/β isoforms are conserved as high as 92.37% identical, in which only few
335	amino acid residues are different in these regions. The superposition and comparison of GSK-3 β
336	structure (PDB code 1PYX) with the GSK-3a homology model (Figure 7A) implied that those
337	subtle differences of amino acid residues in the kinase catalytic domain (both ATP and substrate
338	pockets) may affect substrate recognition as well as ligand binding. Intriguingly, docking
339	experiment using the GSK-3 α homology model showed that 30 resides a similar location in the
340	substrate site in comparison to GSK-3β docking data (Figures 7B-7C). However, the resulting
341	binding pose of 30 in GSK-3 α favors neither a π -cation interaction of catechol B-ring nor the
342	orthogonal multipolar interactions of the (S) -CF ₃ group. It is conceivable that the isoform-
343	selectivity of 30 to GSK-3 β might be in part due to the lack of these critical molecular
344	interactions in GSK-3 α . Instead, the (S)-trifluoroisopropyl group of 30 simply exerts

hydrophobic affinity with the homologous residues Phe130, Val150, and Leu151 in the substrate
site of GSK-3α (Figure 7C).

348 Discussion

GSK-3β plays a central role in signaling pathways of AD. Accumulating evidence has demonstrated that GSK-3 β is activated abnormally by A β and in turn hyperphosphorylates tau proteins in neurons. This eventually triggers the tauopathic cascade in AD progression.^{1, 7-8} Development of GSK-3 β inhibitors as a disease-modifying therapy for AD, therefore, is highly attractive. In recent years, discovery of selective inhibitors targeting the substrate site of GSK-3 β has emerged as a rational and feasible strategy in AD drug design.¹¹ Unlike the ATP-site directed GSK-3^β inhibitors that frequently bind to many off-target kinases, inhibitors targeting the substrate site on GSK-3^β plausibly overcome this limitation. GSK-3^β phosphorylates its specific substrates for biological processes such as glucose homeostasis, immune response, neurogenesis, cell proliferation and apoptosis, and circadian rhythm, which has a plethora of normal functions for human health.⁵² However, GSK-3β is aberrantly overactive in AD. Subtle modulation of GSK-3β activity at a normal level rather than complete shut-off to prevent disruption of its normal cellular functions will be highly appreciated in AD therapy.⁸ Targeting the substrate site to intervene the GSK-3β-substrate recognition would be a feasible means to find selective inhibitors.¹⁴ Until now, substrate-competitive inhibitors of GSK-3β are limited in the structural classes of marine alkaloid manzamines,¹⁵ labdane diterpenoid andrographolide,¹⁷ peptidomimetic inhibitors,¹⁸ and synthetic compound ITDZ series.¹⁶ These inhibitors were in the low micromolar to sub-micromolar range of potency, but exhibited a good selectivity to GSK-3^β under *in vitro* or *in vivo* evaluations. Such findings substantiate the rationale of developing substrate-competitive

ACS Chemical Neuroscience

368 inhibitors of GSK-3 β for AD by which the agents can attain an utmost therapeutic advantage – a 369 high selectivity to avoid potential side effects.

370 Herein, we reported a new structural class of substrate-competitive inhibitors of GSK- 3β ,

371 inspired by isoorientin (1), containing a 6-*C*-glycosylflavone scaffold. It is a valuable addition to

the known substrate-competitive inhibitors and offers new lead compounds for AD. The

373 inhibitors are new chemical probes allowing to elucidate the underling mechanisms of GSK-3 β

374 inhibition and selectivity.

The SAR analysis, *in vitro* enzymatic kinetics, and *in silico* docking studies indicate that both the presence and position of C-glycone on the flavone core are essential features binding to the substrate site on GSK-3 β . A flavone core (4) alone is promise us and tends to sneak in the ATP site and thus lose the required selectivity (Supporting Information S1). The presence of a C-glycone at 8-position (3, IC_{50} , > 5 mM) rather than 6-position (1, IC_{50} , 185 μ M) results in an unfavorable binding pose to the substrate site plausibly due to the loss of key hydrogen bonds with Gln89, Asp90, Asn95, and Arg96 (Supporting Information S3). Such unique SAR features inspired us to semi-synthesize a series of novel analogues of 1 that selectively inhibit GSK-3ß at the substrate site. Data suggest that the new lipophilic amide analogues (8-31) increase the potency against GSK-3β for 3–310 fold (Table 2) and passive membrane permeability for 2.6– 4.4 fold relative to 1 (Table 3). Systematic modifications of the carbon-chain length and ring size and bioisosteric replacement in the R_2 -group on the C-glycone of 1 (Table 1) confer a dramatic GSK-3β potency improvement. The structural modifications contribute hydrophobic affinities with Phe67, Val87 and Leu88 in the substrate site of GSK-3β (Supporting Information S3), which is concurrently supported by the LiPE analysis (LiPE highlights potency changes to the net of lipophilicity). Compounds 9, 30, and 31 containing an isopropyl moiety have IC₅₀ values

of 5.4, 0.59, and 2.3 μ M, respectively, which are most potent among the analogues. It suggests that they adopt a suitable carbon-chain length and topological size within the hydrophobic cleft of the substrate site. LiPE analysis also indicates that **9**, **30**, and **31** are quality ligands (LiPE values \geq 4, Figure 2B). In addition, the new analogues alleviate tau hyperphosphorylation and A β neurotoxicity through GSK-3 β inhibition in the human SH-SY5Y neuronal model of AD (Figures 3 and 5).

With respect to the GSK-3 β selectivity of **30**, π -cation interaction and orthogonal multipolar interactions appear to play a critical role. In protein structures, the aromatic side chain of Phe or Tyr usually involves a favorable π -cation interaction with the cationic side chain of Lys or Arg.⁴⁹ In analogy, if a small aromatic ligand binds to a protein, potential π -cation interactions would be an important contribution to the binding affinity. Such phenomena have been exemplified in our previous study⁵⁰ as well as other investigations.⁵³⁻⁵⁴ Flavonoids seem to be the case – interactions between the aromatic A/B-rings with the cationic Lys or Arg residues.^{41, 55} In the docking experiments, we found that the catechol B-ring of the flavone core in 30 forms a π -cation interaction with Lys183 of GSK-3β (distance, 4.1 Å; angle, 71.5°). To a certain extent, this might stabilize the binding conformation and orientation within the substrate site.

It is known that a fluorine atom has distinct chemical properties contributing to the molecular recognition.⁴⁶ Fluorinated compounds commonly form orthogonal multipolar interactions with the backbone and side chain carbonyl carbons (Asp/Glu/Asn/Gln) or the guanidinium carbon (Arg) of amino acid residues in protein structures.⁴⁶⁻⁴⁷ Introduction of a CF₃ group is a common tactic in drug design. It is estimated that substitution of CH₃ for CF₃ may improve 5- to 10-fold ligand binding affinity.^{47, 56} In the present study, **27** (IC₅₀, 19.3 μ M) and **29** (IC₅₀, 17.2 μ M) containing a 2,2,2-trifluoroethyl and 3,3,3-trifluoropropyl, respectively, show an improved

Page 23 of 63

ACS Chemical Neuroscience

414	potency relative to their analogue 8 (IC ₅₀ , 29.2 μ M) without a CF ₃ group. In addition, 30 and 31
415	containing a 1,1,1-trifluoroisopropyl are more potent than their analogue 9 without a CF ₃ group.
416	Docking experiments suggest that the isopropyl (S)-CF ₃ group of 30 interacts with the backbone
417	and side chain carbonyls of Leu88, Gln89, and Asp90 (Figure 6C) within typical interaction
418	distances (F···C, 3.0–3.7 Å). ⁴⁷ Such orthogonal multipolar interactions might in part give rise to
419	an increased potency of 30 (IC ₅₀ , 0.59 μ M) against GSK-3 β approximately 9-fold and 4-fold
420	compared to 9 (IC ₅₀ , 5.4 μ M) and 31 (IC ₅₀ , 2.3 μ M), respectively. Conversely, 31 with a (<i>R</i>)-CF ₃
421	group may be lacking these critical molecular interactions (Figures 6B-6C) and thus has weaker
422	binding affinity than 30 . The differential and stereospecific binding of the CF ₃ group between 30
423	and 31 plausibly explains the high inhibitory selectivity to GSK-3 β (Figures 2 and 4).
424	Interestingly, 30 exhibits isoform-selectivity to GSK-3 β over GSK-3 α , which deserves
425	discussion. In humans, GSK-3 α (51 kDa) and GSK-3 β (47 kDa) are derived from different genes
426	and have distinct functions. ⁵² Both isoforms share an overall sequence identity of 83%,
427	especially at the ATP catalytic domain with 93% identity. ⁵⁷ However, they differ substantially in
428	the N- and C-terminal lobes that are thought to cause protein conformational dynamics and
429	differential cellular localization. ^{52, 57} Subtle amino acid differences in the substrate site between
430	two isoforms (Supporting Information S6) putatively affect substrate recognition and preference
431	as noted in the literature. ⁵⁸⁻⁵⁹ Wang et al. reported that GSK-3 β phosphorylates a substrate
432	(phosphatase inhibitor-2) 10-time faster than GSK- 3α , ⁵⁸ indicating the differential substrate
433	recognition of GSK-3 isoforms. Soutar et al. demonstrated that the specific sites T231, T235, and
434	S396 on tau proteins are solely phosphorylated by GSK-3 β but not GSK-3 α , ⁵⁹ giving an evidence
435	of substrate specificity between two isoforms. Those studies pose a possibility to discover
436	isoform-selective inhibitors via targeting the substrate site of GSK-3 β . Compound 30 attains

ACS Chemical Neuroscience

GSK-3 β isoform-selectivity probably because of both the π -cation interaction with Lys183 and the orthogonal multipolar interactions with Leu88, Gln89, and Asp90 in GSK-3 β on the basis of the comparative docking of GSK- $3\alpha/\beta$ (Figures 6C and 7). In contrast, **30** is absent from those key molecular interactions within the substrate site of GSK-3 α (Figure 7C). In addition, the highly non-conserved regions in GSK-3a, such as the N- and C-terminal domains (Figure 7A), can modulate enzyme conformations and thereby may affect the binding of **30**. Notwithstanding, the molecular mechanism suggested by computational modeling requires further verification by conclusive experimental evidence.

446 Conclusions

In summary, we described a new class of substrate-competitive inhibitors of GSK-3^β focusing on modifications of the primary hydroxyl group in the C-glycone of isoorientin (1). The results demonstrated that the 6-C-glycone moiety of the new inhibitors defines the specific binding at the substrate site rather than the ATP site on GSK-3β. The data also help explore topological requirements in the substrate site of GSK-3 β and highlight the critical SAR. Those inhibitors effectively attenuate tau hyperphosphorylation and amyloid neurotoxicity in molecular and cellular AD models by which the mechanism is involved in GSK-3 β inhibition via a non-ATP competitive but substrate competitive manner. The inhibitors not only significantly increased the potency, kinase selectivity, and isoform-selectivity, but also improved passive membrane permeability in comparison with the natural product counterparts. Among them, **30** (IC₅₀, 0.59µM) showed a potency improvement by 310-fold and a promising profile in various biological assessments, which warrants further exploration. SAR analyses and in silico mechanistic investigations suggested that the hydrophobic, π -cation and orthogonal multipolar interactions of

Page 25 of 63

ACS Chemical Neuroscience

30 with the substrate site lead to selective inhibition against GSK-3 β , but neither GSK-3 α nor a broad panel of kinases tested. Nevertheless, additional SAR knowledge and physiochemical property optimization of the GSK-3ß inhibitors based on the 6-C-glycosylflavone scaffold are essential to the CNS drug discovery campaign. Pharmacokinetics and in vivo animal studies of the new GSK-3β inhibitors will help understand drug delivery, target engagement and efficacy, which would suggest the therapeutic potential of these agents for AD and other GSK-3ß relevant neuropsychiatric and neurodegenerative diseases. Methods Chemicals and Reagents. All solvents and reagents were from commercial sources and were used without further purification. Natural flavones (isoorientin, orientin, isovitexin, and luteolin), staurosporine, TDZD-8, theophylline, atenolol, desipramine, TMSCHN₂, [TEMPO]⁺[BF₄]⁻, HCTU, organic amines, and protease inhibitor cocktail were from Sigma-Aldrich (Saint Louis, MO). β -Amyloid fragment peptide 1-42 (A β_{42}) was from AnaSpec (Fremont, CA). Kinase Selectivity Profiling Assay Kit, ADP-Glo Kinase Assay Kit, and CellTiter 96 AQueous One Solution Cell Proliferation MTX Assay Kit were from Promega (Madison, WI). Human Tau pS396 ELISA Kit and Cell Extraction Buffer were from Invitrogen (Camarillo, CA). Pre-coated

477 PAMPA plate system was from Corning (Tewksbury, MA).

General Experimental Procedures. High-resolution mass spectrometric data were obtained 479 on a Bruker maXis Impact nanoLC-QTOF-MS spectrometer in ESI positive mode. Accurate 480 masses of all analytes were obtained from the pseudo-molecule $[M+H]^+$ and were within 5 ppm 481 mass error. ¹H, ¹³C and 2D NMR data were recorded with a Varian Unity Inova 500 MHz 482 spectrometer. NMR spectra were referenced to the appropriate residual solvent signal ($\delta_H 2.50$,

 $\delta_{\rm C}$ 39.5 for DMSO- d_6) with chemical shifts reported in δ units (ppm). Resonance multiplicities 484 are denoted s, d, t, q, m, and br for singlet, doublet, triplet, quartet, multiplet, and broad, 485 respectively.

All reactions were monitored by LC-MS (Bruker nanoLC-QTOF-MS). Compounds in crude reaction mixtures were separated by flash column chromatography on HyperSep C18 (40–63 µm), and purified by semi-preparative reverse phase Agilent HPLC with a diode array detector (Waters XSELECT CSH Phenyl-Hexyl column, 150×10 mm, 5 µm, a linear gradient over 30 min from 10 to 50% aqueous acetonitrile containing 0.1% formic acid, flow rate 2.5 mL/min). The purity of each compound was determined by analytical reverse phase Agilent HPLC with a diode array detector (Waters XSELECT CSH Fluoro-Phenyl column, 150×4.6 mm, 3.5μ m, isocratic elution with 35% aqueous acetonitrile containing 0.1% formic acid, detection at 210, 254, and 340 nm, flow rate of 0.8 mL/min). All the tested compounds were over 95% purity by HPLC-UV at 210, 254, and 340 nm. Luminescent measurement was performed on an Agilent Cary Eclipse fluorescence spectrophotometer. Optical absorbance was measured on a Multiskan GO Microplate spectrophotometer. Microscopic images were observed under a Nikon Diaphot inverted tissue culture microscope with Optronics MicroFire microscope camera.

General Procedure for the Semi-Synthesis of C-Glycosylflavone Analogues.

Preparation of Compound 5. The chemoselective methylation proceeded as described.²⁸ To a 502 stirred solution of **1** (45 mg, 0.1 mmol) in a mixture of toluene (6 mL) and methanol (4 mL) was 503 added TMSCHN₂ (2 M in hexane, 0.5 mL, 1 mmol). The reaction solution was stirred at room 504 temperature for 8 h and the solvent was evaporated. The residue was purified by RP-HPLC 505 (Waters XSELECT CSH Fluoro-Phenyl column, 150×4.6 mm, 3.5 µm, isocratic elution with 35% aqueous acetonitrile containing 0.1% formic acid, detection at 210, 254, and 340 nm, flow
rate of 0.8 mL/min) to afford 5.

2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-6-((2*S***,3***R***,4***R***,5***S***,6***R***)-3,4,5-trihydroxy-6-**

(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one (5). Light yellow solid (80% yield). ¹H NMR (DMSO- d_6) δ 7.65 (dd, J = 8.6, 2.2 Hz, 1H), 7.54 (d, J = 2.2 Hz, 1H), 7.12 (d, J= 8.6 Hz, 1H), 7.09 (br s, 1H), 6.72 (br s, 1H), 4.65 (br d, J = 9.7 Hz, 1H), 4.05 (dd, J = 12.7, 9.2Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.81 (s, 3H), 3.77 (s, 3H), 3.72 (dd, J = 12.6, 12.5 Hz, 1H), 3.34 - 3.28 (m, 1H), 3.27 - 3.12 (m, 3H). ¹³C NMR (DMSO- d_6) δ 175.5, 163.4, 160.2, 158.9, 158.5, 151.8, 149.1, 123.2, 119.7, 111.9, 111.3, 109.4, 107.1, 107.0, 97.0, 82.0, 79.2, 73.1, 71.3, 70.9, 62.6, 62.0, 61.8, 56.4, 55.8. HRESI-TOFMS m/z [M+H]⁺ 505.1710 (calcd for C₂₅H₂₉O₁₁⁺, 505.1704, -1.1 ppm error). HPLC purity: 97.1% (210 nm).

Preparation of Compound 6. To a stirred solution of **5** (45 mg, 0.09 mmol) in a mixture of dichloromethane (6 mL) and pyridine (3 mL) was added $[TEMPO]^+[BF_4]^-$ (oxoammonium salt, 60 mg, 0.2 mmol). The reaction mixture was stirred at room temperature for 5 h. The reaction was quenched by adding drops of methanol and then evaporated to dryness. The residue was reconstituted in 5% MeOH/H₂O and then eluted on a HyperSep C18 column using the same solvents to remove the red-orange nitroxide. Elution was continued with 90% MeOH/H₂O and the eluate was collected as the crude product, which was further purified by RP-HPLC (Waters XSELECT CSH Fluoro-Phenyl column, 150×4.6 mm, 3.5μ m, isocratic elution with 35%aqueous acetonitrile containing 0.1% formic acid, detection at 210, 254, and 340 nm, flow rate of 0.8 mL/min) to afford 6.

2 3 4	527	(2S,3S,4R,5R,6S)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-6-yl)-
5 6 7 8 9 10 11 12 13 14 15 16	528	3,4,5-trihydroxytetrahydro-2 <i>H</i> -pyran-2-carboxylic acid (6). Light yellow solid (95% yield).
	529	¹ H NMR (DMSO- d_6) δ 7.65 (dd, $J = 8.5$, 2.0 Hz, 1H), 7.54 (d, $J = 2.0$ Hz, 1H), 7.12 (d, $J = 8.5$
	530	Hz, 1H), 7.09 (br s, 1H), 6.76 (d, <i>J</i> = 6.6 Hz, 1H), 4.60 (d, <i>J</i> = 10.1 Hz, 1H), 4.02 (m, 1H), 3.89
	531	(s, 3H), 3.85 (s, 3H), 3.82 (s, 3H), 3.75 (s, 3H), $3.30 - 3.16$ (m, 3H). ¹³ C NMR (DMSO- d_6) δ
	532	175.5, 173.0, 162.2, 160.4, 158.9, 158.5, 151.9, 149.2, 123.2, 119.7, 111.9, 111.4, 109.4, 107.1,
10 17 18	533	107.0, 97.1, 79.0, 78.5, 74.1, 72.5, 71.3, 63.5, 62.6, 56.6, 56.1. HRESI-TOFMS <i>m</i> / <i>z</i> [M+H] ⁺
19 20	534	519.1502 (calcd for $C_{25}H_{27}O_{12}^+$, 519.1497, -0.9 ppm error). HPLC purity: 97.8% (210 nm).
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 27	535	Preparation of Compound 7. To a stirred solution of 6 (1 mg, 2 µmol) in a mixture of toluene
	536	(1.5 mL) and methanol (1 mL) was added TMSCHN ₂ (2 M in hexane, 2 μ L, 4 μ mol). The
	537	reaction solution was stirred at room temperature for 1 h and the solvent was evaporated. The
	538	residue was purified by RP-HPLC (Waters XSELECT CSH Fluoro-Phenyl column, 150×4.6
	539	mm, 3.5 μ m, isocratic elution with 35% aqueous acetonitrile containing 0.1% formic acid,
	540	detection at 210, 254, and 340 nm, flow rate of 0.8 mL/min) to afford 7.
37 38	541	Methyl (2S,3S,4R,5R,6S)-6-(2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-
39 40 41	542	6-yl)-3,4,5-trihydroxytetrahydro-2 <i>H</i> -pyran-2-carboxylate (7). Light yellow solid (87% yield).
41 42 43	543	¹ H NMR (DMSO- d_6) δ 7.69 (dd, J = 8.5, 2.1 Hz, 1H), 7.56 (d, J = 2.1 Hz, 1H), 7.15 (br s, 1H),
44 45	544	7.12 (d, <i>J</i> = 8.5 Hz, 1H), 6.80 (d, <i>J</i> = 5.5 Hz, 1H), 4.57 (d, <i>J</i> = 9.6 Hz, 1H), 4.00 (m, 1H), 3.89 (s,
46 47	545	3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.73 (s, 3H), 3.63 (s, 3H), 3.29 – 3.13 (m, 3H). ¹³ C NMR
48 49 50	546	(DMSO- <i>d</i> ₆) δ 175.6, 172.9, 162.1, 160.1, 159.0, 158.4, 151.8, 149.1, 123.2, 119.7, 111.9, 111.4,
51 52	547	109.4, 107.1, 107.0, 97.0, 79.0, 78.5, 74.1, 72.5, 71.3, 63.4, 62.6, 56.6, 56.0, 51.8. HRESI-
53 54	548	TOFMS m/z [M+H] ⁺ 533.1656 (calcd for C ₂₆ H ₂₉ O ₁₂ ⁺ , 533.1654, -0.5 ppm error). HPLC purity:
55 56 57	549	97.1% (210 nm).
58 59		

Page 29 of 63

2						
4	550	Preparation of Compounds 8-31. To a stirred solution of 6 (5 mg, 9.7 µmol) in a mixture of				
5 6 7	551	dimethylformamide (1 mL) and DIPEA (0.5 mL) was added HCTU (10 mg, 24 $\mu mol)$ and then				
7 8 9	552	stirred for 10 min at room temperature. To this solution was added corresponding organic amines				
10 11 12	553	(each 50 μ mol) and stirred at room temperature for 5 h.				
13 14	554	The reaction was quenched by adding $1 N$ HCl followed by evaporation of solvents to dryness.				
15 16 17	555	The residue was purified by RP-HPLC (Waters XSELECT CSH Fluoro-Phenyl column, 150 \times				
17 18 19	556	4.6 mm, 3.5 μm , isocratic elution with 35% aqueous acetonitrile containing 0.1% formic acid,				
20 21 22	557	detection at 210, 254, and 340 nm, flow rate of 0.8 mL/min) to afford the final products.				
23 24 25	558	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-				
25 26 27	559	3,4,5-trihydroxy- <i>N</i> -propyltetrahydro- <i>2H</i> -pyran-2-carboxamide (8). Light yellow solid (90%				
28 29 30 31	560	yield). ¹ H NMR (DMSO- d_6) δ 7.67 (d, $J = 8.7$ Hz, 1H), 7.53 (d, $J = 2.2$ Hz, 1H), 7.13 (s, 1H),				
	561	7.12 (d, <i>J</i> = 8.7 Hz, 1H), 6.76 (d, <i>J</i> = 5.9 Hz, 1H), 4.67 (br d, <i>J</i> = 10.1 Hz, 1H), 4.06 (q, <i>J</i> = 10.3				
32 33 34	562	Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.77 (s, 3H), 3.71 (s, 3H), 3.60 (m, 1H), 3.50 (m, 1H), 3.23				
35 36	563	(m, 1H), 2.99 (m, 2H), 1.36 (m, 2H), 0.78 (td, $J = 7.4$, 2.2 Hz, 3H). ¹³ C NMR (DMSO- d_6) δ				
37 38	564	175.7, 168.7, 163.4, 160.5, 160.2, 158.4, 151.6, 149.3, 123.1, 120.4, 112.2, 111.9, 109.6, 107.2,				
39 40 41	565	107.0, 96.8, 80.6, 79.0, 74.4, 71.6, 69.6, 63.9, 63.1, 56.7, 56.1, 40.8, 22.6, 11.5. HRESI-TOFMS				
42 43	$m/z [M+H]^+$ 560.2135 (calcd for C ₂₈ H ₃₄ NO ₁₁ ⁺ , 560.2126, -1.6 ppm error). HPLC purity: 98.6%					
44 45 46	567	(210 nm).				
47 48 40	568	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-				
49 50 51 52 53	569	3,4,5-trihydroxy-N-isopropyltetrahydro-2H-pyran-2-carboxamide (9). Light yellow solid				
	570	(90% yield). ¹ H NMR (DMSO- d_6) δ 7.67 (d, $J = 8.1$ Hz, 1H), 7.55 (d, $J = 2.2$ Hz, 1H), 7.14 (br s,				
54 55 56 57	571	1H), 7.12 (d, <i>J</i> = 9.7 Hz, 1H), 6.77 (d, <i>J</i> = 5.1 Hz, 1H), 4.67 (d, <i>J</i> = 9.7 Hz, 1H), 4.05 (m, 1H),				

3 4	572	3.92 (s, 3H), 3.89 (s, 3H), 3.85 (s, 3H), 3.83 (m, 1H), 3.81 (s, 3H), 3.59 (m, 1H), 3.57 (m, 1H),
5 6	573	3.23 (m, 1H), 1.04 (d, $J = 6.4$ Hz, 3H), 1.01 (d, $J = 6.8$ Hz, 3H). ¹³ C NMR (DMSO- d_6) δ 175.5,
7 8	574	168.7, 163.3, 161.7, 160.1, 158.7, 152.1, 149.2, 123.1, 119.5, 111.9, 111.3, 109.4, 107.1, 107.0,
9 10 11	575	97.0, 79.8, 78.5, 73.8, 71.4, 70.3, 63.4, 62.5, 56.6, 55.8, 40.3, 22.2, 22.2. HRESI-TOFMS <i>m/z</i>
12 13	576	$[M+H]^+$ 560.2117 (calcd for C ₂₈ H ₃₄ NO ₁₁ ⁺ , 560.2126, 1.7 ppm error). HPLC purity: 97.2% (210
14 15 16	577	nm).
17 18 19	578	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
20 21	579	3,4,5-trihydroxy- <i>N</i> -butyltetrahydro-2 <i>H</i> -pyran-2-carboxamide (10). Light yellow solid (90%
22 23	580	yield). ¹ H NMR (DMSO- d_6) δ 7.68 (d, $J = 8.6$ Hz, 1H), 7.55 (d, $J = 2.2$ Hz, 1H), 7.14 (s, 1H),
24 25 26	581	7.12 (d, <i>J</i> = 8.6 Hz, 1H), 6.81 (d, <i>J</i> = 6.7 Hz, 1H), 4.67 (br d, <i>J</i> = 10.2 Hz, 1H), 4.06 (m, 1H),
27 28	582	3.89 (s, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H), 3.58 (m, 1H), 3.50 (m, 1H), 3.23 (m, 1H),
29 30	583	3.02 (m, 2H), 1.34 (m, 2H), 1.23 (m, 2H), 0.83 (m, 3H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.9, 168.8,
31 32 22	584	163.2, 160.3, 160.2, 158.3, 151.8, 149.1, 123.3, 119.7, 111.7, 111.5, 109.2, 107.2, 106.9, 96.5,
33 34 35	585	80.1, 78.8, 74.0, 71.5, 70.3, 63.8, 62.9, 56.7, 56.1, 38.2, 31.2, 19.6, 13.8. HRESI-TOFMS <i>m/z</i>
36 37	586	$[M+H]^+$ 574.2289 (calcd for C ₂₉ H ₃₆ NO ₁₁ ⁺ , 574.2283, -1.1 ppm error). HPLC purity: 97.4% (210)
38 39 40	587	nm).
42 43	588	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
44 45	589	3,4,5-trihydroxy-N-isobutyltetrahydro-2H-pyran-2-carboxamide (11). Light yellow solid
46 47	590	(88% yield). ¹ H NMR (DMSO- d_6) δ 7.62 (d, $J = 8.8$ Hz, 1H), 7.49 (d, $J = 1.9$ Hz, 1H), 7.14 (s,
48 49 50	591	1H), 7.11 (d, <i>J</i> = 8.6 Hz, 1H), 6.81 (d, <i>J</i> = 6.9 Hz, 1H), 4.68 (br d, <i>J</i> = 10.2 Hz, 1H), 4.07 (m,
50 51 52	592	1H), 3.89 (s, 3H), 3.84 (s, 3H), 3.80 (s, 3H), 3.75 (s, 3H), 3.62 (m, 1H), 3.49 (m, 1H), 3.24 (m,
53 54	593	1H), 2.87 (t, $J = 6.4$ Hz, 2H), 1.66 (m, 1H), 0.79 (d, $J = 6.7$ Hz, 6H). ¹³ C NMR (DMSO- d_6) δ
55 56 57 58 59	594	176.2, 167.3, 163.5, 160.6, 160.7, 158.8, 153.1, 149.5, 123.7, 120.7, 113.0, 112.7, 112.4, 108.3,

60

2		
3 4	595	107.4, 97.7, 81.0, 79.9, 75.2, 72.8, 71.5, 64.6, 64.1, 57.8, 56.9, 47.2, 29.4, 21.3, 21.3. HRESI-
5 6	596	TOFMS m/z [M+H] ⁺ 574.2292 (calcd for C ₂₉ H ₃₆ NO ₁₁ ⁺ , 574.2283, -1.6 ppm error). HPLC purity:
7 8	597	99.1% (210 nm).
9 10		
11 12	598	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
13 14	599	3,4,5-trihydroxy-N-pentyltetrahydro-2H-pyran-2-carboxamide (12). Light yellow solid (89%
15 16	600	yield). ¹ H NMR (500 MHz, DMSO- d_6) δ 7.68 (d, $J = 8.6$ Hz, 1H), 7.55 (d, $J = 2.1$ Hz, 1H), 7.14
17 18 10	601	(s, 1H), 7.12 (d, <i>J</i> = 8.6 Hz, 1H), 6.81 (d, <i>J</i> = 6.3 Hz, 1H), 4.67 (br d, <i>J</i> = 10.2 Hz, 1H), 4.06 (m,
20 21	602	1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H), 3.58 (m, 1H), 3.50 (m, 1H), 3.22 (m,
22 23	603	1H), 3.03 (m, 2H), 1.35 (m, 2H), 1.23 (m, 2H), 1.20 (m, 2H), 0.83 (m, 3H). ¹³ C NMR (DMSO-
24 25	604	<i>d</i> ₆) δ 175.9, 168.9, 163.2, 160.5, 160.3, 158.5, 151.9, 149.2, 123.4, 119.7, 111.8, 111.6, 109.3,
26 27 28	605	107.0, 106.8, 96.4, 80.1, 78.8, 73.5, 71.6, 70.4, 63.5, 62.7, 56.1, 55.9, 38.4, 28.7, 28.6, 21.9, 14.0.
29 30	606	HRESI-TOFMS m/z [M+H] ⁺ 588.2456 (calcd for C ₃₀ H ₃₈ NO ₁₁ ⁺ , 588.2439, -2.8 ppm error).
31 32 33	607	HPLC purity: 98.2% (210 nm).
34 35	608	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
36 37 38	609	3,4,5-trihydroxy- <i>N</i> -hexyltetrahydro- <i>2H</i> -pyran-2-carboxamide (13). Light yellow solid (90%
39 40	610	yield). ¹ H NMR (DMSO- d_6) δ 7.68 (d, $J = 8.6$ Hz, 1H), 7.55 (d, $J = 2.3$ Hz, 1H), 7.14 (s, 1H),
41 42	611	7.12 (d, J = 8.6 Hz, 1H), 6.81 (d, J = 5.9 Hz, 1H), 4.66 (br d, J = 10.5 Hz, 1H), 4.06 (q, J = 8.6
43 44 45	612	Hz, 1H), 3.89 (s, 3H), 3.84 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H), 3.60 (m, 1H), 3.50 (m, 1H), 3.23
46 47	613	(m, 1H), 3.01 (m, 2H), 1.40 – 1.15 (m, 8H), 0.82 (m, 3H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.6, 168.8,
48 49	614	163.4, 160.3, 160.2, 158.6, 151.8, 149.1, 123.1, 119.6, 112.1, 111.8, 109.3, 107.1, 107.0, 97.1,
50 51 52	615	79.9, 78.7, 74.5, 71.5, 69.4, 63.5, 62.7, 56.6, 56.0, 38.5, 31.0, 28.9, 26.1, 22.1, 13.9. HRESI-
53 54	616	TOFMS m/z [M+H] ⁺ 602.2572 (calcd for C ₃₁ H ₄₀ NO ₁₁ ⁺ , 602.2596, 3.9 ppm error). HPLC purity:
55 56	617	98.5% (210 nm).
57 58 59		

1 2		
- 3 4	618	(2S,3S,4R,5R,6S)-N-Cyclopropyl-6-(2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-
5 6 7 8 9 10 11 12 13 14 15 16 17 18	619	chromen-6-yl)-3,4,5-trihydroxytetrahydro-2 <i>H</i> -pyran-2-carboxamide (14). Light yellow solid
	620	(82% yield). ¹ H NMR (DMSO- d_6) δ 7.67 (dt, $J = 8.3$, 2.2 Hz, 1H), 7.54 (d, $J = 2.2$ Hz, 1H), 7.16
	621	(s, 1H), 7.12 (d, <i>J</i> = 8.3 Hz, 1H), 6.78 (d, <i>J</i> = 5.7 Hz, 1H), 4.64 (br d, <i>J</i> = 9.7 Hz, 1H), 4.06 (q, <i>J</i>
	622	= 8.9 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.79 (s, 3H), 3.73 (s, 3H), 3.51 (m, 1H), 3.50 (m, 1H),
	623	3.19 (m, 1H), 2.62 (m, 1H), 0.79 (m, 2H), 0.58 (m, 2H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.3, 167.6,
	624	163.4, 161.5, 160.3, 159.6, 152.5, 149.3, 123.4, 119.8, 111.8, 111.5, 109.4, 107.7, 107.0, 97.0,
19 20	625	80.2, 78.9, 74.1, 71.3, 70.3, 63.5, 62.8, 56.1, 55.8, 23.1, 10.8, 10.8. HRESI-TOFMS <i>m</i> / <i>z</i> [M+H] ⁺
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	626	558.1967 (calcd for $C_{28}H_{32}NO_{11}^+$, 558.1970, 0.5 ppm error). HPLC purity: 98.2% (210 nm).
	627	(2S,3S,4R,5R,6S)-N-Cyclobutyl-6-(2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-
	628	chromen-6-yl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamide (15). Light yellow solid
	629	(85% yield). ¹ H NMR (DMSO- d_6) δ 7.67 (dt, $J = 8.6$, 2.1 Hz, 1H), 7.54 (d, $J = 2.1$ Hz, 1H), 7.16
	630	(s, 1H), 7.12 (d, <i>J</i> = 8.6 Hz, 1H), 6.77 (d, <i>J</i> = 7.2 Hz, 1H), 4.66 (br d, <i>J</i> = 9.7 Hz, 1H), 4.16 (q, <i>J</i>
	631	= 7.8 Hz, 1H), 4.05 (td, <i>J</i> = 9.3, 5.7 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.78 (s, 3H), 3.74 (s, 3H),
36 37	632	3.54 (m, 1H), 3.51 (m, 1H), 3.21 (m, 1H), 2.09 (m, 2H), 1.86 (m, 2H), 1.58 (m, 2H). ¹³ C NMR
38 39	633	(DMSO- <i>d</i> ₆) δ 175.5, 167.4, 163.1, 161.4, 160.5, 159.3, 152.2, 149.1, 123.2, 119.6, 111.9, 111.6,
40 41 42	634	109.1, 107.5, 107.0, 97.1, 80.4, 78.5, 74.2, 71.2, 70.4, 63.3, 62.7, 55.9, 55.7, 43.6, 29.9, 29.9,
43 44	635	14.3. HRESI-TOFMS $m/z [M+H]^+$ 572.2120 (calcd for C ₂₉ H ₃₄ NO ₁₁ ⁺ , 572.2126, 1.1 ppm error).
45 46 47	636	HPLC purity: 98.3% (210 nm).
48 49 50	637	(2S,3S,4R,5R,6S)-N-Cyclopentyl-6-(2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-
51 52	638	chromen-6-yl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamide (16). Light yellow solid
53 54	639	(86% yield). ¹ H NMR (DMSO- d_6) δ 7.66 (d, $J = 8.4$ Hz, 1H), 7.53 (d, $J = 2.1$ Hz, 1H), 7.16 (s,
55 56 57	640	1H), 7.12 (d, <i>J</i> = 8.4 Hz, 1H), 6.75 (d, <i>J</i> = 6.5 Hz, 1H), 4.64 (br d, <i>J</i> = 10.2 Hz, 1H), 3.95 (m,
58 59		

3 1	641	1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.79 (m, 1H), 3.77 (s, 3H), 3.71 (s, 3H), 3.53 (m, 1H), 3.51 (m,
5	642	1H), 3.21 (m, 1H), 1.79 – 1.40 (m, 8H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.4, 167.1, 163.6, 161.4,
7 3 2	643	160.3, 158.8, 152.1, 149.1, 123.0, 119.8, 112.1, 111.8, 109.2, 107.7, 107.1, 97.3, 80.2, 78.5, 74.2,
, 10 11	644	71.2, 68.6, 63.6, 62.8, 56.3, 55.9, 50.5, 32.1, 32.1, 23.6, 23.6. HRESI-TOFMS $m/z [M+H]^+$
2 3 4	645	586.2291 (calcd for C ₃₀ H ₃₆ NO ₁₁ ⁺ , 586.2283, -1.4 ppm error). HPLC purity: 96.6% (210 nm).
5 6 7	646	(2S,3S,4R,5R,6S)-N-Cyclohexyl-6-(2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-
8 9	647	chromen-6-yl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamide (17). Light yellow solid
20 21	648	(88% yield). ¹ H NMR (DMSO- d_6) δ 7.68 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 2.1 Hz, 1H), 7.14 (s,
22 23	649	1H), 7.12 (d, <i>J</i> = 8.4 Hz, 1H), 6.80 (d, <i>J</i> = 6.5 Hz, 1H), 4.65 (br d, <i>J</i> = 10.2 Hz, 1H), 4.04 (q, <i>J</i> =
24 25 26	650	8.4 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.79 (s, 3H), 3.74 (s, 3H), 3.58 (m, 1H), 3.51 (m, 1H),
27 28	651	$3.49 \text{ (m, 1H)}, 3.21 \text{ (m, 1H)}, 1.74 - 1.47 \text{ (m, 6H)}, 1.27 - 0.99 \text{ (m, 4H)}.$ ¹³ C NMR (DMSO- d_6) δ
29 30	652	175.5, 167.2, 163.2, 161.3, 160.3, 158.8, 152.0, 149.1, 123.1, 119.8, 112.0, 111.4, 109.4, 107.2,
31 32 33	653	107.0, 96.9, 80.5, 79.1, 74.1, 71.6, 70.6, 63.9, 62.7, 56.4, 56.0, 47.8, 32.6, 32.6, 29.1, 24.6, 24.6.
34 35	654	HRESI-TOFMS $m/z [M+H]^+$ 600.2446 (calcd for C ₃₁ H ₃₈ NO ₁₁ ⁺ , 600.2439, -1.1 ppm error).
36 37 38	655	HPLC purity: 98.6 % (210 nm).

(2S,3S,4R,5R,6S)-N-(Cyclohexylmethyl)-6-(2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-6-yl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamide (18). Light yellow solid (88% yield). ¹H NMR (DMSO- d_6) δ 7.66 (d, J = 8.7 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 7.13 (s, 1H), 7.11 (d, J = 8.7 Hz, 1H), 6.76 (d, J = 6.2 Hz, 1H), 4.66 (br d, J = 9.9 Hz, 1H), 4.05 (q, J = 9.9 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 3.73 (s, 3H), 3.61 (m, 1H), 3.48(m, 1H), 3.23 (m, 1H), 2.87 (m, 2H), 1.69 – 1.47 (m, 6H), 1.33 (m, 1H), 1.08 (m, 2H), 0.80 (m, 2H). ¹³C NMR (DMSO-*d*₆) δ 176.0, 167.0, 163.7, 160.8, 160.6, 158.9, 152.0, 149.3, 123.4, 119.7, 112.0, 111.7, 109.3, 107.2, 107.1, 96.2, 80.3, 78.7, 74.7, 71.3, 69.9, 63.8, 63.1, 56.9, 56.2,

45.1, 37.1, 30.6, 30.6, 26.3, 25.7, 25.7. HRESI-TOFMS *m/z* [M+H]⁺ 614.2597 (calcd for

C₃₂H₄₀NO₁₁⁺, 614.2596, -0.1 ppm error). HPLC purity: 98.3% (210 nm).

74.2,

2
3
1
+ r
S
6
7
8
9
10
11
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
37
JZ 22
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
17
40
48
49
50
51
52
53
55
54
55
56
57

58 59

60

1

664

665

666	(2S,3S,4R,5R,6S)-N-(Adamantan-1-yl)-6-(2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4-oxo-
667	4H-chromen-6-yl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamide (19). Light yellow
668	solid (81% yield). ¹ H NMR (DMSO- d_6) δ 7.67 (d, $J = 8.4$ Hz, 1H), 7.54 (d, $J = 2.1$ Hz, 1H), 7.13
669	(s, 1H), 7.12 (d, <i>J</i> = 8.4 Hz, 1H), 6.78 (d, <i>J</i> = 6.8 Hz, 1H), 4.65 (br d, <i>J</i> = 10.2 Hz, 1H), 4.03 (m,
670	1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H), 3.57 (m, 1H), 3.52 (m, 1H), 3.49 (m,
671	1H), 1.96 (m, 3H), 1.88 – 1.57 (m, 12H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.3, 167.2, 163.3, 161.1,
672	160.2, 158.9, 152.1, 149.2, 123.2, 119.8, 112.1, 111.6, 109.5, 107.2, 107.0, 97.0, 80.7, 79.2, 74.2,
673	71.7, 70.5, 63.9, 62.5, 56.4, 56.0, 51.2, 41.2, 41.2, 41.2, 36.1, 36.1, 36.1, 28.9, 28.9, 28.9.
674	HRESI-TOFMS $m/z [M+H]^+$ 652.2764 (calcd for C ₃₅ H ₄₂ NO ₁₁ ⁺ , 652.2752, -1.8 ppm error).
675	HPLC purity: 97.7% (210 nm).
676	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
677	3,4,5-trihydroxy-N-phenyltetrahydro-2H-pyran-2-carboxamide (20). Light yellow solid
678	(88% yield). ¹ H NMR (DMSO- d_6) δ 7.66 (dd, $J = 8.6$, 2.2 Hz, 1H), 7.62 (dd, $J = 8.2$, 2.5 Hz,
679	2H), 7.55 (d, <i>J</i> = 2.2 Hz, 1H), 7.28 (td, <i>J</i> = 8.1, 2.2 Hz, 2H), 7.16–7.10 (m, 2H), 7.03 (t, <i>J</i> = 7.4
680	Hz, 1H), 6.77 (d, <i>J</i> = 6.5 Hz, 1H), 4.75 (br d, <i>J</i> = 9.7 Hz, 1H), 4.12 (td, <i>J</i> = 9.7, 2.4 Hz, 1H), 3.94
681	(s, 3H), 3.89 (s, 3H), 3.85 (s, 3H), 3.84 (m, 1H), 3.79 (s, 3H), 3.66 (m, 1H), 3.29 (m, 1H). ¹³ C
682	NMR (DMSO- <i>d</i> ₆) δ 175.4, 167.3, 163.4, 161.9, 160.3, 158.8, 151.8, 149.1, 138.8, 128.6, 128.6,

- 683 123.4, 123.1, 119.5, 119.3, 119.3, 112.0, 111.8, 109.4, 107.1, 106.9, 97.1, 81.0, 78.6, 73.7, 71.2,
- 69.6, 63.4, 62.7, 56.5, 56.0. HRESI-TOFMS $m/z [M+H]^+$ 594.1986 (calcd for $C_{31}H_{32}NO_{11}^+$, 684

594.1970, -2.8 ppm error). HPLC purity: 96.5% (210 nm). 685

ACS Paragon Plus Environment

1 2	
2 3 4	686
5 6	687
7 8	688
9 10 11	689
11 12 13	690
14 15	691
16 17	692
18 19	693
20 21	694
22 23	094
24 25	695
26 27	(0)
28	696
29 30	697
31 32	698
33 34 35	699
36 37	700
38 39	701
40 41	702
42 43	703
44 45	
46 47	704
48 49	705
50	
51 52	706
53 54	707
55 56	708
57 58	
50	

686	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
687	3,4,5-trihydroxy-N-benzyltetrahydro-2H-pyran-2-carboxamide (21). Light yellow solid
688	(92% yield). ¹ H NMR (500 MHz, DMSO- d_6) δ 7.67 (d, $J = 10.2$ Hz, 1H), 7.54 (d, $J = 2.1$ Hz,
689	1H), 7.29 – 7.16 (m, 5H), 7.16 – 7.08 (m, 2H), 6.80 (d, <i>J</i> = 6.7 Hz, 1H), 4.68 (dd, <i>J</i> = 9.8, 6.7 Hz,
690	1H), 4.27 (m, 2H), 4.10 (m, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 3.75 (s, 3H), 3.71 (m,
691	1H), 3.57 (m, 1H), 3.26 (m, 1H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.6, 169.1, 163.6, 162.0, 160.3,
692	158.9, 151.8, 149.1, 139.2, 128.2, 128.2, 127.3, 127.3, 126.7, 123.1, 119.6, 112.1, 111.7, 109.2,
693	107.1, 107.0, 97.1, 80.2, 78.8, 73.7, 71.6, 71.0, 63.5, 62.8, 56.6, 56.0, 42.0. HRESI-TOFMS <i>m/z</i>
694	$[M+H]^{+}$ 608.2130 (calcd for $C_{32}H_{34}NO_{11}^{+}$, 608.2126, -0.5 ppm error). HPLC purity: 97.1% (210
695	nm).
696	(2S,3S,4R,5R,6S)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-6-yl)-
697	3,4,5-trihydroxy-N-(pyridin-4-yl)tetrahydro-2H-pyran-2-carboxamide (22). Light yellow
698	solid (81% yield). ¹ H NMR (500 MHz, DMSO- d_6) δ 8.40 (d, $J = 5.0$ Hz, 2H), 7.68 (d, $J = 8.5$
699	Hz, 1H), 7.60 (d, J = 5.0 Hz, 2H), 7.55 (s, 1H), 7.15 (s, 1H), 7.12 (d, J = 8.5 Hz, 1H), 6.81 (d, J =
700	6.9 Hz, 1H), 4.72 (br d, J = 9.7 Hz, 1H), 4.11 (td, J = 9.2, 4.1 Hz, 1H), 3.94 (m, 1H), 3.88 (s,
701	3H), 3.84 (s, 3H), 3.83 (s, 3H), 3.76 (s, 3H), 3.62 (m, 1H), 3.29 (m, 1H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ
702	175.6, 167.5, 163.3, 161.7, 160.2, 158.7, 152.0, 150.9, 150.9, 149.2, 145.3, 123.1, 119.9, 112.1,
703	113.9, 113.9, 111.5, 109.8, 107.5, 106.8, 97.1, 81.2, 78.8, 74.4, 71.5, 69.8, 63.9, 63.0, 56.5, 56.1.
704	HRESI-TOFMS $m/z [M+H]^+$ 595.1921 (calcd for C ₃₀ H ₃₁ N ₂ O ₁₁ ⁺ , 595.1922, 0.1 ppm error).
705	HPLC purity: 97.8% (210 nm).

solid (80% yield). ¹H NMR (DMSO- d_6) δ 7.68 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 2.0 Hz, 1H), 7.53

(2S,3S,4R,5R,6S)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-6-yl)-

3,4,5-trihydroxy-N-(thiazol-2-yl)tetrahydro-2H-pyran-2-carboxamide (23). Light yellow

1 2		
2 3 4	709	(d, J = 1.7 Hz, 1H), 7.18 (d, J = 1.7 Hz, 1H), 7.17 (s, 1H), 7.12 (d, J = 8.8 Hz, 1H), 6.82 (d, J =
5 6 7 8	710	6.8 Hz, 1H), 4.67 (br d, <i>J</i> = 10.5 Hz, 1H), 4.03 (m, 1H), 3.89 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H),
	711	3.76 (s, 3H), 3.60 (m, 1H), 3.55 (m, 1H), 3.23 (m, 1H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.4, 168.5,
10 11	712	163.2, 162.3, 161.6, 160.5, 158.9, 151.9, 149.2, 137.2, 123.3, 119.8, 114.1, 111.9, 111.5, 109.5,
12 13	713	107.3, 105.8, 97.3, 80.0, 79.2, 74.3, 72.1, 70.3, 63.7, 62.9, 56.2, 56.0. HRESI-TOFMS <i>m</i> / <i>z</i>
14 15 16	714	$[M+H]^+$ 601.1493 (calcd for $C_{28}H_{29}N_2O_{11}S^+$, 601.1487, -1.1 ppm error). HPLC purity: 96.8%
17 18 10	715	(210 nm).
20 21	716	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
22 23 24	717	3,4,5-trihydroxy-N-(4-fluorophenyl)tetrahydro-2H-pyran-2-carboxamide (24). Light yellow
24 25 26	718	solid (88% yield). ¹ H NMR (DMSO- d_6) δ 7.70 – 7.61 (m, 3H), 7.54 (d, J = 2.1 Hz, 1H), 7.18 –
27 28	719	7.08 (m, 4H), 6.78 (d, <i>J</i> = 7.1 Hz, 1H), 4.72 (dd, <i>J</i> = 12.0, 9.7 Hz, 1H), 4.11 (q, <i>J</i> = 8.7 Hz, 1H),
29 30 31	720	3.92 (s, 3H), 3.88 (s, 3H), 3.84 (s, 3H), 3.83 (m, 1H), 3.76 (s, 3H), 3.61 (m, 1H), 3.28 (m, 1H).
32 33	721	¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.6, 167.4, 162.8, 160.4, 160.1, 158.6, 156.9, 150.7, 149.2, 136.5,
34 35	722	121.2, 121.2, 123.5, 119.8, 115.5, 115.5, 113.5, 111.8, 109.3, 107.0, 105.7, 97.2, 81.2, 78.5, 74.7,
36 37 38	723	71.7, 70.4, 63.7, 63.0, 56.1, 55.9. HRESI-TOFMS <i>m</i> / <i>z</i> [M+H] ⁺ 612.1892 (calcd for
39 40 41	724	C ₃₁ H ₃₁ FNO ₁₁ ⁺ , 612.1876, -2.7 ppm error). HPLC purity: 97.1% (210 nm).
42 43	725	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
44 45	726	3,4,5-trihydroxy-N-(4-fluorobenzyl)tetrahydro-2H-pyran-2-carboxamide (25). Light yellow
46 47 48	727	solid (89% yield). ¹ H NMR (500 MHz, DMSO- d_6) δ 7.68 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 2.1
49 50	728	Hz, 1H), 7.27 (ddd, <i>J</i> = 8.1, 5.4, 2.2 Hz, 2H), 7.18 – 7.06 (m, 4H), 6.80 (d, <i>J</i> = 6.8 Hz, 1H), 4.67
51 52	729	(t, J = 9.3 Hz, 1H), 4.24 (dd, J = 9.9, 9.0 Hz, 2H), 4.07 (m, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.78
53 54 55	730	(s, 3H), 3.74 (s, 3H), 3.69 (m, 1H), 3.54 (m, 1H), 3.24 (m, 1H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.7,
56 57 58 59	731	169.1, 163.5, 162.0, 161.2, 160.4, 159.0, 151.9, 149.1, 135.4, 129.3, 129.3, 126.5, 119.7, 115.1,

3 4	732	115.1, 111.8, 111.3, 109.3, 107.1, 105.5, 97.2, 80.2, 78.8, 73.7, 71.9, 71.0, 63.6, 62.9, 56.6, 55.9,
5 6	733	41.3. HRESI-TOFMS m/z [M+H] ⁺ 626.2043 (calcd for C ₃₂ H ₃₃ FNO ₁₁ ⁺ , 626.2032, -1.7 ppm
7 8 9	734	error). HPLC purity: 97.4% (210 nm).
10 11 12	735	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
13 14	736	3,4,5-trihydroxy-N-(2-fluoroethyl)tetrahydro-2H-pyran-2-carboxamide (26). Light yellow
15 16 17	737	solid (84% yield). ¹ H NMR (DMSO- d_6) δ 7.68 (d, J = 8.7 Hz, 1H), 7.56 (d, J = 2.1 Hz, 1H), 7.17
17 18 19	738	(s, 1H), 7.12 (d, <i>J</i> = 8.7 Hz, 1H), 6.82 (d, <i>J</i> = 6.6 Hz, 1H), 4.67 (br d, <i>J</i> = 10.5 Hz, 1H), 4.45 (m,
20 21	739	1H), 4.35 (m, 1H), 4.07 (t, <i>J</i> = 9.2 Hz, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.75 (s, 3H),
22 23	740	3.60 (m, 1H), 3.50 (m, 1H), 3.23 (m, 1H), 3.37 (m, 2H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 175.1, 168.6,
24 25 26	741	163.5, 161.6, 160.5, 158.9, 151.9, 149.2, 123.6, 119.7, 111.8, 111.4, 109.3, 107.2, 105.5, 97.3,
20 27 28	742	81.7, 79.9, 79.4, 74.3, 72.3, 70.3, 63.5, 62.9, 56.1, 55.9, 39.1. HRESI-TOFMS <i>m</i> / <i>z</i> [M+H] ⁺
29 30 31	743	564.1892 (calcd for $C_{27}H_{31}FNO_{11}^+$, 564.1876, -2.9 ppm error). HPLC purity: 97.5% (210 nm).
32 33 34	744	(2S,3S,4R,5R,6S)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-6-yl)-
35 36	745	3,4,5-trihydroxy-N-(2,2,2-trifluoroethyl)tetrahydro-2H-pyran-2-carboxamide (27). Light
37 38	746	yellow solid (85% yield). ¹ H NMR (DMSO- d_6) δ 7.68 (dd, $J = 8.5$, 2.0 Hz, 1H), 7.56 (d, $J = 2.0$
39 40	747	Hz, 1H), 7.17 (s, 1H), 7.12 (d, <i>J</i> = 8.5 Hz, 1H), 6.81 (d, <i>J</i> = 7.7 Hz, 1H), 4.68 (br d, <i>J</i> = 9.7 Hz,
41 42 43	748	1H), 4.07 (q, <i>J</i> = 9.1 Hz, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.78 (s, 3H), 3.75 (s, 3H), 3.69 (m, 1H),
44 45	749	3.48 (m, 1H), 3.67 (m, 2H), 3.21 (m, 1H). ¹³ C NMR (DMSO- <i>d</i> ₆) δ 174.5, 169.5, 163.4, 161.3,
46 47	750	160.4, 158.9, 151.8, 149.1, 125.0, 123.4, 119.7, 112.1, 111.2, 109.4, 107.1, 105.4, 97.2, 80.4,
48 49 50	751	78.5, 74.8, 71.6, 69.5, 63.6, 62.7, 56.3, 55.9, 41.6. HRESI-TOFMS <i>m/z</i> [M+H] ⁺ 600.1700 (calcd
50 51 52 53 54 55 56	752	for C ₂₇ H ₂₉ F ₃ NO ₁₁ ⁺ , 600.1687, -2.2 ppm error). HPLC purity: 96.8% (210 nm).
57		

2	
3	
4	
5	
6	
7	
/ 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
∠∪ ว1	
∠ I วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
55 2∧	
34 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
10	
10	
+7 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

753	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
754	3,4,5-trihydroxy-N-(3-fluoropropyl)tetrahydro-2H-pyran-2-carboxamide (28). Light yellow
755	solid (86% yield). ¹ H NMR (DMSO- d_6) δ 7.68 (d, $J = 8.7$ Hz, 1H), 7.56 (d, $J = 2.1$ Hz, 1H), 7.17
756	(s, 1H), 7.12 (d, <i>J</i> = 8.7 Hz, 1H), 6.82 (d, <i>J</i> = 6.4 Hz, 1H), 4.66 (br d, <i>J</i> = 10.6 Hz, 1H), 4.46 (m,
757	1H), 4.37 (m, 1H), 4.07 (m, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H), 3.59 (m,
758	1H), 3.50 (m, 1H), 3.22 (m, 1H), 3.12 (m, 2H), 1.83 – 1.68 (m, 2H). 13 C NMR (DMSO- d_6) δ
759	175.1, 168.5, 163.4, 161.6, 160.6, 158.8, 151.9, 149.3, 123.7, 119.8, 111.9, 111.5, 109.6, 107.3,
760	105.5, 97.3, 81.9, 80.2, 78.8, 74.2, 71.8, 70.6, 63.6, 62.8, 56.2, 55.8, 34.9, 30.0. HRESI-TOFMS
761	$m/z [M+H]^+ 578.2041$ (calcd for C ₂₈ H ₃₃ FNO ₁₁ ⁺ , 578.2032, -1.6 ppm error). HPLC purity: 98.3%
762	(210 nm).

763 (2S,3S,4R,5R,6S)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-6-yl)-764 3,4,5-trihydroxy-N-(3,3,3-trifluoropropyl)tetrahydro-2H-pyran-2-carboxamide (29). Light yellow solid (85% yield). ¹H NMR (DMSO- d_6) δ 7.68 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 2.2 Hz, 765 766 1H), 7.14 (s, 1H), 7.12 (d, J = 8.4 Hz, 1H), 6.81 (d, J = 5.5 Hz, 1H), 4.68 (br d, J = 10.0 Hz, 1H), 767 4.07 (m, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H), 3.61 (m, 1H), 3.49 (m, 1H), 3.28 (m, 2H), 3.21 (m, 1H), 2.40 (m, 2H). ¹³C NMR (DMSO-*d*₆) δ 174.6, 169.3, 163.4, 161.1, 768 769 160.3, 158.7, 151.8, 149.1, 125.7, 123.1, 119.6, 111.7, 110.9, 109.2, 107.0, 105.2, 97.4, 79.6, 78.3, 73.6, 71.6, 69.5, 63.4, 62.7, 56.0, 55.8, 32.8, 32.1. HRESI-TOFMS *m/z* [M+H]⁺ 614.1857 770 (calcd for C₂₈H₃₁F₃NO₁₁⁺, 614.1844, -2.2 ppm error). HPLC purity: 97.2% (210 nm). 771 772 (2S,3S,4R,5R,6S)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-6-yl)-

773 **3,4,5-trihydroxy-***N***-((***S***)-1,1,1-trifluoropropan-2-yl)tetrahydro-***2H***-pyran-2-carboxamide** 774 **(30).** Light yellow solid (82% yield). ¹H NMR (500 MHz, DMSO- d_6) δ 7.67 (dd, *J* = 8.5, 2.1 Hz,

(0.0) Eight years solid (0.270 yield). If third (500 third), Ethio (0.0) (0.0) (0.0), 2.1 file,

775 1H), 7.55 (d, *J* = 2.1 Hz, 1H), 7.15 (br s, 1H), 7.12 (d, *J* = 8.5 Hz, 1H), 6.78 (d, *J* = 6.2 Hz, 1H),

2		
3 4	776	4.69 (d, <i>J</i> = 9.6 Hz, 1H), 4.55 (m, 1H), 4.07 (m, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.79 (s, 3H), 3.76
5 6	777	(s, 3H), 3.71 (m, 1H), 3.56 (m, 1H), 3.24 (m, 1H), 1.23 (d, $J = 6.8$ Hz, 3H). ¹³ C NMR (125 MHz,
7 8	778	DMSO- <i>d</i> ₆) δ 175.5, 168.8, 163.5, 161.7, 160.3, 158.6, 152.1, 149.1, 124.4, 123.1, 119.5, 111.8,
9 10 11	779	111.3, 109.4, 107.7, 106.9, 96.2, 79.8, 78.3, 73.8, 71.3, 70.3, 62.9, 62.7, 55.9, 55.6, 45.1, 13.3.
12 13	780	HRESI-TOFMS $m/z [M+H]^+$ 614.1843 (calcd for C ₂₈ H ₃₁ F ₃ NO ₁₁ ⁺ , 614.1844, 0.1 ppm error).
14 15 16	781	HPLC purity: 98.1% (210 nm).
17 18 19	782	(2 <i>S</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4 <i>H</i> -chromen-6-yl)-
20 21	783	3,4,5-trihydroxy-N-((R)-1,1,1-trifluoropropan-2-yl)tetrahydro-2H-pyran-2-carboxamide
22 23	784	(31). Light yellow solid (86% yield). ¹ H NMR (500 MHz, DMSO- d_6) δ 7.66 (dd, $J = 8.5$, 2.0 Hz,
24 25 26	785	1H), 7.55 (d, <i>J</i> = 2.0 Hz, 1H), 7.14 (br s, 1H), 7.12 (d, <i>J</i> = 8.5 Hz, 1H), 6.77 (d, <i>J</i> = 6.4 Hz, 1H),
20 27 28	786	4.68 (d, J = 9.8 Hz, 1H), 4.54 (m, 1H), 4.06 (m, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.79 (s, 3H), 3.75
29 30	787	(s, 3H), 3.71 (m, 1H), 3.55 (m, 1H), 3.24 (m, 1H), 1.23 (d, $J = 6.8$ Hz, 3H). ¹³ C NMR (125 MHz,
31 32	788	DMSO- <i>d</i> ₆) δ 175.3, 168.6, 163.4, 161.5, 160.2, 158.5, 152.1, 149.0, 124.2, 123.0, 119.4, 111.6,
33 34 35	789	111.1, 109.3, 107.6, 106.8, 96.4, 79.7, 78.5, 73.9, 71.2, 70.4, 63.1, 62.5, 55.7, 55.4, 45.1, 13.3.
36 37	790	HRESI-TOFMS $m/z [M+H]^+$ 614.1847 (calcd for C ₂₈ H ₃₁ F ₃ NO ₁₁ ⁺ , 614.1844, -0.5 ppm error).
38 39 40	791	HPLC purity: 96.5% (210 nm).
41 42 43	792	Kinase Luminescent Assay. Kinase inhibition was assessed with the ADP-Glo Kinase Assay.
44 45	793	For screening, 5 ng/ μ L of kinase was assayed in a reaction containing 50 ng/ μ L substrate, 40
46 47	794	mM Tris, pH 7.5, 20 mM MgCl ₂ , 0.1 mg/mL bovine serum albumin, 50 µM dithiothreitol (DTT),
48 49 50	795	25 μ M ATP, varying concentrations of test samples or 5% DMSO as vehicle. The reaction
50 51 52	796	mixture was incubated for 1 h at room temperature followed by the addition of the ADP-Glo

reagents according to the manufacturer's protocol. The kinase inhibitor staurosporine was used at

⁷⁹⁸ 1 μM as a reference control. Each data point was collected in quadruplicate of two independent

experiments. All new analogues were not promiscuous or pan-assay interference compounds as
 determined with a detergent-based assay.^{23, 31}

To study the GSK-3β kinetics, a reaction solution contained 5 ng/µL kinase, 40 mM Tris, pH 7.5, 20 mM MgCl₂, 0.1 mg/mL BSA, 50 µM DTT, and varying concentrations of ATP or substrate GS2 (peptide YRRAAVPPSPSLSRHSSPHQ(pS)EDEEE that is derived from human muscle glycogen synthase) versus test samples. The mixture was incubated for 5, 15, 30, and 60 min at room temperature followed by the addition of the ADP-Glo reagents according to the manufacturer's protocol. The Lineweaver–Burk representation is derived from the double reciprocal plotting of the enzyme kinetic data.

Cell Culture. Human neuroblastoma SH-SY5Y cell line (Sigma-Aldrich, Saint Louis, MO) 809 was cultured in DMEM/F12 (v/v 1:1) media supplemented with 2 mM glutamine, 10% heat-810 inactivated fetal bovine serum (FBS) and 1% antibiotics including penicillin and streptomycin. 811 After reaching 70-80% confluence, cells were then subcultured on poly-L-lysine plates with 10 812 μ M retinoic acid in a reduced serum media (1% FBS) to promote neuronal maturation and 813 differentiation as described.³⁵ Cell cultures were incubated at 37 °C in a fully humidified 814 atmosphere containing 5% CO₂.

Whole-Cell Lysate GSK-3β Assay. The assay procedure was followed as described.²³ SHSY5Y cells were washed with phosphate buffered saline (PBS) and lysed with cell extraction
buffer containing 10 mM Tris, pH 7.4, 100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM NaF,
20 mM Na₄P₂O₇, 2 mM Na₃VO₄, 1% Triton X-100, 10% glycerol, 0.1% sodium dodecyl sulfate
(SDS), 0.5% sodium deoxycholate, 1 mM phenylmethanesulfonyl fluoride (PMSF) and a
protease inhibitor cocktail. Lysate was diluted with kinase buffer (40 mM Tris, pH 7.5, 20 mM

1			
2			
3			
4			
5			
6			
7			
8			
9			
1	0		
1	1		
1	2		
1	3		
1	4		
1	5		
1	6		
1	7		
1	8		
1	9		
2	0		
2	1		
2	2		
2	3		
2	Δ		
2	т 5		
2	5		
~ う	7		
2 ว	/ Q		
2 7	0 0		
2	9 0		
3	U 1		
3 2	ן ר		
3	2		
3	کر		
3	4		
3	5		
3	6		
3	7		
3	8		
3	9		
4	0		
4	1		
4	2		
4	3		
4	4		
4	5		
4	6		
4	7		
4	8		
4	9		
5	0		
5	1		
5	2		
5	3		
5	4		
5	5		
5	6		
5	7		
5	Ŕ		
5	0 0		
ر	1		

MgCl₂, 50 μ M DTT, 400 μ M ATP) to afford a concentration of 5 μ g/ μ L of total protein, and split into aliquots. Recombinant human GSK-3 β was fortified into lysate aliquots to a final concentration of 0.25% (wt/wt) of total protein. A lysate aliquot fortified with heat-inactivated GSK-3 β was used as a negative control. The fortified lysate aliquots were incubated with test sample or 5% DMSO vehicle at 37 °C for 2 h followed by ELISA analysis. The GSK-3 β inhibitor TDZD-8 was used at 10 μ M as a reference control.

Human Tau pS396 ELISA. The quantitative determination of phosphorylated human tau at
GSK-3β specific pS396 site was conducted by taking 50 µL diluted cell lysate and using a
specific antibody against human tau [pS396] in a sandwich ELISA according to the
manufacturer's protocol. Tau phosphorylation was quantified by measuring the absorbance at
450 nm in a microtiter plate reader. The analysis was collected in quadruplicate of two
independent experiments.

833 **A** β_{42} **Oligomer Preparation.** The toxic oligomers of A β_{42} were prepared as described.²³ 834 Briefly, lyophilized A β_{42} peptide was dissolved in hexafluoroisopropanol, dried under vacuum, 835 and stored at -20 °C. Immediately prior to use, the peptide residue was reconstituted in 836 DMEM/F12 media to make a stock solution at 0.1 mM and incubated at 4 °C for 24 h to form 837 diffusible oligomers. A β_{42} oligomers at a final concentration of 10 µM were assayed for cell 838 viability

839 Anti-A β_{42} Neurotoxicity Assay. SH-SY5Y cells were seeded at a density of 3×10^5 cells/mL 840 in a 96-well plate in DMEM/F12 media containing 10 μ M retinoic acid and 1% FBS to suppress 841 cell proliferation. Cells were incubated under regular culture conditions for attachment. After 24 842 h of plating, the cells were pretreated with different concentrations of test samples or the 0.2%

DMSO as a vehicle control for 1 h and then co-incubated with 10 μ M Aβ₄₂ for 72 h. After the experimental treatment, the cells were subject to a CellTiter 96 AQueous One Solution Cell Proliferation MTX Assay according to the manufacturer's instruction. Staurosporine at 1 μ M was used as a reference control for cytotoxicity, while 10 μ M TDZD-8 was used as a reference control for GSK-3β inhibition. Each data point was collected in triplicate of two independent experiments.

PAMPA Studies. A 96-well filter plate with 0.45 µm polyvinylidene fluoride (PVDF) membrane was pre-coated with tri-layer phospholipids. 300 μ L of sample solutions (20 μ M) in 5% DMSO-PBS at pH 7.4 were added to the donor wells. The accepter plate containing 200 μ L 5% DMSO-PBS was then placed on top of the donor plate so that the artificial membrane was in contact with the solution below. The PAMPA system was covered with a lid and incubated for 5 h at room temperature. The concentration of compound in the donor and acceptor wells was quantified by LC-ESI-QTOF-MS. Theophylline and atenolol known for their low permeability were used as negative controls, and desipramine known for its high permeability was used as a positive control. Samples were run in quadruplicate. Pe values and R% were calculated according to the manufacturer's instruction.

Docking Studies. Compounds of interest were docked with AutoDock Vina $1.1.2^{38,40}$ using the X-ray crystallographic structures of GSK-3 β (PDB codes 1PYX⁴² and 1H8F⁴³). To streamline the docking process, the PDB crystallographic structures were treated without water molecules according to the published GSK-3 β docking protocols.^{17,40} Proteins were prepared by adding polar hydrogens and Gasteiger charges using AutoDockTools.⁴⁰ Ligands were optimized for their energy and geometry using MMFF94 and AM1 force fields prior to docking as described.⁶⁰ All bonds of ligands were treated as rotatable except for the aromatic, alkenyl, Page 43 of 63

ACS Chemical Neuroscience

carbonyl bonds and rings. The dimensions of the grid map were $30 \times 30 \times 30$ points with a grid-point spacing of 1 Å. Docking was proceeded with an exhaustiveness value of 500 and a maximum output of 100 structures. Re-docking experiments were conducted using the ligands ANP and HEPES for 1PYX and 1H8F, respectively. ANP showed a binding pose at the ATP site of GSK-3β (PDB code 1PYX) with a RMSD of 0.33 Å as compared to its original crystal structure. HEPES showed a binding pose at the substrate site of GSK-3β (PDB code 1H8F) with a RMSD of 0.62 Å as compared to its original crystal structure. AutoDockTools⁴⁰ was used to analyze the docking data of compounds of interest on molecular interactions including hydrogen bonds, hydrophobic contact, π -cation interactions, π - π interactions, and multipolar interactions. Homology Modeling. The GSK-3a homology model was built with the SWISS-MODEL server.⁵¹ The full sequence of human GSK-3a (UniProt code P49840) was obtained from the Universal Protein Resource. The target sequence was searched against BLAST and HHblits databases for evolutionary related protein structures. A total of 4470 templates were found. For each identified template, the template's quality was predicted from features of the target-template alignment. A template of the GSK-3 β structure (PDB code 1PYX) showing the highest quality (sequence identity, 82.97%) in the template ranking was selected for model building. The model was built based on the target-template alignment using ProMod3. Coordinates that are conserved between the target and the template were copied from the template to the model. Insertions and deletions were remodeled using a fragment library. Side chains were then rebuilt. Finally, the geometry and energy minimization of the resulting model was performed using the OpenMM

887 global and per-residue model quality using the QMEAN scoring function. A detailed homology

molecular mechanics force field. The model quality assessment was performed based on the

5 888 modeling method was elaborated in Supporting Information S5.

ACS Paragon Plus Environment

2	
3 4	889
5 6	890
7 8	891
9 10	892
11 12	eo2
13 14	893
15 16 17	894
18 19 20	895
21 22	896
23 24 25	897
26 27	898
28 29 20	899
30 31 32	900
33 34 35	901
36 37 38	902
39 40 41	903
42 43	904
44 45 46	905
47 48 49	906
50 51 52	907
53 54 55	908
56 57	
58 59	

1

889 **Statistical Analysis.** Data were presented as the mean \pm SEM or \pm SD. The data were 890 analyzed by one-way ANOVA with Tukey's multiple comparison posthoc test and Student *t* test. 891 The *p* values less than 0.05 were considered statistically significant. Analyses were performed 892 using Excel and GraphPad Prism.

894 ASSOCIATED CONTENT

895 Supporting Information. The Supporting Information is available free of charge on the ACS
896 Publications website at DOI: XXX.

897Docking method validation, tabulated docking scores, predicted docking poses of selected C-898glycosylflavones with GSK-3β, summary of molecular interaction distances of compound **30**899with GSK3β, GSK-3α homology modeling method, protein sequence alignment of GSK-3α/β900isoforms, HPLC analysis data, detail of the kinase selectivity screening, LC-MS method for the

901 PAMPA studies, and structures of the reference compounds (PDF).

902 AUTHOR INFORMATION

- 903 Corresponding Author
- 904 *E-mail: qingl@hawaii.edu. Fax: (808) 965-3542.

905 **ORCID**

- ⁸ 906 Zhibin Liang: 0000-0002-8855-1696
- ¹ 907 Qing X. Li: 0000-0003-4589-2869
- 908 Author Contributions

2 3	909	Z.L. and O.X.L conceived the research and performed data interpretation. Z.L. designed and
4 5	910	performed experiments and conducted data analysis. Z.L. and O.X.L wrote the manuscript.
6 7 0		
o 9 10	911	Funding Sources
10 11 12	912	This work was supported in part by the NIH National Institute on Minority Health and Health
13 14	913	Disparities grant 8G12MD007601, and by the USDA National Institute of Food and Agriculture,
15 16	914	Hatch project HAW5032-R, managed by the College of Tropical Agriculture and Human
17 18 19 20	915	Resources, University of Hawaii.
21 22 22	916	Notes
23 24 25 26	917	The authors declare no competing financial interest.
27 28 29	918	ACKNOWLEDGMENTS
30 31	919	We thank Dr. Philip Williams, Dr. Robert Nichols, and Dr. Jon-Paul Bingham, UH-Manoa, for
32 33	920	helpful discussions; Dr. Wei Wen Su, UH-Manoa, for the assistance of bioluminescence
34 35 26	921	measurement; Dr. Yong-Soo Kim and Dr. Jinzeng Yang, UH-Manoa, for the assistance of cell
37 38 39	922	culture; and Wesley Yoshida, UH-Manoa NMR facility, for acquiring the NMR spectra.
40 41	923	ABBREVIATIONS
42 43	924	AD, Alzheimer's disease; Aβ42, β-amyloid fragment peptide 1-42; NFT, neurofibrillary
44 45	925	tangle; GSK-3, glycogen synthase kinase-3; ERK2, extracellular signal regulated kinase 2;
46 47 48	926	JNK1, c-Jun N-terminal kinase 1; JNK3, c-Jun N-terminal kinase 3; p38a, p38 mitogen-activated
49 50	927	protein kinase 14; p38β, mitogen-activated protein kinase 14B, p38γ, mitogen-activated protein
51 52	928	kinase 12; p386, p38 mitogen-activated protein kinase 13; CDK1/CyclinA, cyclin-dependent
55 55	929	kinase 1 with subunit cyclin A; CDK2/CyclinE, cyclin-dependent kinase 2 with subunit cyclin E;
56 57 58	930	CDK3/CyclinE, cyclin-dependent kinase 3 with subunit cyclin E; CDK5/p25, cyclin-dependent
59 60		ACS Paragon Plus Environment

2		
3 4	931	kinase 5 with subunit p25; CDK5/p35, cyclin-dependent kinase 5 with subunit p35;
5 6	932	CDK6/CyclinD, cyclin-dependent kinase 6 with subunit cyclin D; CDK9/CyclinK, cyclin-
7 8	933	dependent kinase 9 with subunit cyclin K; CLK1, dual specificity protein kinase 1; AKT1, v-akt
9 10 11	934	murine thymoma viral oncogene homolog 1; p70S6K β , p70 ribosomal protein S6 kinase beta;
12 13	935	PDK1, phosphoinositide-dependent kinase 1; PKA, protein kinase A; PKC, protein kinase C;
14 15	936	PRKG1, cGMP-dependent protein kinase 1; ROCK1, Rho-associated, coiled-coil containing
16 17 19	937	protein kinase 1; RSK2, ribosomal protein S6 kinase 2; AMPK, AMP-activated protein kinase
19 20	938	with subunits; CAMKIIa, Ca2+/calmodulin-dependent protein kinase IIa; CAMKIIy,
21 22	939	Ca2+/calmodulin-dependent protein kinase II _γ ; CAMKIV, Ca2+/calmodulin-dependent protein
23 24 25	940	kinase IV; DAPK1, death-associated protein kinase 1; STK33, serine/threonine-protein kinase
25 26 27	941	33; CK2 α 1, casein kinase 2 α 1; DNA-PK, DNA-dependent protein kinase; CK1 α 1, casein kinase
28 29	942	1 α 1; CK1 ϵ , casein kinase 1 ϵ ; CK1 γ 1, casein kinase 1 γ 1; VRK2, vaccinia related kinase 2; ANP,
30 31	943	adenylyl imidodiphosphate; HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid;
32 33 34	944	TMSCHN ₂ , trimethylsilyldiazomethane; HCTU, 2-(6-chloro-1- <i>H</i> -benzotriazole-1-yl)-1,1,3,3-
35 36	945	tetramethylaminium hexafluorophosphate; DIPEA, N,N-diisopropylethylamine;
37 38	946	[TEMPO] ⁺ [BF ₄] ⁻ , 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium tetrafluoroborate;
39 40	947	TDZDs, thiadiazolidinones; CLogP, calculated logarithm of partition coefficient; LiPE, ligand-
42 43	948	lipophilic efficiency; SAR, structure-activity relationship; ELISA, enzyme-linked
44 45	949	immunosorbent assay; PAMPA, parallel artificial membrane permeability assay; HPLC, high
46 47 48	950	performance liquid chromatography; LC-ESI-QTOF-MS, liquid chromatography-electrospray
49 50	951	ionization-quadrupole time-of-flight-mass spectrometry; HRMS, high resolution mass
51 52	952	spectrometry; NMR, nuclear magnetic resonance.
53 54 55	953	
56 57		
58 59		
60		ACS Paragon Plus Environment

2 3 4	954	REF	FERENCES
5	955	(1)	Querfurth, H. W., and LaFerla, F. M. (2010) Alzheimer's disease, N. Engl. J. Med. 362,
7 8	956		329-344.
o 9	957	(2)	McDade, E., and Bateman, R. J. (2017) Stop Alzheimer's before it starts, Nature 547, 153-
10 11	958		155.
12 13	959	(3)	Hoover, B. R., Reed, M. N., Su, J., Penrod, R. D., Kotilinek, L. A., Grant, M. K., Pitstick,
14 15	960		R., Carlson, G. A., Lanier, L. M., Yuan, LL., Ashe, K. H., and Liao, D. (2010) Tau
16	961		mislocalization to dendritic spines mediates synaptic dysfunction independently of
17 18	962		neurodegeneration, Neuron 68, 1067-1081.
19 20	963	(4)	Khanna, M. R., Kovalevich, J., Lee, V. M. Y., Trojanowski, J. Q., and Brunden, K. R.
21	964		(2016) Therapeutic strategies for the treatment of tauopathies: Hopes and challenges,
22	965		Alzheimers Dement. 12, 1051-1065.
24 25	966	(5)	Reardon, S. (2015) Alzheimer antibody drugs show questionable potential, Nat. Rev. Drug
26 27	967		Discov. 14, 591-592.
28	968	(6)	Honig, L. S., Vellas, B., Woodward, M., Boada, M., Bullock, R., Borrie, M., Hager, K.,
29 30	969		Andreasen, N., Scarpini, E., Liu-Seifert, H., Case, M., Dean, R. A., Hake, A., Sundell, K.,
31 32	970		Hoffmann, V. P., Carlson, C., Khanna, R., Mintun, M., DeMattos, R., Selzler, K. J., and
33 34	971		Siemers, E. (2018) Trial of solanezumab for mild dementia due to Alzheimer's disease, N.
35	972		Engl. J. Med. 378, 321-330.
36 37	973	(7)	Iqbal, K., Liu, F., and Gong, CX. (2016) Tau and neurodegenerative disease: The story so
38 39	974		far, Nat. Rev. Neurol. 12, 15-27.
40	975	(8)	Hooper, C., Killick, R., and Lovestone, S. (2008) The GSK3 hypothesis of Alzheimer's
41	976		disease, J. Neurochem. 104, 1433-1439.
43 44	977	(9)	Martin, L., Latypova, X., Wilson, C. M., Magnaudeix, A., Perrin, ML., Yardin, C., and
45 46	978		Terro, F. (2013) Tau protein kinases: Involvement in Alzheimer's disease, Ageing Res. Rev.
47	979		12, 289-309.
48 49	980	(10)	Schneider, L. S., Mangialasche, F., Andreasen, N., Feldman, H., Giacobini, E., Jones, R.,
50 51	981		Mantua, V., Mecocci, P., Pani, L., Winblad, B., and Kivipelto, M. (2014) Clinical trials and
52 53	982		late-stage drug development for Alzheimer's disease: An appraisal from 1984 to 2014, J.
54	983		Intern. Med. 275, 251-283.
55 56			
57 58			
59 60			ACS Paragon Plus Environment

2		
3 4 5	984	(11) Pandey, M. K., and DeGrado, T. R. (2016) Glycogen synthase kinase-3 (GSK-3) – targeted
5 6	985	therapy and imaging, <i>Theranostics</i> 6, 571-593.
7	986	(12) Domínguez, J. M., Fuertes, A., Orozco, L., del Monte-Millán, M., Delgado, E., and Medina,
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	987	M. (2012) Evidence for irreversible inhibition of glycogen synthase kinase-3 β by
	988	tideglusib, J. Biol. Chem. 287, 893-904.
	989	(13) Swinney, Z. T., Haubrich, B. A., Xia, S., Ramesha, C., Gomez, S. R., Guyett, P., Mensa-
	990	Wilmot, K., and Swinney, D. C. (2016) A four-point screening method for assessing
	991	molecular mechanism of action (MMOA) identifies tideglusib as a time-dependent inhibitor
	992	of Trypanosoma brucei GSK3β, PLoS Negl. Trop. Dis. 10, e0004506.
	993	(14) Huggins, D. J., Sherman, W., and Tidor, B. (2012) Rational approaches to improving
	994	selectivity in drug design, J. Med. Chem. 55, 1424-1444.
	995	(15) Peng, J., Kudrimoti, S., Prasanna, S., Odde, S., Doerksen, R. J., Pennaka, H. K., Choo, Y
	996	M., Rao, K. V., Tekwani, B. L., Madgula, V., Khan, S. I., Wang, B., Mayer, A. M. S.,
	997	Jacob, M. R., Tu, L. C., Gertsch, J., and Hamann, M. T. (2010) Structure-activity
	998	relationship and mechanism of action studies of manzamine analogues for the control of
	999	neuroinflammation and cerebral infections, J. Med. Chem. 53, 61-76.
	1000	(16) Palomo, V., Perez, D. I., Perez, C., Morales-Garcia, J. A., Soteras, I., Alonso-Gil, S.,
	1001	Encinas, A., Castro, A., Campillo, N. E., Perez-Castillo, A., Gil, C., and Martinez, A.
34 35	1002	(2012) 5-Imino-1,2,4-thiadiazoles: First small molecules as substrate competitive inhibitors
36	1003	of glycogen synthase kinase 3, J. Med. Chem. 55, 1645-1661.
37 38	1004	(17) Tapia-Rojas, C., Schüller, A., Lindsay, C. B., Ureta, R. C., Mejías-Reyes, C., Hancke, J.,
39 40	1005	Melo, F., and Inestrosa, N. C. (2015) Andrographolide activates the canonical Wnt
41 42	1006	signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of
43	1007	GSK-3 _β : Autoregulation of GSK-3 _β in vivo., <i>Biochem. J. 466</i> , 415-430.
44 45	1008	(18) Licht-Murava, A., Paz, R., Vaks, L., Avrahami, L., Plotkin, B., Eisenstein, M., and Eldar-
46 47	1009	Finkelman, H. (2016) A unique type of GSK-3 inhibitor brings new opportunities to the
48 40	1010	clinic, Sci. Signal. 9, ra110.
49 50	1011	(19) Rodrigues, T., Reker, D., Schneider, P., and Schneider, G. (2016) Counting on natural
51 52	1012	products for drug design, Nature Chem. 8, 531-541.
53 54		
55		
56 57		
58 59		
60		ACS Paragon Plus Environment

Page 49 of 63

1

2			
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35	1013	(20)	Baptista, F. I., Henriques, A. G., Silva, A. M. S., Wiltfang, J., and da Cruz e Silva, O. A. B.
	1014		(2014) Flavonoids as therapeutic compounds targeting key proteins involved in
	1015		Alzheimer's disease, ACS Chem. Neurosci. 5, 83-92.
	1016	(21)	Xiao, J., Capanoglu, E., Jassbi, A. R., and Miron, A. (2016) Advance on the flavonoid C-
	1017		glycosides and health benefits, Crit. Rev. Food Sci. Nutr. 56, S29-S45.
	1018	(22)	Sciacca, M. F. M., Romanucci, V., Zarrelli, A., Monaco, I., Lolicato, F., Spinella, N.,
	1019		Galati, C., Grasso, G., D'Urso, L., Romeo, M., Diomede, L., Salmona, M., Bongiorno, C.,
	1020		Di Fabio, G., La Rosa, C., and Milardi, D. (2017) Inhibition of A β amyloid growth and
	1021		toxicity by silybins: The crucial role of stereochemistry, ACS Chem. Neurosci. 8, 1767-
	1022		1778.
	1023	(23)	Liang, Z., Zhang, B., Su, W. W., Williams, P. G., and Li, Q. X. (2016) C-Glycosylflavones
	1024		alleviate tau phosphorylation and amyloid neurotoxicity through GSK3 β inhibition, ACS
	1025		Chem. Neurosci. 7, 912-923.
	1026	(24)	Song, Y., Kim, HD., Lee, MK., Hong, IH., Won, CK., Bai, HW., Lee, S. S., Lee, S.,
	1027		Chung, B. Y., and Cho, JH. (2017) Maysin and its flavonoid derivative from
	1028		centipedegrass attenuates amyloid plaques by inducting humoral immune response with
	1029		Th2 skewed cytokine response in the Tg (APPswe, PS1dE9) Alzheimer's mouse model,
	1030		PLoS ONE 12, e0169509.
	1031	(25)	Peng, KZ., Zhang, SY., and Zhou, HL. (2016) Toxicological evaluation of the
36	1032		flavonoid-rich extract from Maydis stigma: Subchronic toxicity and genotoxicity studies in
37 38	1033		mice, J. Ethnopharmacol. 192, 161-169.
39 40	1034	(26)	Ilouz, R., Kowalsman, N., Eisenstein, M., and Eldar-Finkelman, H. (2006) Identification of
40 41 42 43 44 45	1035		novel glycogen synthase kinase- 3β substrate-interacting residues suggests a common
	1036		mechanism for substrate recognition, J. Biol. Chem. 281, 30621-30630.
	1037	(27)	Walle, T. (2007) Methylation of dietary flavones greatly improves their hepatic metabolic
46 47	1038		stability and intestinal absorption, Mol. Pharm. 4, 826-832.
48 40	1039	(28)	Liang, Z., Sorribas, A., Sulzmaier, F. J., Jiménez, J. I., Wang, X., Sauvage, T., Yoshida, W.
50	1040		Y., Wang, G., Ramos, J. W., and Williams, P. G. (2011) Stictamides A-C, MMP12
51 52	1041		inhibitors containing 4-amino-3-hydroxy-5-phenylpentanoic acid subunits, J. Org. Chem.
53 54	1042		76, 3635-3643.
55 56			
57			
58 59			

3 4	1043	(29)	Bobbitt, J. M., Bartelson, A. L., Bailey, W. F., Hamlin, T. A., and Kelly, C. B. (2014)
5	1044		Oxoammonium salt oxidations of alcohols in the presence of pyridine bases, J. Org. Chem.
6 7	1045		79, 1055-1067.
8 9	1046	(30)	Baell, J. B. (2016) Feeling nature's PAINS: Natural products, natural product drugs, and
10	1047		pan assay interference compounds (PAINS), J. Nat. Prod. 79, 616-628.
12	1048	(31)	Feng, B. Y., and Shoichet, B. K. (2006) A detergent-based assay for the detection of
13 14	1049		promiscuous inhibitors, Nat. Protoc. 1, 550-553.
15 16	1050	(32)	Wager, T. T., Hou, X., Verhoest, P. R., and Villalobos, A. (2016) Central nervous system
17	1051		multiparameter optimization desirability: Application in drug discovery, ACS Chem.
18 19	1052		Neurosci. 7, 767-775.
20 21	1053	(33)	Freeman-Cook, K. D., Hoffman, R. L., and Johnson, T. W. (2013) Lipophilic efficiency:
22 23	1054		The most important efficiency metric in medicinal chemistry, Future Med. Chem. 5, 113-
24	1055		115.
25 26	1056	(34)	Chou, J. T., and Jurs, P. C. (1979) Computer-assisted computation of partition coefficients
27 28	1057		from molecular structures using fragment constants, J. Chem. Inf. Comput. Sci. 19, 172-
29	1058		178.
31	1059	(35)	Agholme, L., Lindström, T., Kågedal, K., Marcusson, J., and Hallbeck, M. (2010) An in
32 33	1060		vitro model for neuroscience: Differentiation of SH-SY5Y cells into cells with
34 35	1061		morphological and biochemical characteristics of mature neurons, J. Alzheimer's Dis. 20,
36	1062		1069-1082.
37 38	1063	(36)	Chen, X., Murawski, A., Patel, K., Crespi, C. L., and Balimane, P. V. (2008) A novel
39 40	1064		design of artificial membrane for improving the PAMPA model, Pharm. Res. 25, 1511-
41 42	1065		1520.
43	1066	(37)	Courts, F. L., and Williamson, G. (2015) The occurrence, fate and biological activities of C-
44 45	1067		glycosyl flavonoids in the human diet, Crit. Rev. Food Sci. Nutr. 55, 1352-1367.
46 47	1068	(38)	Trott, O., and Olson, A. J. (2010) AutoDock Vina: Improving the speed and accuracy of
48 40	1069		docking with a new scoring function, efficient optimization, and multithreading, J. Comput.
49 50	1070		<i>Chem.</i> 31, 455-461.
51 52	1071	(39)	Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Tian, S., and Hou, T. (2016)
53 54	1072		Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand
55			
50 57			
58 59			
60			ACS Paragon Plus Environment

Page 51 of 63

1

ACS Chemical Neuroscience

2 3	1073		complexes: The prediction accuracy of sampling power and scoring power <i>Phys Chem</i>
4 5	1074		Chem Phys 18 12964-12975
6 7	1075	(40)	Forli S Huev R Pique M E Sanner M F Goodsell D S and Olson A I (2016)
8	1076	(10)	Computational protein-ligand docking and virtual drug screening with the AutoDock suite
9 10	1077		Nat Protoc 11 905-919
11 12	1078	(41)	Hassandarvish P Rothan H A Rezaei S Yusof R Abubakar S and Zandi K (2016)
13	1079	(11)	In silico study on baicalein and baicalin as inhibitors of dengue virus replication RSC
14 15	1080		Advances 6. 31235-31247.
16 17	1081	(42)	Bertrand I A Thieffine S Vulnetti A Cristiani C Valsasina B Knapp S Kalisz H
18 10	1082	()	M and Flocco M (2003) Structural characterization of the GSK-3ß active site using
20	1083		selective and non-selective ATP-mimetic inhibitors <i>J Mol Biol</i> 333 393-407
21 22	1084	(43)	Dajani, R., Fraser, E., Roe, S. M., Young, N., Good, V., Dale, T. C., and Pearl, L. H. (2001)
23 24	1085	(-)	Crystal structure of glycogen synthase kinase 38: Structural basis for phosphate-primed
25 26	1086		substrate specificity and autoinhibition, <i>Cell 105</i> , 721-732.
27	1087	(44)	Gadakar, P. K., Phukan, S., and Balaji, V. N. (2007) Pose prediction accuracy in docking
28 29	1088		studies and enrichment of actives in the active site of GSK-3β, J. Chem. Inf. Model. 47,
30 31	1089		1446-1459.
32 33	1090	(45)	Fu, G., Sivaprakasam, P., Dale, O. R., Manly, S. P., Cutler, S. J., and Doerksen, R. J. (2014)
34 25	1091		Pharmacophore modeling, ensemble docking, virtual screening, and biological evaluation
36	1092		on glycogen synthase kinase-3β, Mol. Inform. 33, 610-626.
37 38	1093	(46)	Müller, K., Faeh, C., and Diederich, F. (2007) Fluorine in pharmaceuticals: Looking
39 40	1094		beyond intuition, Science 317, 1881-1886.
41	1095	(47)	Bissantz, C., Kuhn, B., and Stahl, M. (2010) A medicinal chemist's guide to molecular
42	1096		interactions, J. Med. Chem. 53, 5061-5084.
44 45	1097	(48)	Abreu, R. M. V., Froufe, H. J. C., Queiroz, MJ. R. P., and Ferreira, I. C. F. R. (2012)
46 47	1098		Selective flexibility of side-chain residues improves VEGFR-2 docking score using
48	1099		AutoDock Vina, Chem. Biol. Drug Des. 79, 530-534.
49 50	1100	(49)	Gallivan, J. P., and Dougherty, D. A. (1999) Cation- π interactions in structural biology,
51 52	1101		Proc. Natl. Acad. Sci. U.S.A. 96, 9459-9464.
53 54			
55			
57			
58 59			
60			ACS Paragon Plus Environment

3	1102	(50) Pellequer, JL., Zhao, B., Kao, HI., Bell, C. W., Li, K., Li, Q. X., Karu, A. E., and
4 5	1103	Roberts, V. A. (2000) Stabilization of bound polycyclic aromatic hydrocarbons by a π -
6 7	1104	cation interaction, J. Mol. Biol. 302, 691-699.
8 9	1105	(51) Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F.,
10	1106	Cassarino, T. G., Bertoni, M., Bordoli, L., and Schwede, T. (2014) SWISS-MODEL:
12	1107	Modelling protein tertiary and quaternary structure using evolutionary information, Nucleic
13 14	1108	Acids Res. 42, W252-W258.
15 16	1109	(52) Beurel, E., Grieco, S. F., and Jope, R. S. (2015) Glycogen synthase kinase-3 (GSK3):
17	1110	Regulation, actions, and diseases, Pharmacol. Ther. 148, 114-131.
18 19	1111	(53) Liang, S. H., Chen, J. M., Normandin, M. D., Chang, J. S., Chang, G. C., Taylor, C. K.,
20 21	1112	Trapa, P., Plummer, M. S., Para, K. S., Conn, E. L., Lopresti-Morrow, L., Lanyon, L. F.,
22 23	1113	Cook, J. M., Richter, K. E. G., Nolan, C. E., Schachter, J. B., Janat, F., Che, Y.,
24	1114	Shanmugasundaram, V., Lefker, B. A., Enerson, B. E., Livni, E., Wang, L., Guehl, N. J.,
25 26	1115	Patnaik, D., Wagner, F. F., Perlis, R., Holson, E. B., Haggarty, S. J., El Fakhri, G.,
27 28	1116	Kurumbail, R. G., and Vasdev, N. (2016) Discovery of a highly selective glycogen synthas
29	1117	kinase-3 inhibitor (PF-04802367) that modulates tau phosphorylation in the brain:
30 31	1118	Translation for PET neuroimaging, Angew. Chem., Int. Ed. 55, 9601-9605.
32 33	1119	(54) Koehler, M. F. T., Bergeron, P., Blackwood, E. M., Bowman, K., Clark, K. R., Firestein,
34 35	1120	R., Kiefer, J. R., Maskos, K., McCleland, M. L., Orren, L., Salphati, L., Schmidt, S.,
36	1121	Schneider, E. V., Wu, J., and Beresini, M. H. (2016) Development of a potent, specific
37 38	1122	CDK8 kinase inhibitor which phenocopies CDK8/19 knockout cells, ACS Med. Chem. Lett
39 40	1123	7, 223-228.
41 42	1124	(55) Wei, J., Jin, F., Wu, Q., Jiang, Y., Gao, D., and Liu, H. (2014) Molecular interaction study
43	1125	of flavonoid derivative 3d with human serum albumin using multispectroscopic and
44 45	1126	molecular modeling approach, Talanta 126, 116-121.
46 47	1127	(56) Pollock, J., Borkin, D., Lund, G., Purohit, T., Dyguda-Kazimierowicz, E., Grembecka, J.,
48 ⊿q	1128	and Cierpicki, T. (2015) Rational design of orthogonal multipolar interactions with fluorine
50	1129	in protein-ligand complexes, J. Med. Chem. 58, 7465-7474.
51 52	1130	(57) Ali, A., Hoeflich, K. P., and Woodgett, J. R. (2001) Glycogen synthase kinase-3:
53 54	1131	Properties, functions, and regulation, Chem. Rev. 101, 2527-2540.
55 56		
57		
58 59		
60		ACS Paragon Plus Environment

1 2		
3	1132	(58) Wang, Q. M., Park, I. K., Fiol, C. J., Roach, P. J., and DePaoli-Roach, A. A. (1994) Isoform
4 5 6 7	1133	differences in substrate recognition by glycogen synthase kinases 3.alpha. and 3.beta. in the
	1134	phosphorylation of phosphatase inhibitor 2, Biochemistry 33, 143-147.
8 9	1135	(59) Soutar, M. P. M., Kim, WY., Williamson, R., Peggie, M., Hastie, C. J., McLauchlan, H.,
10 11 12 13 14 15 16 17 18 19	1136	Snider, W. D., Gordon-Weeks, P. R., and Sutherland, C. (2010) Evidence that glycogen
	1137	synthase kinase-3 isoforms have distinct substrate preference in the brain, J. Neurochem.
	1138	115, 974-983.
	1139	(60) Liang, Z., Sulzmaier, F. J., Yoshida, W. Y., Kelly, M., Ramos, J. W., and Williams, P. G.
	1140	(2015) Neopetrocyclamines A and B, polycyclic diamine alkaloids from the sponge
	1141	Neopetrosia cf exigua, J. Nat. Prod. 78, 543-547.
20 21		
22 23		
24		
25 26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41 42		
42 43		
44 45		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
59		ACS Paragon Dlus Environment
60		

^{*a*} Reagents and conditions: (a) TMSCHN₂, toluene, methanol, rt, 80%; (b) [TEMPO]⁺[BF₄]⁻, DCM, pyridine, rt, 95%; (c) R-NH₂, HCTU, DIPEA, DMF, DCM, rt, 80-90%.

Figure 1. Natural *C*-glycosyl and aglycosyl flavones 1-4.

Figure 2. Analyses of GSK-3 β inhibitory activities for compounds **1-31**. (A) A scatter plot of pIC50 (-LogIC50) for GSK-3 β inhibitors **1**, **8-31**. The parent compound isoorientin **1** is shown in red, aliphatic amide analogues are shown in cyan, alicyclic amide analogues are shown in blue, aromatic amide analogues are shown in yellow, and fluorinated amide analogues are shown in purple. (B) A plot of CLog*P* versus pIC50 for GSK-3 β inhibitors **1-31**. Diagonal lines represent areas of the same LiPEs to estimate druglikeness. LiPE = pIC50 – CLog*P*. Solid circle: natural flavones; Open circle: semi-synthetic flavones. cmpd, compound.

Figure 3. Compounds **9**, **17**, **21** and **30** attenuate GSK-3 β -mediated tau phosphorylation in a SH-SY5Y whole-cell lysate kinase assay. Cell lysate aliquots were fortified with 0.25% (wt/wt) GSK-3 β , and incubated with 2 to 50 μ M of **9**, **17**, **21**, **30** or 5% DMSO vehicle in a kinase buffer at 37 °C for 2 h. 10 μ M TDZD-8 and 100 μ M isoorientin (1) were used as reference controls. ELISA analysis was performed with specific antibody against Tau pS396 to quantify tau phosphorylation levels. Fold changes were calculated relative to the control with \pm SEM (n = 4). The data were analyzed by one-way ANOVA with Tukey's multiple comparison test. ####p < 0.0001 relative to inactive GSK-3 β fortified control; ****p < 0.0001 relative to the active GSK-3 β fortified control; •p < 0.05, ••p < 0.01 and ••••p < 0.0001 relative to the TDZD-8 reference control.

Figure 4. Compound 30 selectively inhibits GSK-3β via a substrate-competitive mechanism. (A) Structure of **30** and inhibition curves of **30** with an IC₅₀ of 0.59 μ M and **1** with an IC₅₀ of 184.9 μ M. The results were presented as the percentage of the kinase activity relative to control (5%) DMSO vehicle). Inhibition curves were analyzed by four-parameter regression. (B) Lineweaver-Burk plots of GSK-3 β kinetic data at increasing concentrations of **30** from 0 to 5 μ M. (a) The lines are linear regression plotting of 1/V against 1/ATP at a given concentration of 30. ATP concentrations varied from 2 to 50 µM, while the concentration of the GSK-3β substrate GS2 was kept constant at 17 µM. Intersecting at the same point on the x-axis indicates noncompetitive inhibition with respect to ATP. (b) The lines are linear regression plotting of 1/V against 1/GS2 at a given concentration of **30**. Substrate GS2 concentrations varied from 8 to 66μ M, while the ATP concentration was kept constant at 10 μ M. Intersecting at the same point on the y-axis indicates competitive inhibition with respect to the substrate GS2. (C) Inhibitory effects of **30** on the activities of 41 kinases. Kinases were assayed in the presence of 5 μ M **30** or control (5%) DMSO vehicle). Data were the mean of quadruplicate of each of two independent experiments with \pm SEM. The data were analyzed by one-way ANOVA with Tukey's multiple comparison test. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001 relative to the control.

1				
2				
3	1140			
1	1142			
4				
5				
6				
7				
8				
9				
10				
10				
11				
12				
13				
14				
15				
16				
17				
17				
18				
19				
20				
21				
22				
23				
23				
24				
25				
26				
27				
28				
29				
30				
21				
21				
32				
33				
34				
35				
36				
37				
38				
20				
10				
40				
41				
42				
43				
44				
45				
46				
/7				
+/ /0				
48				
49				
50				
51				
52				
53				
57				
54				
55				
56				
57				

Figure 5. Compound 30 alleviates $A\beta_{42}$ induced neurotoxicity in SH-SY5Y cells. (A) Cytotoxicity assessment of **30** in SH-SY5Y cells. Cells were treated with varying concentrations of 30 or 0.2% DMSO vehicle and incubated for 72 h. Cell viability was determined with the MTX assay. (B) Cells were pretreated with varying concentrations of **30** or 0.2% DMSO vehicle for 1 h followed by 10 μ M A β_{42} treatment and incubated for 72 h. 10 μ M TDZD-8 was used as a reference control. (C) **30** inhibited neurotoxicity induced by 10 μ M A β_{42} with an EC₅₀ value of 8.7μ M. The results were presented as the percentage of the neuroprotective activity relative to control (100%) and 10 μ M A β_{42} treatment (0%). Neuroprotection curve was analyzed by fourparameter regression. Data were the mean of triplicate of each of two independent experiments with \pm SEM. The data were analyzed by one-way ANOVA with Tukey's multiple comparison test. ####p < 0.0001 relative to vehicle control; ****p < 0.0001 relative to the 10 μ M A β_{42} treatment. (D) Morphological changes of SH-SY5Y cells after treatment for 72 h. (a) 0.2% DMSO treatment as vehicle control. Differentiated cells with extended axons and dendrites. (b) μ M A β_{42} treatment. Dying and impaired cells with retracted neurites. (c) Pretreatment of 10 μ M **30** followed by 10 μ M A β_{42} treatment. Protected differentiated cells with extended axons and dendrites. Micrographs represent the average morphologic characteristics of cell cultures under a given condition of 4-6 experimental replicates. Scale bar = $100 \mu m$.

Figure 6. Predicted docking poses of 9 (A), 31 (B) and 30 (C) within the substrate site of GSK- 3β (PDB code 1PYX). The dotted lines represent interactions via hydrogen bonding, π -cation interaction or orthogonal multipolar interactions with key amino acid residues of GSK- 3β . Key molecular interaction distances are highlighted.

Figure 7. Molecular models of GSK-3 β and GSK-3 α and the docking complexes with **30**. (A) Superposition of GSK-3 β structure (PDB code 1PYX) and GSK-3 α homology model (UniProt code P49840). The ATP and substrate sites are highlighted in circles, and the N- and C-termini are depicted. The ATP and substrate sites of GSK-3 α / β isoforms are highly conserved and most of amino acid differences occur in the N- and C-terminal regions. (B) Predicted docking pose of **30** into the substrate site of GSK-3 β structure. (C) Predicted docking pose of **30** into the substrate site of GSK-3 β structure. (C) Predicted docking pose of **30** into the substrate site of GSK-3 α homology model. GSK-3 isoforms are shown as gray cartoons. In both isoforms, selected conserved residues are displayed as green sticks. In GSK-3 β , non-conserved residues are displayed as magenta sticks. The dotted lines represent key molecular interactions.

Title: Discovery of Selective, Substrate-Competitive, and Passive Membrane Permeable
Glycogen Synthase Kinase-3β Inhibitors: Synthesis, Biological Evaluation, and Molecular
Modeling of New C-Glycosylflavones
Authors: Zhibin Liang and Qing X. Li