A simple method for the synthesis of 1,3-diaminopropan-2-ols derivatives and their ex vivo relaxant activity on isolated rat tracheal rings

Fabiola I. López ${ }^{1} \cdot$ Fabiola N. de la Cruz $^{1} \cdot$ Julio López $^{1} \cdot$ J. Merced Martínez ${ }^{1} \cdot$ Yolanda Alcaraz ${ }^{2}$. Francisco Delgado ${ }^{3}$. Amanda Sánchez-Recillas ${ }^{4}$. Samuel Estrada-Soto ${ }^{4} \cdot$ Miguel A. Vázquez ${ }^{1}$

Received: 16 November 2015 / Accepted: 2 March 2017
© Springer Science+Business Media New York 2017

Abstract

A mild and eco-friendly method has been developed for the synthesis of a series of 1,3-diaminopro-pan-2-ols $\mathbf{8 a}-\mathbf{n}$. The epoxide of epichlorohydrin undergoes ring-opening with amines using MgSO_{4} or mixed metal oxides catalysts under mild and neutral conditions to afford the corresponding β-amino alcohols in excellent yields. Preliminary evaluation of relaxant activity of $\mathbf{8 b} \mathbf{-}$ was carried out on rat tracheal rings contracted by carbachol $1 \mu \mathrm{M}$. Most of the tested compounds exhibited significantly relaxant effects in a concentration-dependent manner. Compound 8n was found to be the most active, being twofolds more potent than theophylline (positive control). This compound has the potential for development as an anti-asthma drug.

> Electronic supplementary material The online version of this article (doi:10.1007/s00044-017-1853-6) contains supplementary material, which is available to authorized users.

[^0]
Graphical Abstract

Keywords 1,3-Diaminopropan-2-ols • Mixed metal oxides • Rat tracheal relaxation - Anti-asthmatic effect

Introduction

Asthma is one of the most common chronic diseases, and is characterized by airflow obstruction, bronchial hyper responsiveness, and an underlying inflammation (Busse et al. 2007). Airway smooth muscle plays a central role in almost all the pathophysiologic and clinical aspects of asthma. The most important contractile agonists relevant to asthma are acetylcholine, histamine, leukotrienes, prostaglandins, endo-thelyn-1, and bradykinin. Asthma drug therapy is centered on counteracting bronchoconstriction and/or inflammation processes using agonists of the β_{2} adrenergic receptor (β_{2}-agonist) and inhaled glucocorticoids, respectively. Combinations of these drugs keep airways open and prevent acute exacerbations (Mendes et al. 2015).
β-Amino alcohol fragments are versatile intermediates for the syntheses of vast range of biologically active natural and synthetic compounds (Fig. 1). Some exemplary molecules with a β-amino alcohol core and their biological activities are: the salbutamol \mathbf{I}, a β_{2}-agonist and effective bronchodilator because of its ability to relax airway smooth muscle (Fuso et al. 2013); compound II, a low molecular weight probe for β-secretase inhibition (Kumar et al. 2012); and compound III, a Src Kinase inhibitor (Sharma et al. 2010).

One of the most straightforward synthetic procedures for the preparation of β-amino alcohols is ring opening of epoxides with amines (Chang and Ganesan 1997; Van de Weghe and Collin 1995). A variety of activators or promoters, such as metal amides (Cossy et al. 2002; Canas et al. 1991; Caron and Sharpless 1985; Chong and Sharpless 1985), have been used in epoxide ring opening reactions. However, some promoters are dangerous or form emulsions, making work-up difficult. Recent alternative procedures include the use of ionic liquids (Yadav et al. 2003), silica gel-bonded S-sulfonic acid (Tajbakhsh et al. 2012), mesoporous aluminosilicate (Chakravarti et al. 2009), pH-controlled aqueous conditions (Bonollo et al. 2006), and microwave irradiation (Robin et al. 2007).

Mixed metal oxides (MMOs) have important roles in organic transformations because of their ease of handling, decreased reactor and plant corrosion, cost effectiveness, and the fact that most MMOs are reusable and recyclable (Gawande et al. 2012).

Research towards novel molecules based on bronchodilator activity has led to extensive structural modifications in new bronchodilator agents. Developmental attention is focused on N-substituents of β-amino alcohols to find new molecules with bronchodilator activity. In this paper, we report the syntheses of a library of 1,3-diaminopropan-2-ols and screen these compounds for their relaxant activity. The biological activities of the reported compounds are compared to that of theophylline.

Results and discussion

Chemistry

A series of 1,3-diaminopropan-2-ols derivatives ($\mathbf{8 a}-\mathbf{n}$) were prepared via four step syntheses (Scheme 1). N-Benzylide-
neanilines $\mathbf{3 a - g}$ were obtained in good yields (87-98\%) by a procedure previously reported (Vázquez et al. 2004). The N benzylideneanilines were reduced to give N-benzylanilines $\mathbf{4 a - g}$ by two synthetic methods: reductive amination, a direct reaction; or a stepwise/indirect reaction. Several reductants are suitable for these reactions, e.g. molecular hydrogen (Baxter and Reitz 2002; Bódis et al. 2005; Gomez et al. 2004) and metal hydrides (Chandrasekhar et al. 2000; Lopez and Fu 1997; Chen et al. 2001; Blackwell et al. 2000; Kobayashi et al. 1996; Apodaca and Xiao 2001). However, most of these reagents have drawbacks in handling and specificity of functional groups that can be reduced. Cyanoborohydride and tin hydride reagents are highly toxic and generate toxic by-products such as $\mathrm{HCN}, \mathrm{NaCN}$, or organotin compounds (Pereyre et al. 1987) and the selective formation of amines with metal hydrides is challenging (Gribble 1998; Dangerfield et al. 2010).

We systematically investigated a number of experimental conditions of the indirect method for the reduction reaction. The reaction was carried out by traditional method with a 1:1:1 mixture of Schiff base 3a, sodium borohydride and boric acid in tetrahydrofuran/methanol (THF/MeOH) at $0^{\circ} \mathrm{C}$ to rt until thin-layer chromatography (TLC) and nuclear magnetic resonance (NMR) showed no further reaction progress and the product $\mathbf{4 a}$ was obtained with good yield (99%). Cho and Kang (2005) have reported the use of boric acidactivated sodium borohydride in absence of a solvent by grinding the solid reagent with reactants to effectively reductively aminate aldehydes and ketones. We applied Cho's method and were unable to obtain satisfactory results and a mixture of solvents were necessary for the reaction to proceed (yield 30\%). We next applied this initial methodology to other imines (Scheme 1). The indirect reductive amination procedure was efficient for most of imines trialed and synthesized N-benzylanilines $\mathbf{4 a}-\mathbf{d}$ and $\mathbf{4 g}$ with good yields. However, reaction of imines containing a 2-thienyl moiety resulted in lower yields of compounds $\mathbf{4 e}$ and $\mathbf{4 f}$. The low yields of these products is because the 2-thienyl group is readily decomposed (Bell et al. 1969; Billman and Diesing 1957).

Our next challenge was establishing conditions for nucleophilic addition to the epoxide of epichlorohydrin. We evaluated the model reaction in the presence and absence of a base. A range of solvents (THF, $\mathrm{CH}_{3} \mathrm{CN}$, Toluene, iso-propyl alcohol, and MeOH) were evaluated without base and after 30 h no reaction had occurred. Various bases

Fig. 1 Three 1-aminopropan-2ols with potential biological activities

II

III

Scheme 1 General synthetic route for 1,3-diaminopropan-2ols. Conditions: a $1(1.5 \mathrm{mmol})$ and $2(1.5 \mathrm{mmol})$, under IR irradiation at $90^{\circ} \mathrm{C}(50 \mathrm{~V})$. b NaBH_{4} (1 equiv.), $\mathrm{H}_{3} \mathrm{BO}_{3}$ (1 equiv.), THF/MeOH (1/1, 10 mL) at $0-20^{\circ} \mathrm{C}$. c $4 \mathbf{a}-\mathbf{f}$ (1 equiv), epichlorohydrine 5 (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $(10 \mathrm{~mL})$ at rt with MgSO_{4} or MMO. d NaOH ($1.5 \mathrm{M}, 2 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$, then $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(7: 3$, 3 mL), amine 7a-d (2 equiv.) at rt

1a $\mathrm{R}_{1}=\mathrm{Ph}$
1b $\mathrm{R}_{1}=4$-MeOPh
1c $\mathrm{R}_{1}=4-\mathrm{FPh}$
1d $\mathrm{R}_{1}=2$-pyridyl
e $\mathrm{R}_{1}=2$-thienyl 1f $R_{1}=2$-furyl

2a $\mathrm{R}_{2}=\mathrm{Ph}$
2b $\mathrm{R}_{2}=4-\mathrm{MeOPh}$ 2c $\mathrm{R}_{2}=4-\mathrm{CIPh}$

3a $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Ph}$ 3b $\mathrm{R}_{1}=4-\mathrm{MeOPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh}$ 3c $\mathrm{R}_{1}=4-\mathrm{FPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh}$ 3d $\mathrm{R}_{1}=2$-pyridyl; $\mathrm{R}_{2}=4-\mathrm{MeOPh}$ 3e $\mathrm{R}_{1}=2$-thienyl; $\mathrm{R}_{2}=4$-MeOPh 3f $\mathrm{R}_{1}=2$-thienyl; $\mathrm{R}_{2}=4$-CIPh $3 \mathrm{R}_{1}=2$-furyl; $\mathrm{R}_{2}=4$-MeOPh

4a $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Ph}$
4b $\mathrm{R}_{1}=4-\mathrm{MeOPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh}$
4c $\mathrm{R}_{1}=4-\mathrm{FPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh}$
4d $R_{1}=$ 2-pyridyl; $R_{2}=4$-MeOPh 4e $\mathrm{R}_{1}=2$-thienyl; $\mathrm{R}_{2}=4-\mathrm{MeOPh}$ 4f $\mathrm{R}_{1}=2$-thienyl; $\mathrm{R}_{2}=4$-CIPh $4 g R_{1}=2$-furyl; $R_{2}=4-M e O P h$

c

7a) morpholine
7b) azetidine
7c) diethylamine
7d) piperazine

6a $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Ph}$
6b $\mathrm{R}_{1}=4-\mathrm{MeOPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh}$
6c $\mathrm{R}_{1}=4-\mathrm{FPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh}$
6d $\mathrm{R}_{1}=2$-pyridyl; $\mathrm{R}_{2}=4$-MeOPh
6e $\mathrm{R}_{1}=2$-thienyl; $\mathrm{R}_{2}=4-\mathrm{MeOPh}$
6f $R_{1}=2$-thienyl; $R_{2}=4$-CIPh
$6 \mathrm{~g} \mathrm{R}_{1}=2$-furyl; $\mathrm{R}_{2}=4-\mathrm{MeOPh}$

8a $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{Ph}$; amine $=$ morpholine 8b $\mathrm{R}_{1}=4-\mathrm{MeOPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh}$; amine $=$ azetidine 8c $\mathrm{R}_{1}=4-\mathrm{FPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh}$; amine $=$ morpholine 8d $\mathrm{R}_{1}=4-\mathrm{FPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh} ;$ amine $=$ azetidine $8 e R_{1}=4-\mathrm{FPh} ; \mathrm{R}_{2}=4-\mathrm{MeOPh} ;$ amine $=$ diethylamine 8f $R_{1}=2$-pyridyl; $R_{2}=4-\mathrm{MeOPh} ;$ amine $=$ morpholine $8 \mathrm{~g} \mathrm{R}_{1}=2$-pyridyl; $\mathrm{R}_{2}=4-\mathrm{MeOPh}$; amine $=$ azetidine 8h $\mathrm{R}_{1}=2$-pyridyl; $\mathrm{R}_{2}=4-\mathrm{MeOPh}$; amine= piperazine 8i $\mathrm{R}_{1}=2$-thienyl; $\mathrm{R}_{2}=4-\mathrm{MeOPh}$; amine $=$ morpholine 8j $R_{1}=2$-thienyl; $R_{2}=4-\mathrm{CIPh}$; amine $=$ morpholine 8k $R_{1}=2$-thienyl; $R_{2}=4-\mathrm{CIPh}$; amine $=$ azetidine 8I $\mathrm{R}_{1}=2$-thienyl; $\mathrm{R}_{2}=4$-CIPh; amine $=$ piperazine $8 m R_{1}=2$-furyl; $R_{2}=4-\mathrm{MeOPh}$; amine $=$ morpholine 8n $\mathrm{R}_{1}=2$-fury; $\mathrm{R}_{2}=4-\mathrm{MeOPh}$; amine $=$ azetidine
($\mathrm{NaH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KOH}$, and NaOH) were evaluated and all resulted in poor yields. Adjusting the molar ratio of 4:epichlorohydrin failed to improve the yield of the desirable product (0-33\%).

Condensation of amine $4 \mathbf{a}$ with epichlorohydrin in MeOH with MgSO_{4} (Bergeron et al. 1997) afforded the desired halohydrin 6a in acceptable yield (58\%). Using a mixture of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ improved the yield of $\mathbf{6 a}(80 \%)$. Other solvents ($\mathrm{MeOH}, \mathrm{THF}$, and DMF) led to the formation of a polar by-product. $\mathrm{Mg} / \mathrm{Al}$ MMOs are potential substitutes for common bases such as alkaline hydroxides, ammonia, and ammonium salts. These MMOs are advantageous because they are environmentally friendly, inexpensive, non-toxic, and their basic properties can be tailored to increasing their activity and/or selectivity. They can also be easily separated and recycled because pollutant salts and by-products are not formed in the process (Carbajal Arizaga et al. 2007). We tested MMOs with different Al:Mg ratios $(x=0.3,0.4$, and 0.6 , where $x=\mathrm{Al} /(\mathrm{Mg}+\mathrm{Al}))$ for the nucleophilic opening of epichlorohydrin. The MMO with $\mathrm{Al}: \operatorname{Mg} x=0.4$ showed good activity and afforded $\mathbf{6 a}$ in 75% in short reaction time.

Compounds $\mathbf{6 a - g}$ were prepared by aminolysis of racemic epichlorohydrin with the corresponding secondary amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ in the presence of MgSO_{4} and MMO ($\mathrm{Al}: \mathrm{Mg}, x=0.4$) in good yields (Table 1). The opening of the epoxide ring of epichlorohydrin with $\mathbf{4 a - g}$ under these conditions proceed to exclusively form the

Table 1 Addition of nucleophilic amines to epichlorohydrin under two different conditions

Product	$t(\mathrm{~h})$	Yield $(\%)^{\mathrm{a}}$	$t(\mathrm{~h})$	Yield (\%)
$\mathbf{6 a}$	168	80	75	75
$\mathbf{6 b}$	13	99	7	90
$\mathbf{6 c}$	20	75	12	70
$\mathbf{6 d}$	15	72	10	61
$\mathbf{6 e}$	28	80	14	80
$\mathbf{6 f}$	32	74	18	70
$\mathbf{6 g}$	32	100	12	100

4a-g (1 equiv.), epichlorohydrine 5 (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (10 mL , 3:7) at rt with MgSO_{4} or MMO
${ }^{\text {a }} 25 \% \mathrm{wt}$ of MgSO_{4}
${ }^{\mathrm{b}} 15 \% \mathrm{wt}$ of MMO, Al: $\mathrm{Mg} x=0.4$
secondary alcohol (Scheme 2) (Robin et al. 2007). There were no appreciable differences in the yields for reactions using MgSO_{4} or the MMO. However, the use of the MMO decreased the reaction time substantially and the catalytic MMO was recovered and reused five times without detriment to the reaction outcome. The MMO was recycled easily by washing with water and reactivating in an oven at $140^{\circ} \mathrm{C}$.

The final step in our syntheses was the addition of different amines, morpholine (7a), azetidine (7b), diethylamine ($\mathbf{7 c}$) and piperazine ($\mathbf{7 d}$), to compounds $\mathbf{6 a - g}$ in the presence of $\mathrm{NaOH}(1.5 \mathrm{M})$ in methanol to yield $\mathbf{8 a - n}$ in

Scheme 2 Possible reaction mechanism for the closing and opening of the epoxide
$75-80 \%$ yield. The reactions presumably proceed by an epoxy opening/closing (Scheme 2). The chemical structures of compounds $\mathbf{8 a}-\mathbf{n}$ were confirmed unambiguously by spectral data analysis $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right.$ COZY NMR, IR, and HRMS spectroscopy).

Ex vivo rat tracheal assay

The compounds $\mathbf{8 b}-\mathbf{d}, \mathbf{8 i}-\mathbf{n}[0.8-300 \mu \mathrm{M}]$ were evaluated for their relaxant effect on tracheal smooth muscle cells in a model of isolated rat tracheal rings pre-contracted with carbachol $[1 \mu \mathrm{M}]$. The efficacy and potency of each compound is shown in Table 2.

Compounds $\mathbf{8 c}, \mathbf{8 i}, \mathbf{8 k}$, and $\mathbf{8 m}$ showed significant relaxing effect (greater than 80% at $300 \mu \mathrm{M}$) but were less potent than the positive control theophylline at lower concentrations, with concentration-response curves (CRC) shifted to the right of theophyllines (Fig. 2b). Compounds $\mathbf{8 b}, 8 \mathbf{d}$, and 8 n were 100% efficient at $300 \mu \mathrm{M}$ and were more active than theophylline $\left(\mathrm{EC}_{50}<150 \mu \mathrm{M}\right)$. The CRC of compound $8 \mathbf{n}\left(\mathrm{EC}_{50}=62 \mu \mathrm{M}\right)$ is shifted to the left compared to theophylline, and compounds $\mathbf{8 b}$ and $\mathbf{8 d}$ (Fig. 2c), which suggests that compound $\mathbf{8 n}$ is the most potent compound in this series. Compound $\mathbf{8 j}$ ($E_{\max }=62 \%$) and $\mathbf{8 1}\left(E_{\max }=57 \%\right)$ had significantly less relaxant effect than theophylline (positive control; $E_{\max }=100 \% ; \mathrm{EC}_{50}=$ $150 \mu \mathrm{M}$; Fig. 2a).
β_{2} agonists with longer half-lives have been discovered and called longer-acting β_{2} agonists. These longer-acting β_{2} agonists allow clinically beneficial once or twice daily administration (Cazzola et al. 2013). Longer-acting β_{2} agonists were discovered by N-alkyl substitution or introducing substituents on the aromatic ring of short-acting β_{2} agonists. These structural changes provide important characteristics such as receptor selectivity, biotransformation, and potency (Cazzola et al. 2013; Graham 1995). In this work, 1,3-diaminopropan-2-ols promote relaxation of contractions induced by carbachol on rat tracheal rings. Compound $8 \mathbf{n}$ was the most potent in vitro relaxation with

Table 2 Relaxant effect of 1,3-diaminopropan-2-ol derivatives on rat trachea muscle tissue
Theophylline (control)
$E C_{50}$ median effective concentration, $E_{\max }$ maximum effect, $N D$ non determined
maximally effective achieved at a concentration half that needed for theophylline. Although the mechanism by which 1,3-diaminopropan-2-ols induce relaxation is unclear, we hypothesized that the azetidine substituent is important for

Fig. 2 Concentration response curves of the relaxant effect of 1,3-diaminopropan-2-ol compounds vs. theophylline on rat trachea rings pre-contracted with carbachol $1 \mu \mathrm{M}$. a Compounds $\mathbf{8 j}, 8 \mathrm{l}$ vs.
theophylline. b Compounds $\mathbf{8 c}, \mathbf{8 i}, \mathbf{8 k}, \mathbf{8 m}$ vs. theophylline. c Compounds $\mathbf{8 b}, \mathbf{8 d}, \mathbf{8 n}$ vs. theophylline. All results are expressed as the mean \pm standard error of mean from six experiments
potent relaxation activity (Naito et al. 2006; Yun et al. 2014; Ding et al. 2013). This substituent is present on the three most active compounds. Further experiments are necessary to establish the mechanism of action of the more active compounds synthesized.

Conclusion and future prospects

We have synthesized and studied the potential antiasthmatic activities of a series of 1,3-disubstituted propan2 -ol compounds ($\mathbf{8 b}-\mathbf{n}$). The set of 14 compounds was prepared in good yields via the epoxide ring opening of epichlorohydrin. The use of MMO catalysts improved the reaction time and the catalyst was recovered and reused efficiently up to five times. The simple experimental and product isolation procedures, combined with the ease of catalyst recovery, are expected to contribute to the development of environmentally friendly processes for the synthesis of 1,3-diaminopropan-2-ols of biological and medicinal importance.

Compound 8n showed significantly improved efficacy and potency as a tracheal smooth muscle relaxant agent compared to theophylline. Compound $\mathbf{8 n}$ provides a led to design a better 1,3-diaminopropan-2-ol containing a azetidine substituent from a chiral precursor that could be an ideal candidate for an anti-asthmatic drug.

Experimental

General procedures

Reaction progress was monitored by TLC, (E. MerckKenilworth, NJ, USA, silica gel $60-\mathrm{F}_{254}$ coated aluminum sheets) with a hexanes/EtOAc (8:2) system for the imines and amines and hexanes/EtOAc (7:3) for the final products.

Colorless compounds were visualized by irradiation with a 254 nm UV lamp. Reaction promotion by IR radiation was carried out with an Osram industrial IR lamp (250 watts, $127 \mathrm{~V})$. The voltage was regulated with a rheostat, 120 V source, $50 / 60 \mathrm{~Hz}, 10 \mathrm{~A}, 1.4 \mathrm{KVA}, 0-140 \mathrm{~V}$ in/out.

Commercial reagents used in this project-aldehydes, primary amines, sodium borohydride and epichlorohydrin, carbamylcholine (carbachol), theophylline, dimethyl sulfoxide and ethylic ether were purchased from Sigma-Aldrich (St. Louis, MO, USA). Boric acid, magnesium sulfate, and sodium hydroxide were purchased from Meyer (a subsidiary of Merck). Stock solutions for extractions were made using distilled water and freshly prepared on the day of experimentation.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Varian Gemini 200 MHz , Varian VNMR 300 MHz or Varian VNMR 500 MHz System in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ with tetramethylsilane (TMS, 0.00 ppm , internal reference). Infrared spectroscopy was performed on a Perkin-Elmer FTIR Spectrum 2000 or 1600 FTIR model spectrophotometer using potassium bromide tablets (KBr). X-ray diffraction poder (XRD) powder patterns were collected on a INEL model Equinox System EQUI22102003 using monochromatised Cu Ka radiation ($\lambda=1.5408 \AA$), with 40 KV and 30 mA . Specific surface areas (S_{BET}), were determined by the Brunnauer-Emmet-Teller method. N_{2} volumetric measurements were performed at 77 K on a Micromeritic ASAP2010.

General procedure for the synthesis of imines (3a-3g)

Imines $\mathbf{3 a} \mathbf{- 3 g}$ were prepared using the methodology of Delgado et al. (Vázquez et al. 2004). Briefly, amine 2 (1 equiv.) and aldehyde 1 (1.05 equiv.) were placed in a round bottom flask. This mixture was irradiated with infrared light with a lamp intensity of $30-40$ volts $\left(90-120^{\circ} \mathrm{C}\right)$ and the reaction monitored by TLC. The crude reaction mixture was
washed with hexanes and crystallized from cold hexanes or a mixture of cold dichloromethane/hexanes.
N-Benzylidenaniline (3a) Yield: 99\%; pale yellow crystals; mp $51-52{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.47$ (s , $1 \mathrm{H}, \mathrm{H}-1$), 7.92 (dd, $J=6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-13$), 7.47 (dd, $J=11.5,7.8 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7$), 7.24 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-11, \mathrm{H}-12)$.
N-(4-methoxybenzylidene)-4-methoxyaniline (3b) Yield: 90%; white solid; mp $143-144^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$, $\mathrm{H}-7), 6.89$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-14), 6.79$ (d, $J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4), 6.61(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-13)$, 3.81 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-15$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$).
N-(4-fluorobenzylidene)-4-methoxyaniline (3c) Yield: 98%; gray crystals; mp $50-51^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3},): $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}, \mathrm{H}-1), 7.27(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ $7, \mathrm{H}-3$), 6.97 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4), 6.75$ (d, $J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-13), 6.54$ (d, J=8.9 Hz, 2H, H-10, H-12), 3.69 (s, 3H, H-14).

N -(pyridin-2-ylmethylene)-4 methoxyaniline (3d) Yield: 89%; dark green crystals; mp $26-27^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.61(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 8.56(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-1), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 7.27$ (d, $J=8.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-12, \mathrm{H}-5), 6.86$ (d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-11), 3.72$ (s, 3H, H-13).
N-(thien-2-ylmethylene)-4 methoxyaniline (3e) Yield: 95%; yellow-green crystals; mp 54-55 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$,): $\delta 8.30$ (s, 1H, H-1), 7.80-7.93 (m, 1H, H-5), 7.45-7.43 (m, 1H, H-4), 7.26 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-$ 11), 7.16-7.13 (m, 1H, H-3), 6.92 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8$, $\mathrm{H}-10), 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-12)$.
N-(thien-2-ylmethylene)-4-chloroaniline (3f) Yield: 81\%; yellow crystals; mp $73-74{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.54(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 7.51(\mathrm{dd}, J=7.1,4.4 \mathrm{~Hz}, 2 \mathrm{H}$, H-4, H-5), 7.34 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-11$), 7.14 (dd, J $=4.8,3.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-8, \mathrm{H}-10)$.
N-(furan-2-ylmethylene)-4-methoxyaniline (3g) Yield: 89%; dark yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30$ (s, 1H, H-1), 7.59 (s, 1H, H-5), 7.26 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 7, H-11), 6.92 (d, $J=9.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-8, \mathrm{H}-10$), 6.57-6.51 (m, 1H, H-4), 3.82 (s, 3H, H-12).

General procedure for the synthesis of amines (4a-4g)
NaBH_{4} (1.1 equiv.) then, $\mathrm{H}_{3} \mathrm{BO}_{3}$ (1.0 equiv.) were slowly added to a solution of imine $\mathbf{3 a - g}$ (1.0 equiv.) in MeOH :

THF (1:1) stirred at $0^{\circ} \mathrm{C}$ and monitored by TLC. The reaction mixture was washed three times with NaHCO_{3} : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phases dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether.
N-benzylaniline (4a) Yield: 99\%; white crystals; mp $49-50{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.24(\mathrm{~m}$, 5H, H-9, H-10, H-11, H-12, H-13), 6.78-6.45 (m, 5H, H-3, H-4, H-5, H-6, H-7), 4.25 (s, 2H, H-1), 3.98 (s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.5$ (C-8), $139.8(\mathrm{C}-2)$, 129.6 (C-4, C-6), 128.9 (C-3, C-7), 127.8 (C-10, C-12), 127.5 (C-5), 117.8 (C-11), 113.2 (C-9, C-13), 48.6 (C-1).

4-Methoxy-N-(4-methoxybenzyl)aniline (4b) Yield: 88%; fawn crystals; mp $90-91{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-13), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 6.79$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-7), 6.61$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-14), 4.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-1), 3.81(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{H}-15, \mathrm{NH}$), 3.75 (s, 3H, H-8); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0$ (C-5), 152.4 (C-12), 142.7 (C-9), 131.9 (C-2), 128.9 (C-11, C-13), 115.1 (C-3, C-7), 114.2 (C-4, C-6), 55.9 (C15), 55.4 (C-8), 48.9 (C-1).
N-(4-fluorobenzyl)-4-methoxyaniline (4c) Yield: 98\%; green olive crystals; mp $25-26{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta 7.32-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-7), 6.75$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-12), 6.54$ (d, J=8.9 Hz, 2H, H-9, H-13), 4.19 (s, 1H, H-1), 3.69 (s, $3 \mathrm{H}, \mathrm{H}-14$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6$ (C-5), 152.2 (C-11), 142.3 (C-8), 135.5 (C-2), 129.2 (C-4, C-6), 115.4 (C-10, C-12), 114.9 (C-7, C-3), 114.1 (C-13, C-9), 55.6 (C-14), 48.4 (C-1).

4-Methoxy- N-(pyridin-2-ylmethyl)aniline (4d) Yield: 80%; lilac crystals; mp $73-74^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.68(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4), 7.35$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}$, H-5), 6.28 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-11$), 6.25 (d, $J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-12$), 4.46 (s, 2H, H-1), 3.72 (s, 3H, H-13); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.8(\mathrm{C}-2), 152.2(\mathrm{C}-10)$, 148.1 (C-6), 142.1 (C-7), 136.5 (C-4), 121.9 (C-3), 121.6 (C-5), 114.9 (C-8, C-12), 114.3 (C-9, C-11), 55.7 (C-13), 50.2 (C-1).

4-Methoxy- N -(thien-2-ylmethyl)aniline (4e) Yield: 62\%; lilac crystals; mp $53-54{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.21 (dd, $J=4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.01-6.93$ (m, 2H, H-3, H-4), 6.79 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-11$), $6.64(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-10$), 4.47 (s, 2H, H-1), 3.81 (s, $1 \mathrm{H}, \mathrm{NH}$), 3.74 (s, 3H, H-12); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7$ (C2), 143.4 (C-9), 141.9 (C-6), 126.9 (C-3), 125.0 (C-4),
124.6 (C-5), 115.0 (C-7, C-8), 114.7 (C-10, C-1), 55.8 (C12), 44.6 (C-1).

4-Chloro- N-(thien-2-ylmethyl)aniline (4f) Yield: 67\%; yellow crystals; mp $110-111^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta 7.51$ (dd, $J=6.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.34 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.26-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-11)$, 6.99-6.98 (m, 1H, H-4), 6.58 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-$ 10), 4.47 (s, 2H, H-1), 4.08 (s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.4(\mathrm{C}-9), 153.4(\mathrm{C}-2), 152.9(\mathrm{C}-6)$, 142.1 (C-5), 115.2 (C-8, C-10), 115.0 (C-7, C-11), 110.5 (C-3), 107.1 (C-4), 42.8 (C-1).

N -(Furan-2-ylmethyl)-4-methoxyaniline (4g) Yield: 80%; white crystals; $\mathrm{mp} 38-39{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.41$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.83(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 7, H-11), 6.69 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-10$), $6.39-6.34$ (m, 1H, H-3), 6.27 (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.32(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-$ 1), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-12$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.1$ (C-2), 152.6 (C-9), 152.5 (C-6), 141.8 (C-5), 114.9 (C-7, C-11), 114.7 (C-8, C-10), 110.3 (C-3), 106.8 (C-4), 55.6 (C-12), 42.5 (C-1).

General procedure for the synthesis of tertiary amines ($6 a-6 g$)

Epichlorohydrin (2.5 equiv.) was added to a solution of secondary amine $\mathbf{4 a - g}$ (1.0 equiv.) in dry $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and anhydrous MgSO_{4} or MMOs (25% wt) and stirred under nitrogen at $30^{\circ} \mathrm{C}$. The crude reaction mixture was filtered through a bed of Celite® and the bed washed with EtOAc. Solvents were removed under reduced pressure to obtain the product.

1-Chloro-3-(benzyl-(phenyl)amino)propan-2-ol
(6a)
Yield: 72%; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.50-7.38 (m, 7H, H-6, H-7, H-8, H-9, H-10, H-13, H-15), 7.01-6.97 (m, 3H, H-12, H-14, H-16), 4.83 (s, 2H, H-4), 4.36 (s, 1H, H-2), 3.85-3.71 (m, 4H, H-1, H-3), 3.00 (s, 1H, $\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.5(\mathrm{C}-8), 159.9(\mathrm{C}-$ 15), 150.0 (C-12), 137.2 (C-5), 131.7 (C-6, C-10), 124.5 (C-7, C-9), 114.7 (C-13, C-17), 107.7 (C-14, C-16), 63.6 (C-2), 54.8 (C-1), 48.6 (C-3).

1-Chloro-3-((4-methoxybenzyl)(4-methoxyphenyl)amino) propan-2-ol (6b) Yield: 99\%; dark brown-red oil; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$, H-10), 6.82-6.79 (m, 6H, H-7, H-9, H-13, H-14, H-16, H17), 4.38 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-4$), $4.37-3.99$ (m, 2H, H-2), 3.75 (s, 3 H , $\mathrm{H}-11), 3.73$ (s, $3 \mathrm{H}, \mathrm{H}-18$), $3.61-3.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3)$, 3.54-3.28 (m, 2H, H-1), $2.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.8(\mathrm{C}-8), 153.2$ (C-15), 143.2 (C-12), 130.2 (C-5), 128.7 (C-6, C-10), 117.5 (C-7, C-9), 114.8 (C-

13, C-17), 114.0 (C-14, C-16), 68.8 (C-2), 57.2 (C-1), 55.7 (C-11), 55.4 (C-4), 55.3 (C-18), 47.7 (C-3).

1-Chloro-3-((4-fluorobenzyl)(4-methoxyphenyl)amino)pro-pan-2-ol (6c) Yield: 80\%; brown-red oil; ${ }^{1}$ H NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-10), 6.97(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-9), 6.82-6.76$ (m, 4H, H-13, H-15, H12, H-16), 4.42 (s, 2H, H-4), 4.06 (qd, $J=16.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 3.75$ (s, $3 \mathrm{H}, \mathrm{H}-17$), $3.66-3.58$ (m, $2 \mathrm{H}, \mathrm{H}-3$), 3.54-3.33 (m, 2H, H-1), $2.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.7$ (C-8), 153.5 (C-14), 142.9 (C-11), 134.0 (C-5), 129.1 (C-6, C-10), 117.8 (C-7, C-9), 115.6 (C13, C-15), 114.9 (C-12, C-16), 69.0 (C-2), 57.3 (C-1), 55.7 (C-4, C-17), 47.8 (C-3).

1-Chloro-3-((2-pyridin)(4-methoxyphenyl)amino)propan-2ol (6d) Yield: 81%; pale brown solid; mp $91-92{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.48$ (d, $\left.J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right)$, $7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.35(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 6.75(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-15), 6.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-14)$, $4.70(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.58(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 4.32 (ddd, $J=8.4,6.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.03 (d, $J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.70-3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.68$ (s, $3 \mathrm{H}, \mathrm{H}-$ 16), 3.65-3.63 (m, 1H, H-1), 3.37 (dd, $J=14.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4$ (C-5), 151.5 (C-13), 148.8 (C-9), 141.7 (C-10), 137.4 (C-7), 122.5 (C-8), 122.3 (C-6), 114.8 (C-11, C-15), 113.1 (C-12, C-14), 68.6 (C-2), 59.0 (C-1), 58.8 (C-16), 55.6 (C-4), 46.5 (C-3).

1-Chloro-3-((4-methoxyphenyl)(thien-2-ylmethyl)amino) propan-2-ol (6e) Yield: 95\%; light yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.18(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8)$, 6.94-6.91 (m, 3H, H-6, H-10, H-14), 6.84-6.81 (m, 3H, H$7, \mathrm{H}-11, \mathrm{H}-13), 4.58(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4), 4.01(\mathrm{dt}, J=7.9,5.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2), 3.77$ (s, 3H, H-15), 3.63-3.58 (m, 2H, H-3), 3.38 (ddd, $J=21.9,14.0,6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$), $2.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.0(\mathrm{C}-12), 142.6(\mathrm{C}-9)$, 141.5 (C-5), 126.8 (C-8), 125.8 (C-7), 124.9 (C-6), 118.9 (C-11, C-13), 114.8 (C-10, C-14), 68.7 (C-2), 55.7 (C-1), 55.4 (C-15), 53.7 (C-4), 47.6 (C-3).

1-Chloro-3-((4-chlorophenyl)(thien-2-ylmethyl)amino)pro-pan-2-ol ($\mathbf{6 f}$) Yield: 81%; amber oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.19-6.94(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-10, \mathrm{H}-14), 6.88-6.81$ (m, 2H, H-6, H-7), 6.79 (d, J=6.0 Hz, 2H, H-1, H-13), 4.71 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-4$), 4.13 (dt, $J=7.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.66-3.45 (m, 4H, H-3, H-1), $2.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.0(\mathrm{C}-12), 142.7(\mathrm{C}-5), 141.4(\mathrm{C}-9)$, 134.8 (C-8), 126.0 (C-10, C-14), 124.7 (C-11, C-13), 118.9 (C-7), 68.7 (C-2), 55.8 (C-1), 55.2 (C-15), 53.7 (C-4), 47.6 (C-3).

1-Chloro-3-((furan-2-ylmethyl)(4-methoxyphenyl)amino) propan-2-ol ($\mathbf{6 g}$) Yield: 99%; dark yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34$ (s, 1H, H-8), $6.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-14), 6.80$ (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-13$), 6.29 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.12 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 4.36 (s, 2H, H-4), 4.03-3.96 (m, 1H, H-2), 3.75 (s, 3H, H15), 3.64-3.53 (m, 2H, H-3), 3.44 (dd, $J=14.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 3.29$ (dd, $J=14.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 2.85(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.0(\mathrm{C}-12), 152.3$ (C-5), 143.2 (C-9), 142.3 (C-8), 118.6 (C-10, C-14), 115.0 (C-11, C-13), 110.5 (C-7), 108.2 (C-6), 69.0 (C-2), 56.1 (C1), 55.9 (C-15), 51.6 (C-4), 47.7 (C-3).

General procedure for the synthesis of 3-diaminopropan-2ol derivatives ($8 \mathbf{a}-\mathbf{8 n}$)

An aqueous solution of $\mathrm{NaOH}(1.5 \mathrm{M})$ was added dropwise to a solution of a tertiary amine $\mathbf{6 a - g}$ (1.0 equiv.) in MeOH , and stirred for 30 min at $0^{\circ} \mathrm{C}$. A solution of secondary amine $\mathbf{7 a}-\mathbf{d}$ (1.1 equiv.) was added slowly. After the reaction was complete, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organic phase dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and the resulting oil filtered through a Celite® bed and eluted with hexanes/EtOAc (9:1). The solvent was removed under reduced pressure to afford the product.

1-(Benzyl(phenyl)amino)-3-morpholinopropan-2-ol (8a)
Yield: 98%; pale yellow oil; IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right)$: 3434 , 2924, 2891, 1599, 1506, 1452, 1225, 1117, 748, 730, 695; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.14(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-$ 7, H-8, H-9, H-10, H-13, H-15), 6.78-6.66 (m, 3H, H-12, $\mathrm{H}-14, \mathrm{H}-16), 4.65$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 4.20-4.05$ (m, 1H, H-2), 3.71-3.67 (m, 3H, H-18, H-19), 3.49-3.32 (m, $6 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-17, \mathrm{H}-18, \mathrm{H}-19, \mathrm{H}-20), 2.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 2.90-2.85 (m, 1H, H-17, H-20), 2.65-2.34 (m, 2H, H-1); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.7$ (C-11), 138.6 (C-5), 129.3 (C-13, C-15), 128.6 (C-7, C-9), 126.8 (C-8), 126.7 (C-6, C-10), 117.0 (C-14), 112.9 (C-12, C-16), 74.5 (C-2), 68.6 (C-1, C-3), 66.9 (C-18, C-19), 59.2 (C-4), 55.2 (C-17, $\mathrm{C}-20$), 54.2 (C-17, C-20); HRMS (EI^{+}) calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 327.2064$, found 327.2073.

1-(Azetidin-1-yl)-3-((4-methoxybenzyl)(4-methoxyphenyl) amino)propan-2-ol (8b) Yield: 86\%; dark purple oil; IR $(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3434,2929,1512,1241,1220,814 ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10$ (m, $2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-10$), 6.83-6.73 (m, 6H, H-7, H-9, H-13, H-14, H-16), 4.41 (s, $2 \mathrm{H}, \mathrm{H}-4), 3.98$ (m, 1H, H-2), 3.80-3.75 (m, 8H, H-3, H-11, H-18), 3.48-3.25 (m, 8H, H-1, H-19, H-20, H-21), 2.60 (s, $1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1(\mathrm{C}-8), 152.0$ (C-15), 141.9 (C-12) 131.5 (C-5), 128.0 (C-6, C-10), 115.6
(C-13, C-17), 114.5 (C-14, C-16), 113.8 (C-7, C-9), 74.4 (C-1), 68.1 (C-2), 59.0 (C-4), 56.3 (C-3), 55.8 (C-11, C-18), 54.5 (C-19, C-20, C-21), 54.2 (C-20); HRMS (EI^{+}) calculated for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}: 356.2100$, found 356.2110 .

1-((4-Fluorobenzyl)(4-methoxyphenyl)amino)-3-morpholi-nopropan-2-ol (8c) Yield: 78\%; brown-red oil; IR (KBr) $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3435,2931,2856,2832,1603,1513,1242$, 1220, 1117, 1039, 815, 437, ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.20-7.11$ (m, 2H, H-6, H-10), $6.95(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$, H-9), 6.81-6.74 (m, 4H, H-12, H-13, H-15, H-16), 4.47 (d, $J=10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 4.15-3.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.72-3.66$ (m, 7H, H-17, H-19, H-20), 3.44-3.36 (m, 5H, H-3, H-18, $\mathrm{H}-21$), 2.63-2.33 (m, 3H, H-1, H-18, H-21); ${ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.4(\mathrm{C}-8, J=243.0 \mathrm{~Hz}), 152.6(\mathrm{C}-14)$, 143.2 (C-11), $134.3(\mathrm{C}-5), 128.8(J=8.0 \mathrm{~Hz}, \mathrm{C}-6, \mathrm{C}-10)$, 116.3 (C-12, C-13), $115.5(J=13.5 \mathrm{~Hz}, \mathrm{C}-7, \mathrm{C}-9), 114.7$ (C-15, C-16), 74.6 (C-2), 68.4 (C-1), 67.0 (C-19, C-20), 65.4 ($\mathrm{C}-3$), 62.7 (C-4), 59.2 (C-18, C-21), 55.7 (C-17); HRMS (EI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}: 374.2006$, found 374.2022 .

1-(Azetidin-1-yl)-3-((4-fluorobenzyl)(4-methoxyphenyl) amino)propan-2-ol (8d) Yield: 95\%; brown-red oil; IR $(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3434,2929,2832,1603,1512,1464$, 1241, 1220, 1035, 814; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.17-7.12$ (m, 2H, H-6, H-10), $6.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$, H-9), 6.83-6.73 (m, 4H, H-12, H-13, H-15, H-16), 4.45 (s, $2 \mathrm{H}, \mathrm{H}-4), 4.05$ (m, 1H, H-2), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 3.51-3.23 (m, 10H, H-18, H-19, H-20, H-1, H-3), 2.57 (s, 1H, OH); ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.4(J=243.5 \mathrm{~Hz}, \mathrm{C}-8)$, 152.5 (C-14), 143.1 (C-11), $134.3(\mathrm{C}-5), 128.8(J=8.0 \mathrm{~Hz}$, C-6, C-10), 116.3 ($J=13.5 \mathrm{~Hz}, \mathrm{C}-7, \mathrm{C}-9), 114.7$ (C-12, C13, C-15, C-16), 74.6 (C-1), 68.4 (C-2), 59.2 (C-4), 56.2 (C3), 55.7 (C-17, C-18, C-20), 55.1 (C-19); HRMS (EI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}$: 345.1978 , found 345.1982 .

1-(Diethylamino)-3-((4-fluorobenzyl)(4-methoxyphenyl) amino)propan-2-ol (8e) Yield: 80\%; dark purple oil; IR $(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3455,2931,2832,1600,1535,1455$, $1242,1220,1117,1009,815 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-10), 6.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ $7, \mathrm{H}-9), 6.59$ (dd, $J=6.6,6.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13, \mathrm{H}-15$, $\mathrm{H}-16), 4.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.52(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4), 4.02-3.96(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-2$), 3.73 (s, 3H, H-17), 3.39-3.36 (m, 2H, H-3), 2.80-2.45 (m, 6H, H-1, H-18, H-21), 1.14 (t, $J=7.5 \mathrm{~Hz}$, $6 \mathrm{H}, \mathrm{H}-19, \mathrm{H}-20)$; HRMS (EI^{+}) calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$: 361.2307, found 361.2291.

1-(Azetidin-1-yl)-3-((4-methoxyphenyl)(pyridin-2-
ylmethyl)amino)propan-2-ol (8g) Yield: 79\%; amber oil; IR (KBr) $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3427,2919,1514,1243,1039 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.49$ (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$),
7.70 (td, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 7.18 (dd, $J=7.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 6.75 (d, $J=9.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-15), 6.58(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-14)$, 4.64 (dd, $J=14.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 4.28-4.23$ (m, 1H, H2), 3.89 (dd, $J=14.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.79-3.72(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-18$), 3.70 (s, $3 \mathrm{H}, \mathrm{H}-16$), 3.52 (ddd, $J=14.9,9.6,5.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-1), 3.44$ (s, 4H, H-17, H-19), 3.41-3.36 (m, 1H, H3); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7$ (C-5), 151.5 (C13), 149.1 (C-9), 142.1 (C-10), 137.3 (C-7), 122.4 (C-8), 122.2 (C-6), 114.9 (C-11, C-15), 113.2 (C-12, C-14), 74.9 (C-1), 68.0 (C-2), 59.4 (C-17, C-19), 58.9 (C-4), 58.4 (C-3), 55.8 (C-16, C-18); HRMS (EI $)$ calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}: 328.2025$, found 328.2038 .

1-((4-Methoxyphenyl)(pyridin-2-ylmethyl)amino)-3-(piper-azin-1-yl)propan-2-ol (8h) Yield: 85\%; amber oil; IR $(\mathrm{KBr}) \nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3390,2932,1659,1594,1514,1436$, $1244,1181,1039,817,760 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.15-7.11 (m, 3H, H-8, H-11, H-13), 6.90 (dd, $J=9.2,4.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7$), 6.74 (dd, $J=9.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-$ 14), 4.72 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 4.10-3.97$ (s, 1H, H-2), 3.52-3.33 (m, 5H, H-3, H-15, H-18), 3.01-2.85 (m, 3H, H16, H-17), 2.61-2.24 (m, 4H, H-1, H-3, H-16, H-17), 1.30 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0(\mathrm{C}-13)$, 148.5 (C-9), 136.6 (C-7), 122.4 (C-5), 122.3 (C-6), 122.2 (C-10), 120.4 (C-8), 114.8 (C-11, C-15), 113.2 (C-12, C14), 74.8 (C-2), 68.0 (C-1), 64.1 (C-3, C-17, C-20), 59.4 (C4), 55.7 (C-18, C-19); HRMS (EI^{+}) calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{OS}: 366.1407$, found 366.1375 .

1-((4-Methoxyphenyl)(thien-2-ylmethyl)amino)-3-morpho-linopropan-2-ol (8i) Yield: 85\%; amber oil; IR (KBr) $\nu_{\max }$ $\left(\mathrm{cm}^{-1}\right): 3430,2932,2830,1635,1512,1455,1242,1116$, 1036; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$,): $\delta 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}$, H-8), 6.93-6.75 (m, 6H, H-6, H-7, H-10, H-11, H-13, H14), 4.65 (s, 2H, H-4), 4.03-3.89 (m, 1H, H-2), 3.78-3.65 (m, 7H, H-15, H-17, H-18), 3.35-3.25 (m, 2H, H-3), 3.13 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 2.68-2.52 (m, 2H, H-16, H-19), 2.49-2.36 (m, $4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-16, \mathrm{H}-19)$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.0$ (C-5), 143.1 (C-12), 142.5 (C-9), 126.7 (C-8), 125.2 (C-7), 124.5 (C-6), 117.2 (C-11, C-13), 114.7 (C-10, C-14), 67.1 (C-17, C-18), 65.5 (C-2), 62.7 (C-1), 56.4 (C-3), 55.7 (C15), 53.9 (C-16, C-19), 52.8 (C-4); HRMS (EI^{+}) calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 362.1664$, found 362.1678 .

1-((4-Chlorophenyl)(thien-2-ylmethyl)amino)-3-morpholi-nopropan-2-ol (8j) Yield: 78\%; amber oil; IR (KBr) $\nu_{\max }$ $\left(\mathrm{cm}^{-1}\right): 3429,2926,2891,2821,1596,1501,1454,1417$, 1366, 1326, 1221, 1192, 1116, 1007, 909, 510, 731, 702; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15$ (dd, $J=7.0,4.5 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-10, \mathrm{H}-14), 6.91$ (dd, $J=8.9,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$, H-7), 6.75 (dd, $J=9.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-13$), 4.73 (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 4.13-3.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 3.72-3.63(\mathrm{~m}$,
$2 \mathrm{H}, \mathrm{H}-3$), $3.48-3.38$ (m, 5H, H-15, H-16, H-17, H-18), 2.90-2.85 (m, 1H, H-15, H-18), 2.66-2.58 (m, 2H, H-1), 2.56-2.29 (m, 2H, H-15, H-18); ${ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}): $\delta 146.8$ (C-5), 141.9 (C-12), 129.0 (C-11, C-13), 126.8 (C-8), 125.0 (C-7), 124.3 (C-6), 122.3 (C-9), 114.6 (C-10, C-14), 74.3 (C-2), 68.5 (C-1), 66.9 (C-16, C-17), 65.5 (C-3), 62.4 (C-4), 59.2 (C-15, C-18), 54.0 (C-15, C18); HRMS (EI^{+}) calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}: 367.1247$, found 367.1243 .

1-(Azetidin-1-yl)-3-((4-chlorophenyl)(thien-2-ylmethyl) amino)propan-2-ol (8k) Yield: 96\%; amber oil; IR (KBr) $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3434,2891,1597,1500,1366,1219,1125$, $1101,810,701 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18-6.95$ (m, 3H, H-8, H-11, H-13), 6.92-6.88 (m, 2H, H-6, H-7), $6.86-6.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-14), 4.71$ (s, 2H, H4), 4.10-4.01 (s, 1H, H-4), 3.51-3.32 (m, 8H, H-1, H-3, H15, H-16, H-17), 2.43 (s, 1H, H-1), 1.26-0.87 (s, 1H, H-3); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.8(\mathrm{C}-5), 141.7(\mathrm{C}-12)$, 129.0 (C-11, C-13), 126.9 (C-8), 125.1 (C-7), 124.4 (C-6), 122.4 (C-9), 114.7 (C-10, C-14), 74.3 (C-1), 68.6 (C-2), 59.2 (C-15, C-17), 54.0 (C-4), 51.1 (C-3, C-16); HRMS (EI^{+}) calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{OS}$: 337.1141, found 337.2051 .

1-((4-Chlorophenyl)(thien-2-ylmethyl)amino)-3-(piperazin-1-yl)propan-2-ol (81) Yield: 85\%; amber oil; IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3400,2936,2882,2820,1596,1499,1366$, 1219, 1127, 1101, 809, $700 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.15-7.11 (m, 3H, H-8, H-11, H-13), 6.90 (dd, $J=9.2,4.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7$), 6.74 (dd, $J=9.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-$ 14), 4.72 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 4.10-3.97$ (s, $1 \mathrm{H}, \mathrm{H}-2$), 3.52-3.33 (m, 5H, H-3, H-15, H-18), 3.01-2.85 (m, 3H, H16, H-17), 2.61-2.24 (m, 4H, H-1, H-3, H-16, H-17), 1.30 (s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.9$ (C-5), 142.0 (C-12), 128.9 (C-11, C-13), 126.8 (C-8), 125.2 (C-7), 124.4 (C-6), 122.1 (C-9), 114.8 (C-10, C-14), 74.1 (C-2), 68.6 (C-1), 59.1 (C-3, C-15, C-18), 54.2 (C-4), 51.1 (C-16, C-17); HRMS (EI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{OS}$: 366.1407, found 366.1375.

1-((Furan-2-ylmethyl)(4-methoxyphenyl)amino)-3-morpho-linopropan-2-ol (8m) Yield: 92\%; dark orange oil; IR $(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3434,2927,2854,1513,1243,1116$, 1037; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9)$, 6.87-6.78 (m, 4H, H-10, H-11, H-13, H-14), 6.27 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-$ 7), $6.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6), 4.43(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4), 3.98-3.91(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-2), 3.75-3.68$ (m, 7H, H-15, H-17, H-18), 3.35-3.25 (m, 2H, H-3), 2.60-2.56 (m, 2H, H-16, H-19), 2.43-2.31 (m, $4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-16, \mathrm{H}-19) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5$ (C-12), 143.3 (C-5), 141.7 (C-8, C-9), 116.7 (C-10, C-14), 114.5 (C-11, C-13), 110.1 (C-7), 107.6 (C-6), 66.8 (C-17, C-18), 65.4 (C-2), 62.5 (C-1), 56.4 (C-3), 55.6 (C-15), 53.9
(C-16, C-19), 50.3 (C-4); HRMS (EI^{+}) calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}: 346.1893$, found 346.1855.

1-(Azetidin-1-yl)-3-((furan-2-ylmethyl)(4-methoxyphenyl) amino)propan-2-ol (8n) Yield: 84\%; light yellow oil; IR $(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3435,2931,2832,1513,1464,1244$, 1183, 1183, 1126, 1104, 1074, 1038, 815, 737; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-14), 6.72$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-13$), 6.20 (s, 1H, H-7), 6.05 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6), 4.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4), 3.89$ (m, 1H, H-2), 3.79-3.72 (m, 1H, H-17), 3.80 (s, 3H, H-15), 3.36 (dt, $J=6.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.35-3.31 (m, 2H, H-1), $3.30-3.26$ (m, 4H, H-16, H-18), 3.21 (dd, $J=14.4,7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 2.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 153.1 (C-12), 152.4 (C-5), 143.2 (C-9), 142.0 (C-8), 117.2 (C-10, C-14), 114.9 (C-11, C-13), 110.3 (C-7), 107.8 (C-6), 74.5 (C-1), 68.2 (C-2), 59.3 (C-16, C-18), 55.7 (C-4, C-15), 55.2 (C-3), 50.7 (C-17); HRMS (EI^{+}) calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}: 317.1865$, found 317.1875.

Pharmacological test

Animals

Healthy male Wistar rats (250-300 g) were used and maintained under standard laboratory conditions. All animal procedures were conducted in accordance with local regulations for animal experimentation and care (NOM-062-ZOO-1999, México), and approved by the institutional animal care and use committee based on US National Institute of Health publication (No. 85-23, revised 1985). All experiments were carried out using six animals per group. The animals used were euthanized by cervical dislocation. Efforts were made to minimize animal suffering and the number of animals used.

Trachea ring assay procedure

The previous described protocol was used to assess the relaxant effect of synthetic compounds on rat trachea rings (Sánchez-Recillas et al. 2014). The rat trachea was removed, dissected, cleaned of connective tissue and mucus, and immediately cut into $4-5 \mathrm{~mm}$ length rings. Tissue segments were mounted on stainless steel hooks under an optimal tension of $1.96 \times 10^{-2} \mathrm{~N}$ in 10 mL organ baths containing warmed $\left(37^{\circ} \mathrm{C}\right)$ and oxygenated $\left(\mathrm{O}_{2} / \mathrm{CO}_{2}\right.$, 95:5) Krebs solution (composition, $\mathrm{mM}: \mathrm{NaCl}, 118 ; \mathrm{KCl}$, 4.7; $\mathrm{CaCl}_{2}, 2.5 ; \mathrm{MgSO}_{4}, 1.2 ; \mathrm{KH}_{2} \mathrm{PO}_{4}, 1.2 ; \mathrm{NaHCO}_{3}, 25.0$; EDTA, 0.026 and glucose, 11.1, at pH 7.4). Changes in tension were recorded by Grass-FT03 forced transducers (Astromed, West Warwick, RI, USA) connected to a MP100 analyzer (BIOPAC Instruments, Santa Barbara, CA, USA) as previously described (Sánchez-Recillas et al.
2014). The rings were allowed to equilibrate and contracted by addition of carbachol $[1 \mu \mathrm{M}]$ and washed every 40 min for 2 h . Test samples (compounds, vehicle, and positive control) were each added to a bath in a volume of $100 \mu \mathrm{~L}$ and the cumulative concentration-response curves were obtained for each ring $(0.8-300 \mu \mathrm{M})$. The relaxant effect of the compounds and positive control (theophylline, inhibitor of phosphodiesterase; $1.67-550 \mu \mathrm{M}$) were determined by comparing the muscular tone of the contraction before and after addition of the test materials. Muscular tone was calculated from the tracings, using Acknowledge software (Biopac®).

MMOs procedure

Salts of Al and $\mathrm{Mg}\left[\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right.$ and $\left.\mathrm{MgSO}_{4}\right]$ in aqueous solutions were used to produce MMOs with different molar ratios (x). In a three-necked flask, a solution of Al and Mg salts was slowly added dropwise to a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(0.5 \mathrm{M})$, maintained at a pH 12 and $60^{\circ} \mathrm{C}$ with stirring at 200 rpm . The mixture was filtered and the solid heated from rt to $450{ }^{\circ} \mathrm{C}$. The dried mixed oxides were characterized by XRD, nitrogen physisorption ($\mathrm{S}_{\mathrm{BET}}$), infrared spectroscopy (FT-IR), and thermoanalysis (TGA/DTA), and found to be layered structures.

Data analysis

Experimental results were expressed as a mean of six experiments \pm standard error of mean. CRCs and experimental data were plotted and the CRCs adjusted by the nonlinear curve-fitting program Origin 8.0 (Microcal Software Inc., USA). Significance was evaluated using ANOVA followed by Tukey's test. Significant pharmacological effects were determined by a p value <0.05 in the ex vivo experiments.

Acknowledgements M.A.V. acknowledges CONACYT (Grant 168474) and DAIP-UGto (Grant 811/16) for financial support. F.I.L, F. N. de la C. and J.L. thanks CONACYT for graduate scholarships (No. 481806, 366790, 329994 respectively). We thank Guanajuato National Laboratory (CONACyT 260373) for generous allocation of analytical resources.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of interest.

References

Apodaca R, Xiao W (2001) Direct reductive amination of aldehydes and ketones using phenylsilane: catalysis by dibutyltin dichloride. Org Lett 3:1745-1748
Baxter E, Reitz A (2002) Organic reactions. Wiley, New York, vol 59

Bell HM, Vasderslice CV, Spehar A (1969) Reduction of organic halogen compounds by sodium borohydride. J Org Chem 34:3923-3926
Bergeron RJ, Ludin C, Müller R, Smith RE, Phanstiel O (1997) Development of a hypusine reagent for peptide synthesis. J Org Chem 62:3285-3290
Billman JH, Diesing AC (1957) Reduction of schiff bases with sodium borohydride. J Org Chem 22:1068-1070
Blackwell JM, Sonmor ER, Scoccitti T, Piers WE (2000) B $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}{ }^{-}$ catalyzed hydrosilation of imines via silyliminium intermediates. Org Lett 2:3921-3923
Bonollo S, Fringuelli F, Pizzo F, Vaccaro LA (2006) Green route to β amino alcohols via the uncatalyzed aminolysis of 1,2-epoxides by alkyl- and arylamines. Green Chem 8:960-964
Busse et al. (2007) National Asthma Education and Prevention Program. Expert panel report 3 (EPR-3): guidelines for the diagnosis and management of asthma-summary report 2007. J Allergy Clin Immunol 120:S94-138
Bódis J, Lefferts L, Muller TE, Pestman R, Lercher JA (2005) Activity and selectivity control in reductive amination of butyraldehyde over noble metal catalysts. Catal Lett 104:23-28
Canas M, Poch M, Verdaguer X, Moyano A, Pericas MA, Riera A (1991) Regioselective ring opening of chiral epoxyalcohols by primary amines. Tetrahedron Lett 32:6931-6934
Carbajal Arizaga GG, Satyanarayana KG, Wypych F (2007) Layered hydroxide salts: synthesis, properties and potential applications. Solid State Ionics 178:1143-1162
Caron M, Sharpless KB (1985) Titanium isopropoxide-mediated nucleophilic openings of 2,3-epoxy alcohols. A mild procedure for regioselective ring-opening. J Org Chem 50:1557-1560
Cazzola M, Page CP, Rogliani P, Matera MG (2013) β_{2}-agonist therapy in lung disease. Am J Respir Crit Care Med 187:690-696
Chakravarti R, Oveisi H, Kalita P, Pal RR, Halligudi SB, Kantam ML, Vinu A (2009) Three-dimensional mesoporous cage type aluminosilicate: an efficient catalyst for ring opening of epoxides with aromatic and aliphatic amines. Microporous Mesoporous Mater 123:338-344
Chandrasekhar S, Reddy CR, Ahmed M (2000) The rationalization of catalyst behaviour in the reductive amination of benzaldehyde with ammonia using a simple computer model. Synlett 11:1655-1657
Chang BL, Ganesan A (1997) Solution-phase synthesis of a β-amino alcohol combinatorial library. Bioorg Med Chem Lett 7:1511-1514
Chen BC, Sundeen JE, Guo P, Bednarz MS, Zhao R (2001) Novel triethylsilane mediated reductive N -alkylation of amines: improved synthesis of 1-(4-imidazolyl)methyl-4-sulfonylbenzodiazepines, new farnesyltransferase inhibitors. Tetrahedron Lett 42:1245-1246
Cho BT, Kang SK (2005) Direct and indirect reductive amination of aldehydes and ketones with solid acid-activated sodium borohydride under solvent-free conditions. Tetrahedron 61:5725-5734
Chong JM, Sharpless KB (1985) Nucleophilic opening of 2,3-epoxy acids and amides mediated by titanium isopropoxide. Highly enhanced C-3 selectivity. J Org Chem 50:1560-1563
Cossy J, Bellosta V, Hamoir C, Desmurs JR (2000) Regioselective ring opening of epoxides by nucleophiles mediated by lithium bistrifluoromethanesulfonimide. Tetrahedron Lett 43:7083-7086
Dangerfield EM, Plunkett CH, Win-Mason AL, Stocker BL, Timmer MSM (2010) Protecting-group-free synthesis of amines: synthesis of primary amines from aldehydes via reductive amination. J Org Chem 75:5470-5477
Ding D, Nickell JR, Deaciuc AG, Penthala NR, Dwoskin LP, Crooks PA (2013) Synthesis and evaluation of novel azetidine analogs as potent inhibitors of vesicular $\left[{ }^{3} \mathrm{H}\right]$ dopamine uptake. Bioorg Med Chem 21:6771-6777

Fuso L, Mores N, Valente S, Malerba M, Montuschi P (2013) Longacting beta-agonists and their association with inhaled corticosteroids in COPD. Curr Med Chem 20:1477-95
Gawande MB, Pandey RK, Jayaram RV (2012) Role of mixed metal oxides in catalysis science versatile applications in organic synthesis. Catal Sci Technol 2:1113-1125
Gomez S, Peters JA, Van der Waal JC, Van, der Brink PJ, Maschmeyer T (2004) The rationalization of catalyst behaviour in the reductive amination of benzaldehyde with ammonia using a simple computer model. Appl Catal A 261:119-125
Graham LP (1995) An introduction to medicinal chemistry, 4th edn. Oxford University Press, New York, pp S615-620
Gribble GW (1998) Sodium borohydride in carboxylic acid media: a phenomenal reduction system. Chem Soc Rev 27:395-404
Kobayashi S, Yasuda M, Hachiya I (1996) Trichlorosilanedimethylformamide $\left(\mathrm{Cl}_{3} \mathrm{SiH}\right.$-DMF) as an efficient reducing agent. Reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydridosilicates. Chem Lett 5:407-408
Kumar AB, Anderson JM, Melendez AL, Manetsch R, Manetsch R (2012) Synthesis and structure-activity relationship studies of 1,3-disubstituted 2-propanols as BACE-1 inhibitors. Bioorg Med Chem Lett 22:4740-4744
Lopez RM, Fu GC (1997) A mild, convenient, and inexpensive method for converting imines into amines: tin-catalyzed reduction with polymethylhydrosiloxane (PMHS). Tetrahedron 53:16349-16354
Mendes ES, Cadet L, Arana J, Wanner A (2015) Acute effect of an inhaled glucocorticosteroid on albuterol-induced bronchodilation in patients with moderately severe asthma. Chest 147:1037-1042
Naito Y, Shimozawa M, Manabe H, Nakabe N, Katada K, Kokura S, Yoshida N, Ichikawa H, Kon T, Yoshikawa T (2006) Azelnidipine, a new calcium channel blocker, inhibits endothelial inflammatory response by reducing intracellular levels of reactive oxygen species. Eur J Pharmacol 546:11-18
Pereyre M, Quintard JP, Rahm A (1987) Tin in organic synthesis, S6. Butterworths, London
Robin A, Brown F, Bahamontes-Rosa N, Binghua W, Beitz E, Jûrgen FJK, Flitsch SL (2007) Microwave-assisted ring opening of epoxides: a general route to the synthesis of 1-aminopropan-2-ols with anti malaria parasite activities. J Med Chem 50:4243-4249
Sharma D, Sharma RK, Bhatia S, Tiwari R, Mandal D, Lehmann J, Parang K, Olsen CK, Parmar VS, Prasad AK (2010) Synthesis, Src kinase inhibitory and anticancer activities of 1-substituted 3(N-alkyl- N-phenylamino) propane-2-ols. Biochimie 92:1164-1172
Sánchez-Recillas A, Navarrete-Vázquez G, Hidalgo-Figuero S, Rios MY, Ibarra-Barajas M, Estrada-Soto S (2014) Semisynthesis, ex vivo evaluation, and SAR studies of coumarin derivatives as potential antiasthmatic drugs. Eur J Med Chem 77:400-408
Tajbakhsh M, Hosseinzadeh R, Rezaee P, Alinezhad H (2012) Regioselective ring opening of epoxides with amines using silicabonded S-sulfonic acid under solvent-free conditions. J Mex Chem Soc 56:402-407
Van de Weghe P, Collin J (1995) Ring opening reactions of epoxides catalyzed by samarium iodides. Tetrahedron Lett 36:1649-1652
Vázquez MA, Landa M, Reyes L, Miranda R, Tamariz J, Delgado F (2004) Infrared irradiation: effective promoter in the formation of N-benzylideneanilines in the absence of solvent. Synt Commun 34:2705-2718
Yadav JS, Reddy BVS, Basak AK, Narsaiah AV (2003) [Bmim]BF ${ }_{4}$ ionic liquid: a novel reaction medium for the synthesis of β-amino alcohols. Tetrahedron Lett 44:1047-1050
Yun J, Han M, Song C, Cheon SH, Choi K, Hahn HG (2014) Synthesis and biological evaluation of 3-phenethylazetidine derivatives as triple reuptake inhibitors. Bioorg Med Chem Lett 24:3234-3237

[^0]: Samuel Estrada-Soto enoch@uaem.mx
 © Miguel A. Vázquez
 mvazquez@ugto.mx
 1 Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050 Gto., Mexico
 2 Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050 Gto., Mexico
 3 Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas-IPN, Prol. Carpio y Plan de Ayala S/N, Ciudad de 11340 DF, Mexico
 4 Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209 Mor., Mexico

