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Thiamine derivatives that are cheap, readily available, non-toxic and green are used as heterogeneous catalyst for the generation of
cyclic carbonates through cycloaddition of CO2 to epoxides without the need of co-catalyst and solvent. The interaction between
thiamine hydrochloride (VB1-Cl) and substrates (CO2 and propylene oxide) was proven by ultraviolet-visible spectroscopy and 1H
nuclear magnetic resonance analysis, and it is deduced that the synergistic action among multi-functional groups (hydroxyl, halide
anion and amine) is a favorable factor for cycloaddition reaction. A series of VB1/GO aerogels were facilely prepared through the
addition of aqueous VB1 derivatives to a suspension of GO in ethanol at room temperature. It was found that the aerogel generated
through the interaction of VB1-Cl with GO shows catalytic activity and stability higher than those of VB1-Cl. It is because the
electrostatic interaction between GO and VB1-Cl enhances the nucleophilicity and leaving ability of anion. The effects of reaction
temperature, catalyst loading, CO2 pressure and reaction time on CO2 cycloaddition to propylene oxide were thoroughly studied.
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1         Introduction

Carbon dioxide (CO2) is a greenhouse gas blamed for global
warming [1]. Nonetheless, being abundant, inexpensive, safe
and renewable, it has the potential of replacing harmful reac-
tants such as CO and phosgene for the production of valu-
able chemical materials [2,3]. From the viewpoints of “green
chemistry” and “atom economy”, it is attractive to utilize CO2

for the generation of cyclic carbonates that are used as polar
solvents, high-permittivity electrolyte components and fuel
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additives [4,5].
A large number of homogeneous and heterogeneous cata-

lysts were developed for the generation of cyclic carbonates,
such as metal salts [6], organic bases [7], ionic liquids (ILs)
[8,9], metal complexes [10,11], metal oxides [12], supported
catalysts [13], metal-organic frameworks [14], and carbon
materials [15]. With the metal-based ones holding a promi-
nent position [16], there is a compilation of elements that are
considered “endangered” [17]. For the sake of sustainability,
it is desirable to design efficient catalysts for the cycloaddi-
tion reactions based on metal-free resources that are cheap,
non-toxic and readily available. Furthermore, the method has
to be tunable, easy-to-handle, and solvent-free.
It is well known that thiamine (VB1) is an essential nutrient
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for animals. It contains a pyrimidine ring (with a primary
amine) and a thiazolium salt (with a hydroxyl and quaternary
ammonium salt) that are linked together by a methylene
bridge. The VB1 derivatives are cheap, readily available, and
non-toxic. They were used as green catalysts for a number
of reactions but not for cycloaddition [18–20]. In previous
studies, it was found that the synergetic effects of acid sites
and halide anions for ring opening of epoxide and the role of
basic sites for CO2 adsorption and activation are essential for
the cycloaddition reactions [21–24]. It is hence envisaged
that in a case such as thiamine hydrochloride (VB1-Cl) with
multifunctional groups (hydroxyl, quaternary ammonium
salt, pyrimidine ring and primary amine), there should be
efficient catalytic activity for cycloaddition of CO2 toward
epoxides. However, VB1-Cl is stable only up to 100 °C at
a pH of 3.5 [25]. It is hence meaningful to find a method
to improve the thermal stability and activity of VB1-Cl.
As reported by Song et al. [26], the thermal stability and
mechanical properties of polycaprolactone could be en-
hanced through composition with graphene oxide (GO). As
reported, GO has plenty donors for hydrogen bonding (e.g.,
hydroxyl and carboxyl) and becomes negatively charged
upon hydration [27,28]. In this regard, a VB1/GO composite
material could be stabilized by effects such as electrostatic
interaction, hydrogen bonding and esterification reaction.
The consequence is improvement of thermal stability and
mechanical properties as well as promoted catalytic activity
as a result of enhancement in nucleophilicity of anion.
In the present work, VB1 derivative/GO aerogels were pre-

pared by adding aqueous VB1 derivatives to a GO suspension
in ethanol at room temperature. The process is simple and
efficient. For the first time, VB1 derivatives and VB1 deriva-
tive/GO aerogels are tested as heterogeneous catalyst for the
synthesis of cyclic carbonates through CO2 cycloaddition to
epoxides under mild conditions without the use of co-cata-
lyst and solvent. In addition, VB1-Cl interaction with propy-
lene oxide (PO) and CO2 was investigated by ultraviolet-vis-
ible (UV-Vis) and 1H nuclear magnetic resonance (1H NMR)
methods. A possible mechanism is proposed for the cycload-
dition reaction over VB1-Cl.

2         Experimental

2.1         Materials

All chemicals for the synthesis of materials and testing of
catalytic activity were purchased from Sinopharm Chemical
Reagent Co., Ltd. (China), and directly used without purifi-
cation.

2.2         Catalysts preparation

The synthesis of VB1-I (Figure 1) was by means  of  ion  ex-

Figure 1         Structure of VB1 derivative VB1-X (X=Cl, Br, I).

change. First, 5 mmol of VB1-Cl was added to a flask with
30 mL ethanol, and the mixture was stirred for 10 min. Then
12 mmol of NaI was added and the mixture was stirred for 24
h. The as-obtained white powder was collected by centrifu-
gation and washed 7 times with ethanol/glycerin (9:1, v/v),
followed by washing with ethanol to remove residual glyc-
erin. Finally, the purified powder named herein as VB1-I was
obtained after drying at 60 °C in a vacuum oven. The VB1-Br
was prepared likewise, employing LiBr instead of NaI.
GO was prepared by following the procedure published

elsewhere [22]. The typical procedure for the preparation of
VB1-Cl/GO aerogel is as follows. First, the purified GO (0.2
g) was dispersed in 60 mL of ethanol/H2O (2:1, v/v) and sub-
ject to ultrasonication for 2 h. After the addition of 4 mL
of aqueous VB1-Cl (1.6 mmol), the mixture was stirred for
24 h. With drying under vacuum using a rotary evapora-
tor at 50 °C, the VB1-Cl/GO was ready for use. The VB1-
Br/GO and VB1-I/GO was prepared similarly, using VB1-Br
and VB1-I instead of VB1-Cl, respectively.

2.3         Catalyst characterization

The catalysts were characterized by UV-Vis diffuse re-
flectance spectroscopy (UV-Vis DRS), 1H NMR, scanning
electron microscopy (SEM) and thermogravimetry (TG).
The UV-Vis DRS spectra of samples were obtained over a
UV-Vis spectrophotometer (Cary 100, Agilent, USA) using
BaSO4 as reference. The 1H NMR spectra were recorded
over a Bruker AV 400/500 M NMR spectrometer (Germany)
using DSS (sodium 2,2-dimethyl-2-silapentane-5-sulfonate)
as internal reference and (methyl sulfoxide)-d6 (DMSO-d6)
as solvent. The morphology of the samples was observed by
SEM (HITACHI S-4800 microscope, Japan). The TG curve
was obtained by heating the sample from 50 to 550 °C at
a constant rate of 10 °C/min under a N2 flow on a NET-
ZSCH-STA-449C equipment (Germany).

2.4         Procedure for cycloaddition reactions

The cycloaddition reaction was conducted in a stainless steel
autoclave of 30 mL equipped with a magnetic bar. In a typ-
ical run, catalyst, biphenyl, and epoxide were added into the
flask. Then, the reactor was pressurized with an appropriate
amount of CO2 and heated to a desired temperature in an oil
bath. After a designated period, the reactor was cooled to
0 °C, followed by venting of the remaining CO2. The cyclic
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carbonate yield and selectivity were qualified by gas chro-
matography (GC) analysis (7820A GC, Agilent, USA).
The used catalysts can be easily recovered by centrifuga-

tion. After being washed with PO for five times and dried at
60 °C for 12 h, the recovered catalyst was used again for the
next run.

3         Results and discussion

3.1         Catalyst characterization

Enriched with oxygen-containing functional groups such
as hydroxyl, carboxyl and epoxy, GO is a carbon material
that can be dispersed uniformly in hydrophilic solvent [29].
Shown in Figure 2(a) are the photographic images of a
GO dispersion (2 mg/mL) after ultrasonication for 1 h in
ethanol and followed by static settling for 1 h. One can see
well dispersion of GO in ethanol. When 1 mL of aqueous
VB1-Cl solution (5 mg/mL) was added to 1 mL of the GO (2
mg/mL) dispersion, a hydrogel as illustrated by having the
tube inverted was quickly formed (Figure 2(b, c)). A gray
precipitate was immediately observed upon the mixing of
aqueous VB1-Cl solution and aqueous GO dispersion. The
formation of the gray precipitate is attributed to the elec-
trostatic interaction between GO (negatively charged) and
VB1-Cl (with thiazole ring that is positively charged). The
generation of the VB1-Cl/GO aerogel could be a combined
result of electrostatic interaction, hydrogen bonding and
esterification reaction (Figure 3).
Displayed in Figure 4 are the SEM images of GO and VB1-

Cl/GO. The SEM images of GO show a sheet structure with
wrinkles plausibly induced upon drying as a result of volume
contraction. The cross section of VB1-Cl/GO shows a close-
packed layered structure. The amplified SEM image of VB1-
Cl/GO aerogel also shows a sheet structure with wrinkles.
The TG curves of GO, VB1-Cl and VB1-Cl/GO are dis-

played in Figure 5. One can see that VB1-Cl is stable up to
158 °C, and pyrolysis starts above 158 °C andmajor pyrolysis

Figure 2         Photographs of (a) GO dispersion in EtOH (2 mg/mL GO); (b)
VB1-Cl/GO aerogel; (c) VB1-Cl/GO aerogel inverted (color online).

Figure 3         Generation of VB1-X/GO (X=Cl, Br, I) (color online).

Figure 4         SEM images of GO and VB1-Cl/GO.

Figure 5         TG curve of GO, VB1-Cl and VB1-Cl/GO (color online).

occurs between 219 and 226 °C. However, the pyrolysis of
VB1-Cl/GO begins above 221 °C. The slight weight loss of
VB1-Cl/GO below 221 °C is ascribed to the loss of adsorbed
species such as H2O and CO2. It is apparent that the thermal
stability of VB1-Cl is improved by forming the aerogel. It is
an indication that there is interaction between GO and VB1-
Cl.
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3.2         Catalytic performance

3.2.1   Catalytic performance of catalysts

The cycloaddition of CO2 towards PO was chosen as the
model reaction to test the activity of VB1-Cl, and the results
are summarized in Table 1. One can see that over VB1-Cl,
the propylene carbonate (PC) yield is 24.7% at 100 °C
for 6 h, and PC yield is up to 83.3% when the reaction is
prolonged to 14 h (Table 1, entries 1 and 2). A higher tem-
perature means more effective collision between the reactant
molecules. The catalytic activity of VB1-Cl is sensitive to
reaction temperature: the PC yield increases rapidly with the
rise of temperature and is up to 99.4% at 120 °C (Table 1,
entries 2–4). However, the increase of reaction temperature
results in the decomposition of VB1-Cl. The VB1-Cl changed
from a white powder to a red and sticky substance when the
reaction temperature was increased from 100 to 120 °C. It
was observed that VB1-Cl changed from white to yellow, and
then to red when the experiment was conducted at 100 °C
in the absence of CO2. The above results are ascribed to the
fact that PO is a weak base and there is partial decomposition
of VB1-Cl under basic conditions [25]. Also, the stability
of VB1-Cl is enhanced in the presence of CO2, and there is
interaction between PO and CO2 under high pressure [30].
In order to eliminate the possibility of VB1-Cl being a pre-

catalyst, the experiment was conducted with VB1-Cl and PO
pretreated at 120 °C for 2 h without CO2, and then in 2 MPa
of CO2 for 4 h; and 51.9% yield of PC was obtained over

the 4-h period (Table 1, entry 7). Since following the normal
procedure the yield of PC at 120 °C for 4 h was 77.6%, there
is obvious decline of PC yield (55.4%) as a consequence of
the pretreatment. The results indicate that VB1-Cl does not
act as a pre-catalyst, and the decline of activity of VB1-Cl
after pretreatment is due to the decomposition of VB1-Cl as a
result of PO presence.
Previously, we reported the synergetic effect of GO and

Bu4NBr on cycloaddition [15]. In this regard, the presence of
GO should enhance the catalytic activity of VB1-Cl (Table 1,
entries 5, 8 and 9). In the case of VB1-Cl/GO, the yield of PC
is up to 85.3%, higher than that of VB1-Cl and GO (Table 1,
entries 5, 8 and 10). It may be ascribed to the electrostatic
interaction between GO and VB1-Cl that enhances the nu-
cleophilicity and the leaving ability of anion. As shown in
Figure 5, the thermal stability of VB1-Cl was improved by
forming aerogel with GO, similar to that reported by Song et
al. [26] and He et al. [31]. As shown in Figure S1 (Sup-
porting Information online), there is obvious decline of cat-
alytic performance for VB1-Cl while only slight decline for
VB1-Cl/GO in a test of five runs. The above results clearly
demonstrate that VB1-Cl/GO is superior to VB1-Cl not only
in catalytic performance but also in stability.
As reported, the nucleophilicity and leaving ability of an-

ions have a remarkable influence on the activity of a catalyst
in the cycloaddition reaction [32]. The catalytic efficiency of
VB1 derivatives with different anions can be arranged in the
order of VB1-I>VB1-Br>VB1-Cl (Table 2, entries 1–3).  The

Table 1     The catalytic activity of VB1-Cl for cycloaddition of CO2 toward PO a)

Entry T (°C) t (h) Yield (%) Selectivity (%)
1 100 6 24.7 99.9
2 100 14 83.3 99.9
3 110 6 38.1 99.9
4 120 6 99.4 99.9
5 120 4 77.6 99.9
6 b) 120 4 55.4 99.3
7 c) 120 4 51.9 99.8
8 d) 120 4 1.3 99.9
9 e) 120 4 84.6 99.8
10 f) 120 4 85.3 99.8

a) Reaction conditions: 28.6 mmol PO with 2.2 mol% VB1-Cl, initial CO2 pressure 2 MPa; b) recovered VB1-Cl after the second cycle; c) 28.6 mmol PO
with 2.2 mol% VB1-Cl was stirred at 120 °C for 2 h, then pressurized with CO2 and stirred at 120 °C for 4 h; d) using 80 mg of GO as catalyst; e) using 80 mg
of GO and 2.2 mol% VB1-Cl as catalyst; f) using VB1-Cl/GO (containing 80 mg of GO and 2.2 mol% VB1-Cl) as catalyst.

Table 2     The catalytic activity of VB1 derivatives for cycloaddition of CO2 toward PO a)

Entry Catalysts VB1 derivatives (mol%) GO (mg) Yield (%) Selectivity (%)
1 VB1-Cl 2.2 – 24.7 99.9
2 VB1-Br 2.2 – 50.6 99.5
3 VB1-I 2.2 – 86.8 99.3
4 b) VB1-I 1.1 – 41.5 99.4
5 b) VB1-I/GO 1.1 80 69.3 99.5
6 b) VB1-I/GO 1.1 160 93.2 99.5
7 b) VB1-I/GO 2.2 80 92.3 99.5

a) Reaction conditions: 28.6 mmol PO, 100 °C, initial CO2 pressure 2 MPa, 6 h; b) reaction temperature 90 °C.
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excellent performance of VB1-I is attributed to the strong nu-
cleophilicity and leaving ability of I– [32]. To further improve
the activity of VB1-I, VB1-I/GO aerogel was prepared and
tested. The PC yield over VB1-I/GO is significantly higher
than that of VB1-I. In addition, the catalytic activity of VB1-
I/GO increases with the increased amount of GO or VB1-I,
suggesting that both GO and VB1-I are essential ingredients
for excellent performance of VB1-I/GO. In addition, VB1-
I/GO is efficient for the cycloaddition reaction even under
mild conditions (Figure S2).

3.2.2   Comparison of different heterogeneous catalysts
The performance of various heterogeneous catalysts for cy-
cloaddition of PO and CO2 is depicted in Table 3. One can
see that the immobilized ILs catalysts (F-PIL-Br, [BisAm-
OH-i-PS]I2, CS-[BuPh3P]Br, GO-DMEDA-I) show excellent
catalytic activity at 120 °C, and GO-DMEDA-I performs the
best. However, there is obvious decline of catalytic activ-
ity with these immobilized ILs catalysts when the cycload-
dition reactions were conducted at 90 °C. Compared to the
VB1-I/GO catalyst (TOF: 14.1 h–1), the immobilized catalysts
are inferior in catalytic activity at 90 °C. Furthermore, the
preparation of VB1-I/GO is environment-benign and not as
complicated and time-consuming. Taking into account the
cost and performance, it can be concluded that VB1-I/GO is
superior among the listed heterogeneous catalysts.

3.2.3   Catalytic activity towards different epoxides
To demonstrate the applicability of the process, we conducted
the cycloaddition of CO2 toward other epoxides, and the re-

sults are displayed in Table 4. Obviously, the VB1-I/GO cat-
alyst is applicable to a variety of terminal epoxides, showing
high yield and selectivity. In the case of cyclohexene oxide,
the catalytic activity is relatively low plausibly due to steric
hindrance and electronic effect [36,37].

3.3         Mechanism investigation

It was reported that the synergetic effect of hydroxyl groups
and halide anions is important for ring opening of epoxides
[37–42]. The hydrogen bonding between PO and VB1-Cl was
studied by 1H NMR. Figure 6 shows the 1H NMR spectra of
PO, VB1-Cl and PO mixed with VB1-Cl. One can see a clear
upfield shift of the VB1-Cl H signal, and a new signal at 5.3
ppm assignable to theOHproton ofVB1-Cl. In addition, there
is an upfield shift of the PO H (CH3) signal (from 1.2 to 1.1
ppm). The above results suggest hydrogen bonding between
PO and VB1-Cl as previously reported [37–42].
On the other hand, the basic sites is effective for CO2 ad-

sorption and activation [43,44]. The process of CO2 activa-
tion and fixation was studied using a homogeneous system of
VB1-Cl in H2O monitored by UV-Vis technique. Shown in
Figure 7 are the UV-Vis DRS spectra of aqueous VB1-Cl so-
lution before and after bubbling with CO2. Before CO2 bub-
bling, the aqueous VB1-Cl solution shows two typical signals:
the strong one at 232 nm from pyrimidine ring and the weak
one at 263 nm from thiazole ring. After CO2 bubbling, there
is a clear shift of the pyrimidine ring peak (from 232 to 237
nm). The red shift may be attributed to the adsorption and ac-
tivation of CO2 at the pyrimidine ring. Prasetyanto et al. [45]

Table 3     Catalytic performance of various heterogeneous catalysts for cycloaddition of CO2 to PO

Catalyst T (°C) t (h) Cat. (mol%) Yield (%) TOF a) (h–1)
F-PIL-Br 120 9 1 94.0 10.4 [33]

[BisAm-OH-i-PS]I2 130 2.5 0.75 99.3 53 [34]
[BisAm-OH-i-PS]I2 90 2.5 0.75 21.0 11.2 [34]
CS-[BuPh3P]Br 120 4 1.5 96.3 16.0 [35]
CS-[BuPh3P]Br 90 4 1.5 63.0 10.5 [35]
GO-DMEDA-I 120 3 0.65 89.4 45.8 [22]
GO-DMEDA-I 90 6 0.65 51.6 13.2 [22]

SiO2-(CH2)3(EtOH)3N+I– 90 6 2 86.0 7.2 [9]
VB1-I/GO 90 6 1.1 93.2 14.1 b)

a) TOF=mole of synthesized propylene carbonate over per mole ILs in per hour; b) this work.

Table 4     Catalytic activity of VB1-I/GO for CO2 cycloaddition toward various epoxides a)

Entry Substrate Yield (%) Selectivity (%)
1 Ethylene oxide 95.4 99.2
2 Propylene oxide 93.2 99.5
3 Epichlorohydrin 96.5 97.9
4 1,2-Epoxybutane 76.1 98.6
5 Styrene oxide 59.2 98.9
6 Cyclohexene oxide 6.3 93.8

a) Reaction conditions: 0.3 g VB1-I/GO, 28.6 mmol epoxide, temperature 90 °C, initial CO2 pressure 2 MPa, time 6 h.
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proposed that the combination of secondary and tertiary
amine at a certain position resulted in a CO2 activation rate
higher than that of the single type amine species. It is sug-
gested that with a primary amine in pyrimidine ring, VB1-Cl
activates CO2 through synergetic interaction between the
primary amine and the tertiary amine.
Based on the above results and those of previous reports

[21,22], a possible mechanism is suggested for the catalytic
reaction as depicted in Figure 8. First, there is hydrogen
bonding of POwith the hydroxyl group of VB1-Cl, while CO2

Figure 6         1H NMR spectra of (a) PO, (b) VB1-Cl, (c) PO and VB1-Cl.

Figure 7          UV-Vis DRS spectra of aqueous VB1-Cl solution (8 mg/L) (a)
before and (b) after bubbling CO2 for 0.5 h.

Figure 8         Possible reaction mechanism over VB1-Cl.

is adsorbed and activated under the synergetic influence of
primary amine and tertiary amine. Second, the nucleophilic
Cl– attacks the less hindered carbon atom of the activated ring
to generate the oxygen anion that is stabilized through hydro-
gen bonding with the hydroxyl group of VB1-Cl. Then, the
oxygen anion reacts with an activated CO2 molecule to give
an alkylcarbonate anion. Finally, PC is formed through an in-
tramolecular cyclic step, together with the release of catalyst.

4         Conclusions
Cheap, readily available, and non-toxic thiamine derivatives
are used as heterogeneous catalyst for the synthesis of cyclic
carbonates through CO2 cycloaddition toward epoxides. As
confirmed by UV-Vis and 1H NMR studies, there is interac-
tion between VB1-Cl and substrates (CO2 and PO). A pos-
sible mechanism for the cycloaddition reaction referring to
the synergistic action of multi-functional groups (hydroxyl,
halide anion and amines) is suggested. To achieve better cat-
alytic activity and stability of thiamine derivatives, GO was
employed for the generation of VB1/GO aerogels by adding
aqueous VB1 derivatives to a GO ethanol suspension at room
temperature. Among the prepared catalysts, VB1-I/GO per-
forms the best under mild conditions without the need of us-
ing any solvent or co-catalyst.
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