

Article

Intensified Crystallization Processes for 1:1 Drug-Drug Co-crystals of Sulfathiazole-Theophylline, and Sulfathiazole-Sulfanilamide

Kuan Lin Yeh, and Tu Lee

Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/acs.cgd.7b01197 • Publication Date (Web): 16 Jan 2018 Downloaded from http://pubs.acs.org on January 16, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Crystal Growth & Design is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Intensified Crystallization Processes for 1:1 Drug-Drug
2	Co-crystals of Sulfathiazole-Theophylline,
3	and Sulfathiazole-Sulfanilamide
4	
5	Kuan Lin Yeh and Tu Lee [*]
6	
7	Department of Chemical and Materials Engineering, National Central University,
8	300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan R.O.C.
9	
10	
11	ABSTRACT
12	The chemical synthesis and crystallization step were integrated successfully
13	for directly producing 1:1 co-crystal of sulfathiazole-theophylline and 1:1 co-crystal
14	of sulfathiazole-sulfanilamide. The benefits of this process intensification were the
15	reduction of number of steps, and the amount of energy consumption and solvent used.
16	In addition, the overall co-crystal yields by Intensified Method I were much higher
17	than the ones by Conventional Method. Intensified Method I also gave high-purity
18	co-crystals of \geq 99%. Sulfathiazole not forming co-crystals with sulfanilamide by
	* Corresponding Author : Tel: +886-3-4227151 ext. 34204. Fax: +886-3-4252296, Email: tulee@cc.ncu.edu.tw

19	Intensified Method I, was dissolved in the mother liquor by taking advantage of the
20	pH-dependent solubility of sulfathiazole. Co-crystals of both
21	sulfathiazole-theophylline and sulfathiazole-sulfanilamide systems remained stable
22	under conditions of 40 °C and 75% relative humidity for a month.
23	
24	INTRODUCTION
25	Co-crystal is defined as a crystalline solid composed of two or more distinct
26	compounds in a definite stoichiometric ratio. Those distinct components are
27	originally in solid state under ambient conditions. The crystalline framework of
28	co-crystal is held together by non-covalent interactions such as van der Waals forces,
29	halogen bonding, π - π stacking, and especially hydrogen bonding. ¹ Unlike salts,
30	pharmaceutically acceptable co-crystals are not merely restricted to active
31	pharmaceutical ingredients (APIs) with an ionizable site. A wide range of co-crystal
32	formers (i.e. co-formers according to the list of generally recognized as safe (GRAS))
33	offers more flexibility for tailoring the physiochemical properties of APIs such as
34	melting point, ² solubility, ³ dissolution rate, ⁴ bioavailability, ⁵ compressibility ⁶ and
35	moisture stability 7 without changing the effective chemical entity of APIs. Since
36	about 70 % of new drug candidates and many commercial drugs suffer from
37	inadequate physicochemical properties such as solubility, dissolution rate and
	2
	ACS Paragon Plus Environment

Page 3 of 56

Crystal Growth & Design

1	
2	
3	
4	
5	
0 7	
, 8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
3/	
20 20	
40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51	
52	
53 51	
55	
56	
57	
58	
59	
60	

38	bioavailability, ⁸ co-crystallization has attracted more and more attention, and become
39	an important tool in pharmaceutical product design. 4,9,10
40	However, from a process design point of view, process intensification is a
41	concept of transforming a conventional chemical process into a more economical,
42	productive and greener process. ¹¹ In the past decades, the same concept has evolved
43	into a paradigm for better process performance and higher product quality, and more
44	lucrative and safer technologies through the improvement of manufacturing process.
45	The utilization of new apparatus and technique as an alternative can reduce processing
46	times, solvent and energy consumption, number of processing steps and equipment
47	size. ^{11,12} In general, APIs and fine chemicals are firstly made by chemical synthesis,
48	and then isolated and purified by crystallization. ^{13,14} And yet, for most of the studies,
49	only co-crystallization between API and co-former was investigated without giving
50	consideration to chemical synthesis and co-crystallization as a whole. Therefore, our
51	past success in integrating the synthesis of API and co-crystallization by the approach
52	of direct co-crystal assembly ¹⁵ has prompted us to look into more complicated
53	co-crystal systems, and finally implement process intensification method.
54	Sulfathiazole (STZ) and sulfanilamide (SNM) were chosen as two model sulfa
55	drugs in our present study. Both drugs possessed a sulfonamide group, and were
56	used as antibacterial APIs through the history of human. ¹⁶ Although sulfa drugs had
	3

2	
з	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
∠า วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
J∠ 22	
33	
34	
35	
36	
37	
38	
39	
40	
Δ1	
רו. ⊿ר	
42 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

57	already been replaced by antibiotics due to the drug-resistant strains, sulfa drugs are
58	still being investigated extensively because of their low cost, excellent activity and
59	popularity. ^{17,18} Several co-crystal systems of STZ and SNM had been discovered and
60	reported in the literature. ¹⁹⁻²¹ They included 1:1 co-crystal of STZ-glutaric acid, 1:1
61	co-crystal of STZ-4-aminobenzamide, 1:1 co-crystal of sulfathiazole-theophylline
62	(STZ-THE) and 1:1 co-crystal of STZ-SNM, which were prepared by grinding and
63	evaporation on a small scale. Among those co-crystal systems, 1:1 co-crystal of
64	STZ-THE and STZ-SNM, were chosen as the two drug-drug co-crystals produced by
65	the intensified crystallization processes in our present study. Interestingly, STZ and
66	SNM can be synthesized from the same chemical reaction, and THE is a commonly
67	used API in pharmaceutical co-crystals. ²²
68	The drug-drug co-crystal system is a co-crystal made up of two APIs. ²³ The
69	drug combo has been an approach to offer a synergistic therapy in recent years. ²⁴ It
70	shows potential advantages of reducing drug dosage, toxicity and resistance, and
71	enhancing the efficacy of therapy. ²⁵⁻²⁷ Since the drug-drug co-crystals have a higher
72	degree of unpredictability than the one of drug combos and ordinary type of
73	co-crystals, they are more patent eligible. As a consequence, there is a strong
74	incentive to design drug-drug co-crystals. For example,
75	valsartan-sacubitril·3Na·2.5H ₂ O having a brand name of Entresto [®] , ²⁸ is a commercial
	4

Crystal Growth & Design

76	product comprising of co-crystals of valsartan salt and sacubitril salt. Entresto [®] has
77	shown a better effect on treating heart failure than the other traditional medicines. ²⁹
78	It is also a demonstration of using co-crystal to prolong the life-cycle management of
79	an API.
80	Since the development of intensified processes requires the integration of
81	chemical synthesis and co-crystallization of STZ and SNM, the understanding of each
82	synthetic and co-crystallizing step, and product analysis becomes essential.
83	Therefore, the aims in our study include the determination of: percent yield and purity
84	given by different processes, pH-dependent solubility, partition coefficient (log P) and
85	moisture stability of co-crystals. The percent yield and purity for the co-crystals of
86	STZ-THE, and STZ-SNM, obtained by conventional methods and intensified
87	processes have been compared for evaluating the feasibility of process intensification.
88	It was reported that sulfonamide-induced crystalluria (i.e. sulfa drugs) in urinary tract
89	is highly dependent on the solubility and concentration of the sulfa drugs in urine in
90	the pH range of 5.5 to 7.0 . ^{30,31} Therefore, the effect of pH on solubility for the
91	co-crystals has been studied. In addition, the values of solubility, log P, moisture
92	stability for co-crystals have also been determined.
93	
94	MATERIALS AND METHODS

2	
2	
5	
4	
5	
6	
-	
7	
8	
0	
9	
10	
11	
10	
12	
13	
14	
15	
15	
16	
17	
10	
10	
19	
20	
21	
21	
22	
23	
21	
24 2-	
25	
26	
27	
27	
28	
29	
20	
50	
31	
32	
22	
55	
34	
35	
26	
50	
37	
38	
20	
27	
40	
41	
12	
42	
43	
44	
45	
- -	
46	
47	
<u>4</u> 8	
40	
49	
50	
51	
51	
52	
53	
51	
J4 	
55	
56	
57	
57	
58	
59	
60	
00	

95	Materials. 2-Aminothiazole (C ₃ H ₄ N ₂ S; 97 % purity; MW, 100.14; Lot: 10163024)
96	was purchased from Alfa Aesar (Heysham, England). N-acetylsulfanilyl chloride
97	(C ₈ H ₈ ClNO ₃ S; 98% assay; MW, 233.67; Lot: STBD9067V) and theophylline
98	(C ₇ H ₈ N ₄ O ₂ ; \geq 99% purity; MW, 180.16; Lot: SLBF2355V) were purchased from
99	Sigma-Aldrich (China). 1-octanol (C ₈ H ₁₈ O; 97% assay; M.W. 130.2; Lot: E39586),
100	ammonium hydroxide (NH ₄ OH; 28-30% assay; MW, 35.05; Lot: E51053), sodium
101	bicarbonate (NaHCO ₃ ; 99.7-100.3% assay; MW, 84.01; Batch No: 0000085775) and
102	sodium chloride (NaCl, \geq 99% assay; MW, 58.44; Batch No: 0000031282) were
103	purchased from J. T. Baker (USA). Sulfanilamide (C ₆ H ₈ N ₂ O ₂ S; MW, 172.20; Batch
104	No: 0000099327) was purchased from J. T. Baker (China). Sodium hydroxide
105	(NaOH; 96% assay; MW, 40.00; Lot: KX-2842A) was purchased from Showa
106	Chemical Co., Ltd. (Tokyo, Japan). Sulfathiazole ($C_9H_9N_3O_2S_2$; $\geq 98\%$ assay; MW,
107	255.32; Lot: 410504) was purchased from Fluka (Steinheim, USA). Acetone
108	(CH ₃ COCH ₃ ; 99.5% purity; MW, 58.0; Lot: EB8n311) and methanol (CH ₃ OH; 99.9%
109	assay; MW, 32.04; Lot: 14050368) were purchased from Tedia Company Inc.
110	(Fairfield, OH, USA). Hydrochloric acid (HCl; 37% assay; MW, 36.46; Lot:
111	UN1789) was purchased from Scharlau Chemie S.A. (Barcelona, Spain). Reversible
112	osmosis (RO) water was clarified by a water purification system (model Milli-RO
113	Plus) bought from Millipore (Billerica, MA, USA). All of the chemicals were used
	6

1

2	
3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
21	
5Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
<u>4</u> 2	
12	
45 11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
22	
56	
5/	
58	
59	
60	

114	without further purification.
115	Instruments. Optical Microscopy (OM). Crystal habit was observed by optical
116	microscopy (Olympus BX-51, Tokyo, Japan) equipped with a digital camera
117	(Moticam 2000)) and a cross polarized filter. The micrograph was transformed
118	through Motic Images Plus (Version 2.0) into a digital photograph and analyzed by
119	Measure Tool (Version 4.10).
120	Thermogravimetric Analysis (TGA). TGA analysis was carried out by TGA 7
121	(Perking Elmer, Norwalk, CT) to monitor sample weight loss as a function of
122	temperature. All samples were heated under nitrogen atmosphere to avoid oxidation.
123	About 3-6 mg of samples were weighed and placed on an open platinum pan
124	suspended in a heating furnace. The heating rate was 10 $^{\circ}C \cdot min^{-1}$ and the
125	temperature range of scan was from 40 °C to 280 °C.
126	Differential Scanning Calorimetry (DSC). Thermal analytical data were obtained
127	by Perkin Elmer DSC-7 calorimeter (Shelton, CT, USA). Each sample was loaded
128	in a perforated aluminum pan, and characterized with a scanning rate of 10 $^{\circ}C\cdot min^{-1}$
129	from 40 °C to 240 °C under a constant 99.99% nitrogen purge.
130	Fourier-Transform Infrared (FT-IR) Spectroscopy. FT-IR spectroscopy was
131	conducted on Perkin Elmer Spectrum One (Norwalk, CT, USA.) to identify functional
132	groups and polymorphs. Each sample was ground gently with potassium bromide

133	(KBr) powders in a ratio of 1 to 100 and then a hydraulic press was used to form a
134	tablet. The tablet was scanned 8 times with a resolution of 2 cm^{-1} in the
135	wavenumber region of 4000 to 400 cm ⁻¹ .
136	Powder X-ray Diffraction (PXRD). PXRD diffractograms were conducted by
137	Bruker D8 Advanced (Germany), whose source used was Cu K α (λ = 1.542 Å), and
138	the diffractometer was operated at 40 kV and 40 mA. The X-ray passed through a
139	nickel filter with a divergence slit of 0.5°, a scattering slit of 0.5°, and a receiving slit
140	of 1 mm. The scanning rate was set at $0.05^{\circ} 2\theta \cdot \sec^{-1}$ ranging from $2\theta = 5^{\circ}$ to 35° .
141	Nuclear Magnetic Resonance (NMR). About 40 mg of dried sample powders were
142	dissolved in an adequate amount of deuterated dimethyl sulfoxide (DMSO-d ₆).
143	Around 0.8 mL of the sample solution was added into an NMR tube having a 5-mm in
144	outer diameter and 178 mm in length for solution ¹ H-NMR analysis (Bruker
145	Ascend TM 600 MHz). Chemical shifts were relative to the one of DMSO at 2.50
146	ppm. Resonance peak areas were integrated by MestReNova (Version 11.0.4)
147	software from Mestrelab Research S. L.
148	Ultraviolet and Visible (UV/vis) Spectrophotometer. UV/Vis spectrophotometer
149	(Lambda 25, Perkin Elmer, Norwalk, CT, USA) was used to measure the
150	concentrations of STZ, SNM, STZ-THE and STZ-SNM at the characteristic
151	absorption peaks of 283, 258, 277 and 258 nm, respectively. The concentrations of
	8

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
27	
∠∠ วว	
∠⊃ ⊃4	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
<u>4</u> 2	
75 77	
44	
45	
46	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

152	STZ, SNM, STZ-THE, and STZ-SNM were converted from the absorbance values to
153	the corresponding concentrations by the linear calibrations of: absorbance (au) =
154	49666 \times concentration of STZ (M), absorbance (au) =15650 \times concentration of
155	SNM (M), absorbance (au) =27728 \times concentration of STZ-THE (M), absorbance
156	(au) =31807 \times concentration of STZ-SNM (M), respectively, as determined in water
157	at 25 °C.
158	High-Performance Liquid Chromatography (HPLC). HPLC analysis was
159	performed using a Shimadzu Prominence-i LC-2030C 3D HPLC. Sample solutions
160	were prepared by dissolving 5 mg of sample powders in 25 mL of methanol. $2 \mu L$ of
161	sample was withdrawn and injected into a column (YMC-Pack ODS-AQ 150×3.0
162	mm \times 3 µm \times 12nm). The mobile phase used was a gradient system composed of
163	methanol/0.05 % formic acid aqueous solution. The composition of the mobile
164	phase started at 5/95 (v/v), increased to 90/10 (v/v) in 15 min, and maintained for 5
165	min. The flow rate was $0.5 \text{ mL} \cdot \text{min}^{-1}$ and the temperature was kept at 37 °C. The
166	detection wavelength for HPLC was set at $\lambda = 254$ nm.
167	
168	Experiments.
169	Syntheses of STZ and SNM. For the synthetic processes of STZ and SNM, each
170	process was divided into two steps. In Step 1 (Scheme 1): 6 g (25.7 mmol) of

171	<i>N</i> -acetylsulfanilyl chloride were slowly added to the suspension containing 1.25 g
172	(12.5 mmol) of 2-aminothiazole, 2.25 g (26.8 mmol) of sodium bicarbonate and 3 g
173	(51.3 mmol) of sodium chloride in 11 mL of water and 5.5 mL of acetone in a 100 mL
174	round-bottom flask at 25 °C to 30 °C under agitation for 2.5 h. N-acetylsulfanilyl
175	chloride was fed as six equal portions for avoiding the fast evolution of CO_2 which
176	was a by-product of neutralization between HCl and NaHCO ₃ . 3.1 mL of 28~30
177	wt% NH ₄ OH solution were added to the reaction mixture. Afterwards, the resulting
178	mixture was heated to 65 $^{\circ}$ C with a total reflux for 2.5 h. After the reaction solution
179	was cooled to room temperature, N^4 -acetyl SNM was precipitated, filtered and rinsed
180	by 15 mL of cold water twice. The mother liquor was treated with 0.25 g of Darco
181	for decolorization. It was then stirred for 1 h, and filtered for the removal of Darco
182	particles. The pH of filtrate was adjusted to 5 to 6 by adding 12~14 mL of 2M HCl
183	aqueous solution to precipitate out N^4 -acetyl STZ. N^4 -acetyl STZ solids were
184	filtered and rinsed with cold water twice. Solids of N^4 -acetyl SNM and N^4 -acetyl
185	STZ were oven dried at 40 °C overnight.
186	In Step 2a (Scheme 1): 2.97 g (10 mmol) of N^4 -acetyl STZ solids were added
187	into a 50 mL round-bottom flask with a magnetic spin bar. 12.5 mL of 3.2 M NaOH
188	aqueous solution were then introduced into the flask for hydrolysis, and the reaction
189	solution was heated to 65 °C in a water bath for 2 h. The reaction solution was then
	10

1	
2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
50 77	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
-1-J // 6	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

190	acidified by adding 15 mL of 2 M HCl aqueous solution to produce STZ solids. On
191	the other hand, 1.07 g (5 mmol) of N^4 -acetyl SNM solids were reacted with 10 mL of
192	1.5 M HCl aqueous solution for hydrolysis in a 25 mL round-bottom flask, and heated
193	to 95 to 100 °C in an oil bath with a reflux for 4 h. Then, the reaction solution was
194	cooled to 20 °C, treated with 25 mg of Darco and stirred for 30 min, and then filtered
195	for the removal of Darco. The mother liquor was neutralized by adding 4M NaOH
196	aqueous solution to adjust the pH to 4~5 to precipitate SNM solids. All harvested
197	solids were filtered, rinsed with copious amounts of cold water twice and oven dried
198	at 40 °C overnight.
199	Cooling Co-crystallization of STZ-THE. Synthesized STZ crystals were replaced
200	by the use of purchased STZ crystals for the control experiment. 1 g of purchased
201	THE was totally dissolved in 160 mL of methanol in a 0.5 L flat-bottom flask with an
202	inner diameter of 7.4 cm equipped with four equally spaced vertical baffles, a four
203	bladed turbine impeller made of stainless steel, and a total reflux condenser. The
204	temperature was maintained at 60 °C. An equimolar amount of purchased STZ
205	crystals was dissolved in 60 mL of methanol, and added into the flask, and mix with
206	the solution of THE. The co-crystallization was carried out by cooling the solution
207	from 60 °C to 20 °C at a stirring rate of 600 rpm.
208	Cooling Co-crystallization of STZ-SNM. Synthesized SNM crystals were replaced

209	by the use of purchased SNM crystals for the control experiment. 1.29 g of
210	purchased SNM and 1.53 g of purchased STZ were added together in a 100 mL
211	scintillation vial. 60 mL of preheated methanol were introduced into the vial to
212	simultaneously dissolve SNM and STZ at 60 $^{\circ}$ C using a magnetic spin bar. Then,
213	the solution was cooled to 20 $^{\circ}$ C to form 1:1 co-crystal of STZ-SNM.
214	Intensified Method I. For direct preparation of 1:1 co-crystal of STZ-THE, 5 mL
215	of 4 M HCl aqueous solution were added right after hydrolysis. An equimolar
216	amount of purchased THE with respect to N^4 -acetyl STZ, and 3.5 mL of 4 M HCl
217	aqueous solution were added to the reaction solution to produce 1:1 co-crystal of
218	STZ-THE. For direct preparation of 1:1 co-crystal of STZ-SNM, an equimolar
219	amount of purchased STZ with respect to N^4 -acetyl SNM was introduced immediately
220	after hydrolysis. The solution was treated with 25 mg of Darco, stirred for 30 min,
221	and then filtered for the removal of Darco particles. The pH value of the resulting
222	solution was adjusted to 9 for producing the 1:1 co-crystal of STZ-SNM. All solids
223	harvested were filtered, rinsed with cold water twice, and then dried at 40 $^{\circ}$ C
224	overnight.
225	Intensified Method II. 2.14 g (10 mmol) of N^4 -acetyl SNM and 20 mL of 1.5 M
226	HCl aqueous solution were added into a 25 mL round-bottom flask. The reaction
227	solution was heated to 95 to 100 $^{\circ}$ C in an oil bath equipped with a reflux condenser
	12

Page 13 of 56

1

Crystal Growth & Design

2
2
ر ۸
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
10
20
∠∪ ⊃1
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
15
45
40
4/
48
49
50
51
52
53
51
54 57
55
56
57
58
59
60

228	for 4h to give a SNM-containing solution. Afterwards, the SNM-containing solution
229	was cooled to room temperature for the ease of operation, treated with 25 mg of
230	Darco, stirred for 30 min, and then filtered for the removal of Darco. Additionally,
231	2.97 g (10 mmol) of N^4 -acetyl STZ and 20 mL of 3.2 M NaOH aqueous solution were
232	added together into a 50 mL round-bottom flask. The solution was heated to 65 $^{\circ}$ C
233	for 2 h to give a STZ-containing solution. 1:1 co-crystal of STZ-SNM was
234	precipitated out by introducing the SNM-containing solution into the STZ-containing
235	solution at 65 °C. All solids were filtered, rinsed with cold water twice, and oven
236	dried at 40 °C overnight.
237	Solubility Test. Solubility test was performed at 15 °C, 25 °C, 40 °C and 60 °C in
238	water. Each unsieved solid sample was weighed into a 20 mL scintillation vial.
239	Water was titrated dropwise in a vial at a fixed temperature in a water bath. The
240	solution was shaken intermittently by hand. Water was gradually added within 6
241	hours until all solids were just dissolved as determined by eyes. This titration
242	method was simple and robust, provided solubility values, and minimized the
243	possibility of solvate and hydrate formation during the measurements. The total
244	volume of water added was recorded and the solubility was also calculated in terms of
245	molarity (M). ³²

246 pH Dependence in Solubility. Each solid sample was weighed and suspended in

1	
2	
3	
4	
5	
6	
7	
/ Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52 52	
55	
54	
55	
50	
۲0 ۲	
20	
27	
60	

247	water in a 100 mL scintillation vial. The pH value of each suspension was adjusted	
248	by adding HCl and NaOH aqueous solutions. The suspension was kept at 37 $^{\rm o}{\rm C}$ for	
249	a day to achieve equilibrium, and then filtered through a 0.22 μm PVDF membrane	
250	(PALL Corporation, PN). The mother liquors were assayed by a UV/vis	
251	spectrophotometer, and the solids were characterized by DSC.	
252	Partition Coefficient Determination. Around 2-3 mg of sample powders were	
253	weighed into a 100 mL scintillation vial comprising of 15 mL of water with an equal	
254	volume of 1-octanol at 25 °C. The solutions were shaken for 40 h. Afterwards,	
255	only the aqueous phase was assayed by HPLC.	
256	Moisture Stability Test. Each solid sample was weighed into a 7 mL open vial,	
257	which was placed in a capped 100 mL glass bottle filled with 10 mL of saturated NaCl	
258	aqueous solution to have a closed system at 40 $^{\circ}$ C and 75% relative humidity (RH) for	
259	a month. ⁷ The sample was then characterized by DSC.	
260		
261	RESULTS AND DISCUSSION	
262	Syntheses of STZ and SNM	
263	There were five polymorphs for STZ (Forms I to V), and four modifications	
264	for SNM (Forms α to δ). ³³⁻³⁵ According to the literature, Form III is the most stable	
265	form for STZ, and Form β is the most stable form for SNM under the ambient	

Page 15 of 56

1

Crystal Growth & Design

2	
3	
1	
S	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10 10	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
4) 4	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
57	
58	
59	
60	

266 condition. ^{36,37} The transition temperature of STZ from Form III is reported at 175 °C
followed by a melting point of Form I at 202 °C. ^{36,38} Form β had a phase transition
268 to Form γ at 131 °C to 141 °C before melting at 166 °C. ³⁹ For the integration of
269 chemical synthesis and co-crystallization, a good understanding of process and crystal
270 forms was necessary. Therefore, STZ and SNM were synthesized and analyzed as
271 controls. The preparation processes of STZ, SNM, 1:1 co-crystal of STZ-THE and
1:1 co-crystal of STZ-SNM were shown in Scheme 1. Step 2 in Scheme 1 was
273 categorized into three methods: Conventional Method, Intensified Method I and
274 Intensified Method II. ^{40,41} As indicated by Step 2a, STZ and SNM were obtained via
hydrolyzing N^4 -acetyl STZ by the base addition, and N^4 -acetyl SNM by the acid
addition, respectively. They were both crystallized out by neutralization. In
addition to the reaction-related factors such as percent yield and purity, polymorphism
of API solids is equally important, and needs to be controlled due to its profound
279 effect on the quality of a final product.
280 The IR assignments for Form III STZ crystals were shown in Figure 1. The
bands at 3279 cm ⁻¹ and 3320 cm ⁻¹ were assigned for the $-NH_2$ symmetric and
asymmetric stretching vibrations, respectively. The –SO ₂ – symmetric and
asymmetric stretching vibration frequencies are found at 1136 cm ⁻¹ and 1323 cm ⁻¹ ,
284 respectively. The bands at 1531 cm ⁻¹ can be contributed to C=N stretching vibration,
15

285	and 631 cm ⁻¹ to C–S stretching frequency. ^{19,42} The FT-IR spectrum of synthesized
286	STZ in Figure 1(b) matched well with the one of purchased STZ crystals in Figure
287	1(a), indicating that the synthesized STZ crystals were chemically identical to the
288	purchased STZ crystals, which were Form III STZ crystals. ⁴³ The band assignments
289	for Form β SNM crystals were as follows: 3477 cm ⁻¹ and 3370 cm ⁻¹ for –NH ₂
290	symmetric and asymmetric stretching vibrations, respectively, 1313 cm ⁻¹ and 1146
291	cm^{-1} for $-SO_2$ - symmetric and asymmetric stretching vibrations, respectively, and 900
292	cm ⁻¹ for S–N stretching vibration. ^{42,44} Synthesized SNM in Figure 1(d) gave a
293	different IR spectrum from the one of purchased SNM crystals in Figure 1(c). The
294	characteristic bands at 3375 cm ⁻¹ and 3266 cm ⁻¹ , and the ones at 3383 cm ⁻¹ , 3318 cm ⁻¹
295	and 3243 cm ⁻¹ were corresponding to Form β and Form γ SNM crystals,
296	respectively. ³⁹ The absorption region of 3235 cm^{-1} to 3380 cm^{-1} was used to
297	distinguish Form γ crystals from the other polymorphs of SNM crystals. The
298	synthesized SNM crystals are not always the most stable Form β . Although the
299	purchased SNM crystals and synthesized SNM crystals possess an identical molecule,
300	the packing arrangements of molecules are different.
301	There was a good agreement among the PXRD patterns of purchased and
302	synthesized STZ crystals in Figures 2(a) and 2(b), respectively, and the theoretical
303	pattern of Form III STZ crystals based on single-crystal X-ray experiment in Figure
	16

1	
2	
3	
4	
5	
6	
7	
, 8	
0	
10	
10	
11	
12	
13	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

304	2(c). This was also evidenced by the IR spectra in Figures 1(a) and (b). The
305	slightly shifted diffraction peaks for synthesized STZ crystals in Figure 2(b) were
306	most likely attributed to the build-in strain of crystal originated from the lengthening
307	or shortening of the d-spacing ⁴⁵ when the synthesized STZ crystals were precipitated
308	out rapidly by the addition of HCl aqueous solution into the reactor. The
309	diffraction pattern of purchased SNM in Figure 3(a) was consistent with the
310	theoretical one of Form β SNM crystals in Figure 3(c). The PXRD diffractogram of
311	synthesized SNM crystals in Figure 3(b) matched with the theoretical one of Form γ
312	SNM crystals in Figure 3(d). However, several additional peaks at $2\theta = 18.97^{\circ}$,
313	20.61°, 21.45° and 22.85° designated for Form β SNM crystals were also detected for
314	the synthesized SNM crystals in Figure 3(b), meaning that the synthesized SNM
315	crystals were adulterated with a trace amount of Form β SNM crystals.
316	According to the Ostwald's Rule of Stages, ⁴⁶ the metastable synthesized Form
317	γ SNM crystals would eventually transform to the most stable Form β SNM crystals if
318	given with a long enough residence time in the reactor or a stimulus from downstream
319	processes and storage. Drug properties will be altered when API is transformed into
320	a different polymorph. Since the presence of different polymorphs in a final product
321	is deemed as contamination, this kind of uncontrolled situation should be avoided. ⁴⁷
322	Controlling the polymorphism of synthesized SNM crystals may be challenging in a

323	scale-up process because of the local variations in concentration and temperature.
324	This gave us the motivation to employ Intensified Method to turn the polymorphic
325	SNM solids into isomorphic co-crystals directly during synthesis to avoid
326	polymorphic impurity.
327	
328	Cooling Co-crystallization of STZ-THE and STZ-SNM.
329	The discovery of 1:1 co-crystal of STZ-THE and 1:1 co-crystal of STZ-SNM
330	were first reported in 1971. ²⁰ However, the physicochemical data about those two
331	co-crystal systems such as melting point, crystal habit, solubility and stability were
332	unavailable. Due to the lack of physicochemical data in the literature, STZ-THE
333	co-crystals and STZ-SNM co-crystals were prepared in methanol by cooling
334	co-crystallization as control. Synthesized STZ and SNM crystals were replaced by
335	the use of purchased STZ and SNM crystals in Conventional Method for the
336	controlled experiments. The two co-crystals produced by cooling were abbreviated
337	as Cocry-STZ-THE and Cocry-STZ-SNM. The weight losses of Cocry-STZ-THE
338	and Cocry-STZ-SNM co-crystals started at about 230 °C due to chemical degradation
339	(Figure S1). Therefore, the temperature scanning range for DSC was set from $40 ^{\circ}$ C
340	to 240 °C. Other data for Cocry-STZ-THE and Cocry-STZ-SNM co-crystals would
341	be discussed in detail along with the ones for the co-crystals produced by Intensified
	18

Method I in the next section.

343	Preparation of STZ-THE and STZ-SNM and by Intensified Method I
344	The 1:1 co-crystal of STZ-THE and 1:1 co-crystal of STZ-SNM produced by
345	the Intensified Method I were abbreviated as Inten-I-STZ-THE and Inten-I-STZ-SNM
346	co-crystals, respectively, in Scheme 1, Step 2b. The purchased THE and STZ
347	crystals were fed to the reaction solution consisting of STZ and SNM species after
348	hydrolysis, respectively, and formed STZ-THE and STZ-SNM co-crystals after
349	neutralization. The products were changed from the original APIs to the co-crystals.
350	Figures 4 and 5 showed the PXRD patterns of STZ-THE and STZ-SNM co-crystals
351	obtained from cooling co-crystallization (i.e. Conventional Method) and Intensified
352	Method I, and their theoretical patterns based on single-crystal X-ray
353	crystallography. ²⁰ They matched well with each other. The relative intensity of the
354	diffraction peaks in Figures 4 and 5 varied from method to method. We speculated
355	that this was caused by the solvent effect on growth rate of different crystallographic
356	direction. ⁴⁸
357	Cocry-STZ-THE and Cocry-STZ-SNM co-crystals exhibited the endotherms
358	of melting at 227.7 °C and 182.3 °C in Figures 6 (b) and 6(d), respectively. The
359	co-crystals produced by Intensified Method I showed the same endothermic peak in
360	Figures 6(b) and 6(d). Both DSC and PXRD results indicated that STZ-THE and

1	
י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
1.2	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
24	
24	
35	
36	
37	
38	
39	
40	
/1	
11	
42	
43	
44	
45	
46	
47	
48	
10	
49 F 0	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

361	STZ-SNM co-crystals were successfully prepared by Intensified Method I using a
362	one-pot process. Moreover, no detectable trace of SNM polymorph was present in
363	the DSC scans for Inten-I-STZ-SNM co-crystals. The possibility of forming
364	different SNM polymorphs was minimized by forming co-crystals using Intensified
365	Method I. Crystallinity for all solids was determined by DSC based on Equation
366	(1): ⁴⁹
367	Crystallinity (%) = $(\Delta H_{sp}^{f} / \Delta H_{pp}^{f}) \times 100\%$
368	(1)
369	where ΔH_{sp}^{f} = enthalpy of fusion for samples, and ΔH_{pp}^{f} = enthalpy of fusion for a
370	standard. Cocry-STZ-THE and Cocry-STZ-SNM co-crystals were defined as the
371	calculation standards. STZ and SNM crystals can be dissolved in either a strong
372	basic or acidic aqueous solution, and then precipitated out by neutralization. ⁴⁰ STZ
373	crystals were precipitated out from the basic mother liquor instantly upon the addition
374	of HCl aqueous solution, indicating of a relatively high degree of supersaturation due
375	to the drastic decrease of solubility. In general, a high degree of supersaturation
376	gives solids with a low degree of crystallinity. ⁵⁰ The enthalpies of fusion for both
377	Inten-I-STZ-THE and Inten-I-STZ-SNM co-crystals were close to the ones for
378	Cocry-STZ-THE and Cocry-STZ-SNM co-crystals, meaning that the co-crystals
379	produced by Intensified Method I have a high degree of crystallinity. FT-IR spectra

1	
2	
3	
4	
5	
6	
7	
, 8	
a	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40 /11	
41	
4Z	
43 ⊿ ⊿	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

380	of STZ-THE and STZ-SNM co-crystals were shown in Figures S2 and S3 of
381	Supporting Information, respectively. The spectra of co-crystals generated by
382	Intensified Method matched well with the ones by cooling co-crystallization in
383	Conventional Method.
384	Various loading ratios (LRs) of N^4 -acetyl STZ to THE, and N^4 -acetyl SNM to
385	STZ were attempted to further investigate the effect of addition amount of co-former.
386	The melting point of Inten-I-STZ-THE co-crystals in Figure S4a could vary while the
387	LR of N^4 -acetyl STZ to THE, was changed from 1:1.4 to 1:0.6. Noticeably, a new
388	endothermic peak appeared at 167.3 °C (Figure S4a(i)) as the LR was lowered to 1:0.6.
389	We speculated that the original endothermic peak of 175 °C for Form III STZ crystals
390	might be depressed to a lower temperature of 167.3 °C due to the presence of
391	STZ-THE co-crystals. In addition, a new endothermic peak of 157.7 °C was
392	observed for the sample with the LR of 1:0.5 (Figure S4b(i)), whereas another new
393	endothermic peak of 165.8 °C was seen in the DSC scan for the sample having the LR
394	of N^4 -acetyl SNM to STZ of 1:1.5 (Figure S4b(iii)). The appearance of the two
395	endothermic peaks in Figures S4b(i) and S4b(iii) was ascribed to the excess amount
396	of SNM and STZ crystals, respectively. However, the original melting points of
397	Form γ SNM crystals and Form III STZ crystals are 166 °C and 175 °C,
398	respectively. ^{36,39} A possible explanation for the shift of the endothermic peaks was

due to eutectic behavior of mixing of SNM crystals with STZ-SNM co-crystals, and	399
STZ crystals with STZ-SNM co-crystals. This kind of eutectic behavior leads to the	400
depression of melting point, which had been reported in other co-crystal systems. ⁵¹⁻⁵³	401
This was further evidenced by performing the DSC scans on the physical blend of	402
purchased SNM crystals and Cocry-STZ-SNM co-crystals with a molar ratio of 1:1,	403
and the physical blend of purchased STZ crystals and Cocry-STZ-SNM co-crystals	404
with a molar ratio of 1:1, as displayed in Figure S5. It seems that the LR of 1:1 is	405
the best ratio to produce the pure co-crystals of STZ-THE, and STZ-SNM.	406
Agreeing with the DSC scan in Figure S4, when the LR was varied, one of the	407
co-crystal components was present as an isolated component in the co-crystal product.	408
A solid mixture was produced once the LR was deviated from 1:1 significantly. For	409
example, the characteristic diffraction peaks of THE crystals were detected when the	410
LR was increased to 1:1.2, and 1:1.4 in the Inten-I-STZ-THE system (Figure S6(d)	411
and (e)). As for the Inten-I-STZ-SNM in Figure S7, the PXRD pattern of STZ-SNM	412
system with the LR of 1:1.5 in Figure S7(c) consisted of the diffraction peaks of	413
STZ-SNM co-crystals and a trace amount of Form III STZ crystals, and yet, the	414
diffraction peaks of pure SNM were absent for the system using LR of 1:0.5 in Figure	415
S7(a). The trace level of SNM crystals might be below the detection limit of PXRD,	416
which had been used to quantify the amount of co-crystals in a mixture with the limit	417
22	

1	
2	
3	
Δ	
с С	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>⊿</u> 1	
41	
4Z	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

418 of 1.23 wt%. ⁵⁴ Besides, we had tested the PXRD detection limit by powder blends	418
419 having different weight percentages of purchased SNM crystals to Cocry-STZ-SNM	419
420 co-crystals of 4 wt%, 5 wt% and 10 wt%. The diffraction peak at $2\theta = 10.6$	420
421 representing SNM crystals was found for the powder blends containing 5 wt% and 10	421
422 wt% SNM crystals, and disappeared for powder blends having 4 wt% SNM crystals	422
423 as shown in Figure S8. Therefore, only 4 wt% or less of SNM crystals were presen	423
424 if there was any in the product of Inten-I-STZ-SNM co-crystals using LR of 1:0.5.	424
425 The ¹ H NMR spectra in Figure S9 showed that all resonance peaks could be	425
426 assigned to the specific protons of STZ or THE molecules, and STZ or SNM	426
427 molecules, ⁵⁵ for Inten-I-STZ-THE, and Inten-I-STZ-SNM co-crystals, respectively.	427
428 No by-product was generated upon the formation of co-crystals in Intensified Method	428
429 I.	429
430 Figure 7 displayed the crystal morphology for STZ and SNM crystals, and	430
431 STZ-THE and STZ-SNM co-crystals. The synthesized STZ, and SNM crystals had	431
432 rhombic, and thin plate-like habits, respectively. The STZ-THE co-crystals also	432
433 exhibited a rhombic morphology regardless of the method used. The rhombic	433
434 morphology of the STZ-THE co-crystals (Figure 7(c) and S7(d)) was more regular	434
435 than the one of synthesized STZ crystals. In general, a more regular shape can lead	435
436 to better manufacturability such as flowability, which can benefit downstream	436
27	

1	
2	
2	
1	
-+ 5	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
رر 22	
50 57	
5/ 50	
58	
59	
60	

437	processes including blending, granulation and tableting. ⁵⁶ However,
438	Cocry-STZ-SNM and Inten-I-STZ-SNM co-crystals had a rod-like habit, which was
439	unfavorable for the downstream processes. The rod-like or needle-like crystals
440	generally leads to a low power flow, poor compressibility and high filtration
441	resistance. ^{56,57}
442	According to Scheme 1, Conventional Method was comprised of the steps of
443	reaction, crystallization of API, two sets of filtration and drying, addition of co-former
444	and co-crystallization. For Intensified Method I, crystallization of API, and a set of
445	filtration and drying can be omitted. Generally speaking, the number of processing
446	steps is directly proportional to time, energy, waste and labor intensity. In this regard,
447	Intensified Method I is more advantageous over Conventional Method. Table 1
448	revealed the percent yields of synthesized STZ crystals, synthesized SNM crystals,
449	Cocry-STZ-THE, Cocry-STZ-SNM, and Inten-I-STZ-THE and Inten-I-STZ-SNM
450	co-crystals produced with LR of 1:1. We found that the co-crystal yield of 81.0% for
451	STZ-THE solids by Intensified Method I was higher than the one of 68.1% by cooling
452	co-crystallization. On the other hand, the co-crystal yields for STZ-SNM by
453	Intensified Method I and the cooling co-crystallization were almost the same.
454	Remarkably, the overall co-crystal yields by Intensified Method I were much higher
455	than the ones by Conventional Method when including the synthetic steps. In

Crystal Growth & Design

2	
3	
Δ	
- -	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
17	
18	
19	
20	
21	
27	
22	
23	
24	
25	
25	
20	
27	
28	
29	
20	
50	
31	
32	
33	
24	
54	
35	
36	
37	
38	
20	
39	
40	
41	
42	
ד∠ ⊿ר	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
21	
52	
53	
54	
55	
22	
56	
57	
58	
50	
72	
60	

456	addition, when the feeding rate of the HCl aqueous solution was too fast, fine STZ
457	crystals were produced and tended to agglomerate into large lumps. However, if
458	THE crystals were introduced prior to neutralization, no agglomerates were formed
459	even with the same fast addition rate of HCl aqueous solution.
460	HPLC data were provided in Figure S10 and the results were tabularized in
461	Table 2. The retention times of STZ, SNM and THE molecules were 6.4, 3.4 and 7.2
462	min, respectively. According to the HPLC results, Intensified Method I gave all
463	harvested samples a purity of \geq 99%. The stoichiometric ratios of STZ to THE, and
464	STZ to SNM crystals were calculated based on the ratios of the integration peak areas
465	of the dissolved STZ to THE species, and the dissolved STZ to SNM species,
466	respectively. All ratios were very close to one. The results indicated that the 1:1
467	co-crystals produced had a very high purity.
468	Preparation of STZ-SNM by Intensified Method II
469	According to Scheme 1, Step 2b, the reaction solutions of STZ, and SNM

470 were basic and acidic, respectively, and their crystallizations were carried out through 471 neutralization, by adding HCl, and NaOH aqueous solution, respectively. Since the 472 solids were co-crystallized through neutralization in Intensified Method I which gave 473 us the idea that those two processes could be further combined to prepare STZ-SNM 474 co-crystals. Therefore, the two reaction solutions of N^4 -acetyl STZ and N^4 -acetyl

Page 26 of 56

2
2
5
4
5
6
7
ç Q
0
9
10
11
12
12
15
14
15
16
17
10
10
19
20
21
22
22
2J 74
∠4 2-
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
30
10
40
41
42
43
44
15
4J
46
47
48
49
50
50
21
52
53
54
55
55
20
57
58
59
60

1

475	SNM after hydrolysis were mixed together to yield STZ-SNM co-crystals (Scheme 1,
476	Step 2c). This approach was called Intensified Method II. STZ and SNM species
477	were present separately in the aqueous solutions before mixing for co-crystallization.
478	The solution phase was more convenient for feeding and mixing than the powder
479	form.
480	Although the PXRD pattern of Inten-II-STZ-SNM co-crystals matched with
481	the theoretical pattern of STZ-SNM co-crystals (Figure 8(b), the characteristic peaks
482	at $2\theta = 23.2^{\circ}$ and 28.0° for Form γ were detected. Also, the DSC scan in Figure 9
483	exhibited a eutectic behavior for the mixture of SNM crystals and STZ-SNM
484	co-crystals showing a melting point of STZ-SNM co-crystal at 179.8 °C and another
485	smaller endothermic peak at 156.2 °C. Also, according to the HPLC data (Figure
486	S11), Inten-II-STZ-SNM co-crystals had the ratio of STZ to SNM of 0.87:1 verifying
487	that the amount of SNM species was more than the one for STZ species, and the
488	excess amount of SNM species was precipitated out as SNM solids along with the 1:1
489	co-crystal STZ-SNM product. Intensified Method II will need to be optimized in the
490	future.
491	Solubility, Partition Coefficient and Moisture Stability
492	The titration method was used to measure the solubility of purchased STZ
493	crystals, purchased SNM crystals, Cocry-STZ-THE co-crystals, Cocry-STZ-SNM
	26

1	
2	
3	
4	
5	
6	
7	
/	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40 ⊿1	
41	
4∠ ⊿⊃	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

494	co-crystals, and the blends of purchased STZ and purchased THE crystals, and the
495	blends of purchased STZ and purchased SNM crystals with a molar ratio of 1:1 in
496	water at a variety of temperatures (Figure 10). The solubility values of STZ crystals
497	and STZ-THE co-crystals were not too different from one another (Figure 10(b)).
498	On the other hand, STZ-SNM co-crystals had an obvious increase in the solubility
499	value (Figure 10 (b)). Noticeably, the blends of individual components with STZ
500	crystals exhibited a similar solubility value as the one of STZ crystals, meaning that
501	making a simple drug combo cannot affect the solubility of STZ too much.
502	Table 3 listed the solubility values of purchased STZ, purchased SNM,
503	Cocry-STZ-THE and Cocry-STZ-SNM co-crystals at a variety of pH values. UV/vis
504	spectrophotometry was employed to measure the solubility value. To confirm the
505	co-crystals were dissolved in water with a 1 to 1 stoichiometric ratio, the suspended
506	solids were filtered and oven dried, and characterized by DSC.
507	If only the endothermic peak of co-crystal was detected in DSC scan, the ratio
508	of dissolved species of STZ to THE for STZ-THE co-crystals, and the ratio of
509	dissolved species of STZ to SNM for STZ-SNM co-crystals should be equal to 1 to 1.
510	As expected, the DSC scans (not shown) of STZ crystals, SNM crystals and
511	STZ-THE co-crystals exhibited only one melting point meaning that the integrity of
512	the crystal structure was maintained at the pH range of 1 to 8. However, the DSC
	27

513	scan indicated that STZ crystallized out separately from the solution of STZ-SNM
514	system in an acidic environment. Therefore, the pH solubility values of STZ-SNM
515	co-crystals at low pH could not be measured.
516	STZ-THE co-crystals exhibited a slightly higher solubility than the one of STZ
517	crystals at the pH range from 3 to 6. The sulfonamide–induced crystalluria
518	frequently occurred during the therapy of sulfonamide, which would cause the kidney
519	lesions. ³⁰ The low solubility of sulfonamide in water is one of the reasons why it
520	deposits in urine, so that the enhancement in its solubility should help to prevent
521	crystalluria formation of sulfonamide. ³¹ At the pH range from 5.5 to 7, the solubility
522	of STZ-THE co-crystals was higher than the one of STZ crystals. The solubility
523	value of STZ enhanced by co-crystal formation may reduce the likelihood of forming
524	crystalluria of STZ.
525	Interestingly, the pH-dependent solubility of STZ crystals was altered after
526	co-crystal formation. The solubility value of STZ crystals increased drastically
527	when the pH value was < 2 or >7 , and was higher than the solubility value of
528	STZ-THE co-crystals. However, the degree of increase in the solubility value of
529	STZ-THE co-crystals was not as much as the one of STZ crystals. As for STZ-SNM
530	co-crystals, its solubility value was higher than the one of STZ-THE co-crystals but
531	lower than the one of STZ crystals in a basic environment. By taking the advantage
	28

1	
2	
2	
1	
-+ 5	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
رر 22	
50 57	
5/ 50	
58	
59	
60	

532	of this property, the degree of separation of the product can be enhanced. Since STZ
533	SNM, STZ-THE and STZ-SNM species were crystallized out by neutralization, the
534	final pH value was adjusted to 4 or 5 for getting the maximum percent yield of STZ or
535	SNM crystals. However, the final product of Inten-I-STZ-SNM co-crystals was
536	adulterated with a trace of STZ crystals when the final pH was lower to 4 or 5. The
537	endothermic peak of non-co-crystallized STZ solids at around 165.8 °C was detected
538	by DSC. Since the solubility value of STZ crystals was much higher than the one of
539	STZ-SNM co-crystals when the pH value was > 8 , the final pH was raised to 9 for
540	increasing the purity of Inten-I-STZ-SNM co-crystals by allowing the STZ species to
541	remain dissolved in the mother liquor, and only to produce the STZ-SNM co-crystals.
542	The oil-water partition coefficient, log P, of lornoxicam-saccharin sodium
543	co-crystals had been investigated in the literature. ⁵⁸ Log P had a significant effect to
544	the absorption, distribution, metabolism and excretion (ADME), and it was
545	determined by the distribution of API molecules in the 1-octanol phase and the
546	aqueous phase. HPLC was used to measure the co-crystal concentration in the
547	aqueous phase. The log P values of STZ-THE and STZ-SNM co-crystals in
548	1-octanol/water based on the concentration of dissolved STZ species were -2.1×
549	$10^{-4}\pm 0.02$ and $-6.2 \times 10^{-2}\pm 0.06$, respectively, which were lower than 0.05 of STZ
550	species. ⁵⁹ The log P value of STZ-SNM co-crystals based on the concentration of

551	dissolved SNM species in 1-octanol/water was -0.93±0.26 which was also lower than
552	-0.62 for SNM species. ⁵⁹ The decrease in partition coefficient meant that the
553	lipophilicity of STZ and SNM was reduced, but the hydrophilicity was increased.
554	The Cocry-STZ-THE and Cocry-STZ-SNM co-crystals were stored in a
555	capped glass bottle having an atmosphere of a relative humidity of 75% and a
556	temperature of 40 °C for a month. The DSC scans of both co-crystals remained the
557	same as shown in Figure S12, indicating that STZ-THE co-crystals, and STZ-SNM
558	co-crystals could be stored in a high relative humidity at 40 °C for at least a month.
559	
560	CONCLUSIONS
561	Co-crystal formation was a potential approach to modify the physicochemical
562	properties of API and to overcome the processing challenges in pharmaceutical
563	industry. 1:1 co-crystal of STZ-THE and 1:1 co-crystal of STZ-SNM were
564	successfully produced by Intensified methods I and II, respectively. The issue of
565	polymorphic impurity for synthesized SNM crystals was solved by co-crystallization.
566	Intensified Method I had reduced the number of processing steps, solvent and energy
567	consumption, and waste generation, and increased the product yields without
568	changing the effective chemical entity, process and facilities substantially. The
569	overall co-crystal percent yields by Intensified Method I were much higher than the
	30

Crystal Growth & Design

570	ones by Conventional Method. The purities of the co-crystals achieved by the two
571	methods were almost the same. Co-crystal formation could alter the original
572	thermal behavior of API or co-former, and exhibit eutectic behavior so that the
573	melting points of STZ and SNM crystals were lowered. In the solubility test, the
574	solubility values of STZ-THE co-crystals were close to the ones of STZ crystals, but
575	the solubility values of STZ-SNM co-crystals were higher than the ones of STZ
576	crystals at a variety of temperatures. Co-crystal formation altered the pH-dependent
577	solubility of STZ and SNM crystals. At the pH range from 5.5 to 7, the solubility
578	value of STZ-THE co-crystals was higher than one of STZ crystals. This implied
579	that co-crystal formation improved the solubility of STZ species, and might reduce
580	the possibility of forming crystalluria of STZ species. Besides, it was also applied to
581	dissolve an excessive amount of STZ solids in Inten-I-STZ-SNM co-crystals, so that
582	only pure STZ-SNM co-crystals were achieved when the pH value after neutralization
583	was adjusted to 9. Finally, both STZ-THE and STZ-SNM co-crystals could be
584	stored and remained stable in conditions under 75% relative humidity and at 40°C for
585	at least one month. In our future work, process analytical technology (PAT) may be
586	used to monitor nucleation and crystal growth occurring in this system. We hope
587	that the present intensified processes can be applied in many other systems and
588	extended to solvent-less production processes for co-crystals.

589	
590	ASSOCIATED CONTENT
591	Supporting Information
592	The Supporting Information is available free of charge on the ACS Publications
593	website at DOI:
594	FT-IR spectra, TGA and DSC scans, PXRD patterns, ¹ H-NMR spectra, HPLC
595	chromatograms and equations for the curve fittings of the solubility
596	
597	ACKNOWLEDGEMENT
598	This research was supported by the grants from the Ministry of Science and
599	Technology of Taiwan R.O.C. (MOST 104-2221-E-008 -070-MY3). We are greatly
600	indebted to Mrs. Jui-Mei Huang for the assistance in DSC and TGA at the Precision
601	Instrument Center and Ms. Hsiu-Luan Chen for the help in NMR at Instrumentation
602	Center of National Central University, and Mr. Tzu-Chiang Lu for the assistance in
603	HPLC at the Chunghwa Chemical Synthesis & Biotech Co., Ltd.
604	
605	
606	
	32
	ACS Paragon Plus Environment

REFERENCES

¹ Thakuria, R.; Delori, A.; Jones, W.; Lipert, M. P.; Roy, L.; Rodríguez-Hornedo, N.
Pharmaceutical Cocrystals and Poorly Soluble Drugs. *Int. J. Pharm.* 2013, *453*, 101-125.

 ² Schultheiss, N.; Newman, A. Pharmaceutical Cocrystals and Their Physicochemical Properties. *Cryst. Growth Des.* 2009, *9*, 2950-2967.

³ Sarcevica, I.; Orola, L.; Veidis, M. V.; Podjava, A.; Belyakov, S. Crystal and Molecular Structure and Stability of Isoniazid Cocrystals with Selected Carboxylic

Acids. Cryst. Growth Des. 2013, 13, 1082-1090.

⁴ Lu, J.; Rohani, S. Preparation and Characterization of Theophylline-Nicotinamide Cocrystal. Org. Process Res. Dev. 2009, 13, 1269-1275.

⁵ Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G.

Pharmaceutical Cocrystals: An Overview. Int. J. Pharm. 2011, 419, 1-11.

⁶ Sanphui, P.; Mishra, M. K.; Ramamurty, U.; Desiraju, G. R. Tuning Mechanical

Properties of Pharmaceutical Crystals with Multicomponent Crystals: Voriconazole as

a Case Study. Mol. Pharmaceutics 2015, 12, 889-897.

⁷ Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.; Hu,

J.-C.; Chen, L.-T. Stabilization and Spheroidization of Ammonium Nitrate:

Co-Crystallization with Crown Ethers and Spherical Crystallization by Solvent

2	
3	
4	
5	
6	
7	
, 8	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
-10 /17	
4/ 10	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Screening. Chem. Eng. J. 2013, 225, 809-817.
⁸ Censi, R.; Di Martino, P. Polymorph Impact on the Bioavailability and Stability of
Poorly Soluble Drugs. <i>Molecules</i> 2015 , <i>20</i> , 18759-18776.
⁹ Duggirala, N. K.; Perry, M. L.; Almarsson, Ö.; Zaworotko, M. J. Pharmaceutical
Cocrystals: Along the Path to Improved Medicines. Chem. Commun. 2016, 52,
640-655.
¹⁰ Almarsson, Ö.; Vadas, E. B. Molecules, Materials, Medicines (M3): Linking
Molecules to Medicines through Pharmaceutical Material Science. Cryst. Growth Des.
2015 , <i>15</i> , 5645-5647.
¹¹ Wang, H.; Mustaffar, A.; Phan, A. N.; Zivkovic, V; Reay, D.; Law, R.; Boodhoo, K.
A Review of Process Intensification Applied to Solids Handling. Chem. Eng. Process.

2017, 118, 78-107.

¹² Stankiewicz, A. I.; Moulijn, J. A. Process Intensification: Transforming Chemical Engineering. Chem. Eng. Prog. 2000, 96, 22-34.

¹³ Lee, T.; Lin, H. Y.; Lee, H. L. Engineering Reaction and Crystallization and the Impact on Filtration, Drying, and Dissolution Behaviors: The Study of Acetaminophen (Paracetamol) by In-Process Controls. Org. Process Res. Dev. 2013, 17, 1168-1178.

¹⁴ Ståhl, M.; Åslund, B. L.; Rasmuson, Å. C. Reaction Crystallization Kinetics of

35

Benzoic Acid. AlChE J. 2001, 47, 1544-1560.

¹⁵ Lee, H. L.; Lee, T. Direct Co-crystal Assembly from Synthesis to

Co-crystallization. CrystEngComm 2015, 17, 9002-9006.

¹⁶ Caira, M. R. Sulfa Drugs as Model Cocrystal Formers. *Mol. Pharmaceutics* **2007**,

4, 310-316.

¹⁷ Becheker, I.; Berredjem, H.; Boutefnouchet, N.; Berredjem, M.; Ladjama, A.

Antibacterial Activity of Four Sulfonamide Derivatives against Multidrug-Resistant

Staphylococcus Aureus. J. Chem. Pharm. Res. 2014, 6, 893-899.

¹⁸ Park, S.-J.; Yeo, S.-D. Antisolvent Crystallization of Sulfa Drugs and the Effect of Process Parameters. *Sep. Sci. Technol.* **2007**, *42*, 2645-2660.

¹⁹ Hu, Y.; Gniado, K.; Erxleben, A.; McArdle, P. Mechanochemical Reaction of Sulfathiazole with Carboxylic Acids: Formation of a Cocrystal, a Salt, and Coamorphous Solids. *Cryst. Growth Des.* **2014**, *14*, 803-813.

²⁰ Shefter, E.; Sackman, P. Structural Studies on Molecular Complexes V: Crystal Structures of Sulfathiazole-Sulfanilamide and Sulfathiazole-Theophylline Complexes.

J. Pharm. Sci. 1971, 60, 282-286.

²¹ Samanta, R.; Kanaujia, S.; Reddy, C. M. New Co-crystal and Salt Form of Sulfathiazole with Carboxylic Acid and Amide. *J. Chem. Sci.* **2014**, *126*, 1363-1367.

²² Suresh, K.; Minkov, V. S.; Namila, K. K.; Derevyannikova, E.; Losev, E.; Nangia,

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
-	

A.; Boldyreva, E. V. Novel Synthons in Sulfamethizole Cocrystals: Structure–
Property Relations and Solubility. Cryst. Growth Des. 2015, 15, 3498-3510.
²³ Aitipamula, S.; Chow, P. S.; Tan, R. B. H. Trimorphs of a Pharmaceutical Cocrystal
Involving Two Active Pharmaceutical Ingredients: Potential Relevance to
Combination Drugs. CrystEngComm 2009, 11, 1823-1827.
²⁴ Chou, TC. Drug Combination Studies and Their Synergy Quantification Using
the Chou-Talalay Method. Cancer Res. 2010, 70, 440-446.
²⁵ Chou, T. C. Theoretical Basis, Experimental Design, and Computerized Simulation
of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006,
58, 621-681.
²⁶ Thipparaboina, R.; Kumar, D; Chavan, R. B.; Shastri, N. R. Multidrug Co-crystals:
Towards the Development of Effective Therapeutic Hybrids. Drug Discovery Today
2016 , <i>21</i> , 481-490.
²⁷ Fischbach, M. A. Combination Therapies for Combating Antimicrobial Resistance.
Curr. Opin. Microbiol. 2011, 14, 519-523.

²⁸ Feng, L.; Karpinski, P. H.; Sutton, P.; Liu, Y.; Hook, D. F.; Hu, B.; Blacklock, T. J.; Fanwick, P. E.; Prashad, M.; Godtfredsen, S.; Ziltener, C. LCZ696: A Dual-Acting Sodium Supramolecular Complex. *Tetrahedron Lett.* **2012**, *53*, 275-276.

²⁹ Grobelny, P.; Mukherjee, A.; Desiraju, G. R. Drug-Drug Co-crystals:

Temperature-Dependent Proton Mobility in the Molecular Complex of Isoniazid with 4-Aminosalicylic Acid. *CrystEngComm* **2011**, *13*, 4358-4364.

³⁰ Lehr, D.; Slobody, L.; Greenberg, W. The Use of a Sulfadiazine-Sulfathiazole

Mixture in the Treatment of Children. J. Pediatr. 1946, 29, 275-285.

³¹ Schwartz, L.; Flippin, H. F.; Reinhold, J. G.; Domm, A. H. The Effect of Alkali on Crystalluria from Sulfathiazole and Sulfadiazine. *JAMA*, *J. Am. Med. Assoc.* **1941**, *117*, 514-515.

³² Lee, T.; Chen, Y. H.; Zhang, C. W. Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (*R*,*S*)-(±)-Sodium Ibuprofen Dihydrate. *Pharm. Technol.* **2007**, *31*, 72-87.

³³ Bakar, M. R. A.; Nagy, Z. K.; Rielly, C. D.; Dann, S. E. Investigation of the Riddle of Sulfathiazole Polymorphism. *Int. J. Pharm.* 2011, 414, 86-103.

³⁴ Ildiz, G. O.; Akyuz, S. Conformational Analysis and Vibrational Study of Sulfanilamide. *Vib. Spectrosc.* 2012, *58*, 12-18.

³⁵ Ehiwe, T. O.; Alexander, B. D.; Mitchell, J. C.; Snowden, M. J.; Waters, L. J. Monitoring Real Time Polymorphic Transformation of Sulfanilamide by Diffuse Reflectance Visible Spectroscopy. *J. Pharm. Anal.* **2016**, *6*, 179-183.

³⁶ Munroe, Á.; Rasmuson, Å. C.; Hodnett, B. K.; Croker, D. M. Relative Stabilities of the Five Polymorphs of Sulfathiazole. *Cryst. Growth Des.* **2012**, *12*, 2825-2835.

2	
3	
4	
5	
ر م	
0	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
ב_2 ∧ר	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36	
20	
57	
38	
39	
40	
41	
47	
<u>7</u>	
Cד ۸ ۸	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

³⁷ Portieri, A.; Harris, R. K.; Fletton, R. A.; Lancaster, R. W.; Threlfall, T. L. Effects
of Polymorphic Differences for Sulfanilamide, as Seen through ¹³ C and ¹⁵ N Solid-
State NMR, Together with Shielding Calculations. Magn. Reson. Chem. 2004. 42,
313-320.
³⁸ Apperley, D. C.; Fletton, R. A.; Harris, R. K.; Lancaster, R. W.; Tavener, S.;
Threlfall, T. L. Sulfathiazole Polymorphism Studied by Magic-Angle Spinning NMR.
J. Pharm. Sci. 1999, 88, 1275-1280.
³⁹ Lin, H. O.; Guillory, J. K. Polymorphism in Sulfanilamide-d ₄ . J. Pharm, Sci. 1970 ,
59, 972-975.
⁴⁰ Cleary Jr., T. F. Process for Preparing Sulfathiazole. U. S. Patent 2,592,860, April
15, 1952.
⁴¹ Boyle, J; Otty, S.; Sarojini, V. A Safer and Convenient Synthesis of Sulfathiazole
for Undergraduate Organic and Medicinal Chemistry Classes. J. Chem. Educ. 2012,
89, 141-143.
⁴² Bellú, S.; Hure, E.; Trapé, M.; Rizzotto, M.; Sutich, E.; Sigrist, M.; Moreno, V. The
Interaction between Mercury (II) and Sulfathiazole. Quim. Nova 2003, 26, 188-192.
⁴³ Anderson, J. E.; Moore, S.; Tarczynski, F.; Walker, D. Determination of the Onset
of Crystallization of N^1 -2-(Thiazolyl)Sulfanilamide (Sulfathiazole) by UV-Vis and
Calorimetry Using an Automated Reaction Platform; Subsequent Characterization of 39

Polymorphic Forms Using Dispersive Raman Spectroscopy. *Spectrochim. Acta, Part A* 2001, *57*, 1793-1808.

⁴⁴ Varghese, H. T.; Panicker, C. Y.; Anto, P. L; Philip, D. Potential Dependent SERS
Profile of Sulfanilamide on Silver Electrode. *J. Raman Spectrosc.* 2006, *37*, 487-491.
⁴⁵ Cullity, B. D.; Stock, S. R. Diffraction III: Real Samples. *Elements of X-ray Diffraction*, 3rd Edition; Pearsons Eduction Limited: London, 2001; pp 174-177.
⁴⁶ Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. *Z. Phys. Chem.* 1897, *22*, 289-330.

⁴⁷ Chemburkar, S. R.; Bauer, J.; Deming, K.; Spiwek, H.; Patel, K.; Morris, J.; Henry,

R.; Spanton, S.; Dziki, W.; Porter, W.; Quick, J.; Bauer, P.; Donaubauer, J.; Narayanan,

B. A.; Soldani, M.; Riley, D.; McFarland, K. Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development. *Org. Process Res.*

Dev. **2000**, *4*, 413-417.

⁴⁸ Xu, D.; Xue, D. Chemical Bond Analysis of the Crystal Growth of KDP and ADP.

J. Cryst. Growth 2006, 286, 108-113.

⁴⁹ Haines, P. J. Differential Thermal Analysis and Differential Scanning Calorimetry.
 Thermal Methods of Analysis: Principles, Applications and Problems; Blackie
 Academic & Professional: New York, 1995; pp 89.

⁵⁰ Li, Z. J.; Ojala, W. H.; Grant, D. J. W. Molecular Modeling Study of Chiral Drug

1	
2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>Δ1</u>	
17	
-⊤∠ ⁄\?	
ر ب	
44 15	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
50	
29	
00	

Crystals: Lattice Energy Calculations. *J. Pharm. Sci.* 2001, *90*, 1523-1539.
⁵¹ McNamara, D. P; Childs, S. L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M. S.; Mannion, R.; O'Donnell, E.; Park, A. Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API. *Pharm. Res.* 2006, *23*, 1888-1897.
⁵² Cherukuvada, S.; Guru Row, T. N. G. Comprehending the Formation of Eutectics and Cocrystals in Terms of Design and Their Structural Interrelationships. *Cryst. Growth Des.* 2014, *14*, 4187-4198.
⁵³ Cherukuvada, S.; Nangia, A. Fast Dissolving Eutectic Compositions of Two Anti-tubercular Drugs. *CrystEngComm* 2012, *14*, 2579-2588.
⁵⁴ Padrela, L.; de Azevedo, E. G.; Velaga, S. P. Powder X-ray Diffraction Method for the Quantification of Cocrystals in the Crystallization Mixture. *Drug Dev. Ind. Pharm.*

2012, *38*, 923-929.

⁵⁵ Spectral Database for Organic Compounds SDBS <u>http://sdbs.db.aist.go.jp</u>
 (National Institute of Advanced Industrial Science and Technology, last assessed on

August 17)

⁵⁶ Garekani, H. A.; Sadeghi, F.; Badiee, A.; Mostafa, S. A.; Rajabi-Siahboomi, A. R. Crystal Habit Modifications of Ibuprofen and Their Physicomechanical Characteristics. *Drug Dev. Ind. Pharm.* **2001**, *27*, 803-809.

⁵⁷ Tung, H.-H.; Paul, E. L.; Midler, M.; McCauley, J. A. Properties. *Crystallization of Organic Compounds, An Industrial Perspective*; A John Wiley & Sons, Inc: New York,

2009; pp 44.

⁵⁸ Gadade, D. D.; Kulkarni, D. A.; Rathi, P. B.; Pekamwar. S. S.; Joshi, S. S.

Solubility Enhancement of Lornoxicam by Crystal Engineering. Indian J. Pharm. Sci.

, *79*, 277-286.

⁵⁹ Pyka, A.; Babuśka, M.; Zachariasz, M. A Comparison of Theoretical Methods of

Calculation of Partition Coefficients for Selected Drugs. Acta Pol. Pharm. 2006, 63,

159-167.

Scheme 1. Processes of Conventional Method, Intensified Methods I and II.

Figure 1. FT-IR spectra of (a) purchased STZ crystals, (b) synthesized STZ crystals,(c) purchased SNM crystals, and (d) synthesized SNM crystals.

Figure 2. PXRD patterns of (a) purchased STZ crystals, (b) synthesized STZ crystals, and (c) theoretical diffraction pattern of Form III STZ crystals (CCDC code: SUTHZ02).

Figure 3. PXRD patterns of (a) purchased SNM crystals, (b) synthesized SNM crystals, (c) theoretical diffraction pattern of Form β SNM crystals (SULAMD03), and (d) theoretical diffraction pattern of Form γ SNM crystals (CCDC code: SULAMD02).

Figure 4. PXRD patterns of (a) Cocry-STZ-THE co-crystals, (b) Inten-I-STZ-THE co-crystals, and theoretical diffraction pattern of STZ-THE co-crystals (CCDC code: SULTHE01).

Figure 5. PXRD patterns of (a) Cocry-STZ-SNM co-crystals, (b) Inten-I-STZ-SNM co-crystals, and (c) theoretical diffraction pattern of STZ-SNM co-crystals (CCDC code: STHSAM01).

Figure 6. DSC scans of (a) purchased THE crystals, (b) Cocry-STZ-THE co-crystals, (c) Inten-I-STZ-THE co-crystals, (d) Cocry-STZ-SNM co-crystals, and (e)

Inten-I-STZ-SNM co-crystals.

Figure 7. OM images of (a) synthesized STZ crystals, (b) synthesized SNM crystals,

(c) Cocry-STZ-THE co-crystals, (d) Inten-I-STZ-THE co-crystals, (e)

Cocry-STZ-SNM co-crystals, and (f) Inten-I-STZ-SNM co-crystals.

Figure 8. PXRD diffraction patterns of (a) Inten-II-STZ-SNM co-crystals, and (b) theoretical diffraction pattern of STZ-SNM co-crystals (*: diffraction peaks of Form γ SNM).

Figure 9. DSC scan of Inten-II-STZ-SNM co-crystals.

Figure 10. Solubility curves of (a) ■ purchased STZ crystals, ● purchased SNM crystals, ▲ purchased THE crystals, (b) ■ purchased STZ crystals, ● Cocry-STZ-THE co-crystals, ▲ Cocry-STZ-SNM co-crystals, ▼ physical blend of purchased STZ and purchased THE crystals with a molar ratio of 1:1 in water, and ◄ physical blend of purchased STZ and purchased SNM crystals with a molar ratio of 1:1 in water.

	1 1	5			
Method	STZ-THE		STZ-SNM		
Sample	Conventional (%)	Intensified (%)	Conventional (%)	Intensified (%)	
Synthesized STZ	60.6				
Synthesized SNM			52.4		
Cocry-STZ-THE	68.1				
Cocry-STZ-SNM			73.8		
Inten-I-STZ-THE		81.0			
Inten-I-STZ-SNM				73.7	
Overall	41.3	81.0	38.7	73.7	

 Table 1. The comparison of the product yields from different methods.

The yields were calculated as the experiment weight of product divided by the theoretical weight of products multiplied by 100%.

Table 2. HPLC results of the crystals harvested from different methods.

	,		
Sample	Purity (%)	Component Ratio	Retention Time (min)
Synthesized STZ	99.2		6.4
Synthesized SNM	99.5		3.3
Inten-I-STZ-THE	99.0	1.03:1 (STZ:THE)	6.4 (STZ) / 7.2 (THE)
Inten-I-STZ-SNM	99.4	1.06:1 (STZ:SNM)	3.4 (SNM) / 6.5 (STZ)
Inten-II-STZ-SNM	98.3	0.87:1 (STZ:SNM)	3.3 (SNM) / 6.4 (STZ)

3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
20		
27		
20 20		
29		
30		
37		
32		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		

Table 3. Solubility values of purchased STZ crystals, purchased SNM crystals,
Cocry-STZ-THE co-crystals and Cocry-STZ-SNM co-crystals at various pH values
and 37 °C in water.

Sample	рН	Solubility (10 ³ M)
Purchased STZ	1.15	35.63
	1.67	9.12
	2.52	4.18
	3.36	3.08
	4.95	2.67
	5.19	2.77
	5.67	3.06
	6.80	4.07
	7.47	8.51
	8.20	37.56
Purchased SNM	1.53	97.96
	2.65	94.09
	3.71	77.83
	4.51	67.68
	6.22	66.10
	6.85	71.73
	7.41	75.25
	8.27	79.73
	1.07	14.55
	1.54	7.92
Cocry-STZ-THE	2.34	3.95
	3.44	3.28
	4.87	3.39
	5.62	3.26
	6.39	3.77
	7.15	4.42
	7.81	7.67
	8.20	14.11
Cocry-STZ-SNM	7.29	7.29
	7.96	15.01
	8.19	19.43