Paweł Żmudzki*, Grzegorz Satała, Grażyna Chłoń-Rzepa, Andrzej J. Bojarski, Piotr Popik and Paweł Zajdel

N-(4-Arylpiperazinoalkyl)acetamide derivatives of 1,3- and 3,7-dimethyl-1*H*-purine-2,6(3*H*,7*H*)diones and their 5-HT₆, 5-HT₇, and D₂ receptors affinity

Abstract: A series of *N*-(arylpiperazinyl)acetamide derivatives of 1,3- and 3,7-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione was synthesized and biologically evaluated in *in vitro* competition binding experiments for serotonin 5-HT₆, 5-HT₇ and dopamine D₂ receptors. The structure-affinity relationships for this group of compounds allowed for determination of structural features responsible for receptor affinity. Among the investigated derivatives, compounds **5** and **12** with (2,3-dichlorophenyl)piperazine moiety were classified as potent dual 5-HT₆/D₂ receptors ligands, whereas compound **4**, with 4-(benzo[*d*]isothiazol-3-yl)piperazine moiety, and compounds **8** and **15**, with (2,3-dichlorophenyl)piperazine moiety, were classified as potent D₂ receptor ligands.

Keywords: 5-HT₆ receptor ligands; 5-HT₇ receptor ligands; D_2 receptor ligands; long-chain arylpiperazines; theobromine; theophylline.

DOI 10.1515/hc-2014-0200 Received December 1, 2014; accepted December 15, 2014

Introduction

Compounds with affinity for serotoninergic (5-HT₆, 5-HT₇) and dopaminergic type 2 receptors (D_2Rs) exhibit potential for the treatment of diverse central nervous system disorders, e.g., depression [1, 2], schizophrenia [3], as well as dementia [4] and Alzheimer disease [5]. Importantly, derivatives with mixed receptor binding profile, often called serotonin/dopamine modulators, may attenuate both negative, positive symptoms of schizophrenia, as well as improve cognitive deficits [6, 7].

A vast group of compounds with mixed serotonin/ dopamine receptor binding profile belongs to a class of long-chain arylpiperazines (LCAPs). Typically, in such derivatives, the arylpiperazine moiety is connected *via* an alkyl linker to the terminal fragment. For several years, we have been interested in developing of LCAPs with different xanthine moieties playing a role of a cyclic amide core in the terminal fragment. In our previous paper, we have described a series of derivatives possessing 8-alkoxy-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione core, which behaved as 5-HT₁₄ receptors agonists [8].

The aim of our study was to investigate structureaffinity relationships for the 5-HT₆, 5-HT₇, and D₂ receptors in a group of LCAPs with xanthine moieties in the terminal fragment and an additional amide bond in the linker. For this purpose, we have designed a series of new N-(arylpiperazinylalkyl)acetamide derivatives of 1,3and 3,7-dimethyl-1H-purine-2,6(3H,7H)-dione with a different length polymethylene spacer between the amide moiety and the basic nitrogen atom. Structural modifications in the amine fragment comprised introduction of 1-(2,3-dichlorophenyl)piperazine and 1-(benzo[d]isothiazol-3-yl)piperazine, as substructures related to aripiprazole and ziprasidone (Figure 1), respectively. To further examine an impact of replacement of sulfur atom with oxygen atom on affinity, the analogues with 1-(benzo[d]isoxazol-3-yl)piperazine moiety were also synthesized.

^{*}Corresponding author: Paweł Żmudzki, Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna, 30-688 Kraków, Poland, e-mail: zmudzki.p@gmail.com Grzegorz Satała and Andrzej J. Bojarski: Institute of Pharmacology, Department of Medicinal Chemistry, Polish Academy of Sciences, 12 Smętna, 31-343 Kraków, Poland

Grażyna Chłoń-Rzepa and Paweł Zajdel: Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna, 30-688 Kraków, Poland

Piotr Popik: Institute of Pharmacology, Department of Behavioral Neuroscience and Drug Development, Polish Academy of Sciences, 12 Smętna, 31-343 Kraków, Poland

Figure 1 Aripiprazole, ziprasidone, and a general structure of 8-alkoxy-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione derivatives [8].

Results and discussion

The designed compounds were synthesized in reaction of appropriate xanthinylacetic acids, obtained according to

the methods previously reported by Maślankiewicz et al. [9], and arylpiperazinoalkylamines, using 1,1'-carbonyldiimidazole (CDI) as activating agent (Schemes 1 and 2).

In the first step, 1,3- or 3,7-dimethyl-1H-purine-2,6(3H,7H)-dione was alkylated by treatment with ethyl 2-chloroacetate in the presence of anhydrous K₂CO₂ and (*N*,*N*,*N*-triethylbenzylammonium TEBA chloride) in acetone, vielding ethyl 2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetate [9] and 2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)acetate [9], respectively. The esters were subsequently hydrolyzed with 10% solution of NaOH in a water-acetone mixture (2:1), and the resulting acids were isolated after acidification of the reaction mixture. The final products were obtained by acylation of the appropriate arylpiperazino-(4-(benzo[d]))isothiazol-3-yl)piperazino-, benzo[d]isoxazol-3-yl)piperazinyl-, or 4-(2,3-dichlorophenyl)piperazino-) derivative of alkylamine with 2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)acetic acid (I) [9] or 2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)acetic acid (II) [9] at room temperature in DMF, using CDI as activating agent. The structures of the newly synthesized compounds 1-15 were confirmed by analysis of ¹H NMR and ¹³C NMR spectra, LC/MS, and elemental analysis. The investigated compounds were pharmacologically tested as free bases.

Scheme 2

The newly synthesized *N*-(arylpiperazinylalkyl) acetamide derivatives of 1,3- and 3,7-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione were tested in competition binding experiments for 5-HT₆, 5-HT₇ and D₂ receptors. Compounds displayed high to low affinity for the tested receptors, ranging from 14 nM to 100 μ M for 5-HT₆Rs, from 100 nM to 4789 nM for 5-HT₇Rs, and 1–2090 nM for D₂Rs (Tables 1 and 2).

The affinity for 5-HT₆ and D₂ receptors depended on the type of the xanthine core: 1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione derivatives displayed higher affinity for 5-HT₆ and D₂ receptors than their 3,7-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione counterparts, e.g., compound **8** vs. compound **15** ($K_{i(D_2)} = 85$ and 1 nM, respectively). Interestingly, a type of the xanthine core did not significantly influence affinity for 5-HT₂Rs.

The impact of the length of the polymethylene spacer between the amide moiety and the basic nitrogen atom was evident: compounds with trimethylene spacer displayed the highest affinity for 5-HT₆ and D₂ receptors. Compounds **4** and **5** displayed over 9- and 59-fold higher affinity for 5-HT₆ receptors than their lower homologues, compounds **1** and **3**, respectively, and over 5- and 18-fold higher affinity than their higher homologues, compounds **6** and **8**. Although a dimethylene group spacer was the least preferential for 5-HT₇Rs, trimethylene, and tetramethylene analogues display comparable affinity for these sites.

Table 1 Binding affinities of the synthesized *N*-(arylpiperazinoalkyl) acetamide derivatives of 1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione for 5-HT₂, 5-HT₂, and D, receptors.

Compound	n	R	<i>К</i> _i (nм)ª			
			5-HT ₆	5-HT ₇	D ₂	
1	2	Benzo[d]isothiazol-3-yl	1873	999	273	
2	2	Benzo[d]isoxazol-3-yl	2302	1008	1474	
3	2	2,3-Dichlorophenyl	827	3056	542	
4	3	Benzo[d]isothiazol-3-yl	208	110	2	
5	3	2,3-Dichlorophenyl	14	224	7	
6	4	Benzo[d]isothiazol-3-yl	1144	100	37	
7	4	Benzo[d]isoxazol-3-yl	1329	121	219	
8	4	2,3-Dichlorophenyl	263	268	16	
Aripiprazole ^b			90	26	0.8	
Ziprasidone			20	1	0.8	

 ^aK_i values (SEM±26) based on three independent binding experiments.
^bFrom reference [10].

Table 2Binding affinities of the synthesizedN-(arylpiperazinoalkyl)acetamide derivatives of 3,7-dimethyl-1H-purine-2,6(3H,7H)-dione for 5-HT₆, 5-HT₇, and D₂ receptors.

Compound	n	R		<i>К_і</i> (nм)ª		
			5-HT ₆	5-HT ₇	D ₂	
9	2	Benzo[d]isothiazol-3-yl	4878	2176	401	
10	2	Benzo[d]isoxazol-3-yl	>100 000	1102	2090	
11	2	2,3-Dichlorophenyl	1066	4789	104	
12	3	2,3-Dichlorophenyl	22	381	2	
13	4	Benzo[d]isothiazol-3-yl	393	178	35	
14	4	Benzo[d]isoxazol-3-yl	626	125	339	
15	4	2,3-Dichlorophenyl	85	183	1	
Aripiprazole ^b			90	26	0.8	
Ziprasidone			20	1	0.8	

^aK_i values (SEM±26) based on three independent binding experiments.

^bFrom reference [10].

Further analysis of the affinity data suggested that replacement of carbostyryl fragment in aripiprazole with xanthinylacetamide moiety increased affinity of 2,3-dichlorophenylpiperazines for 5-HT₆Rs (compounds **5** and **12** vs. aripiprazole). At the same time, this modification significantly decreased affinity for 5-HT₇Rs. As a consequence, compounds **5** and **12** were classified as potent 5-HT₆/D₂ receptor ligands. The same modification of ziprasidone structure significantly increased the affinity for 5-HT₆ and 5-HT₇ receptors, while this effect was much smaller in case of D₂ receptors (**4** vs. ziprasidone).

Structure-activity relationship studies in the arylpiperazine function suggested that highly lipophilic 1-(2,3-dichlorophenyl)piperazine moiety guaranteed high affinity for 5-HT₆ and D₂Rs. Compounds with 1-(benzo[d] isothiazol-3-yl)piperazine moiety displayed lower affinity for these receptors. Further substitution of the sulfur atom in 1-(benzo[d]isothiazol-3-yl)piperazine with oxygen atom, which decreased the lipophilicity of the fragment, also caused further loss of affinity. This can be easily observed with direct structural analogues 15 vs. 13 vs. 14, containing 4-(2,3-dichlorophenyl)piperazino, 4-(benzo[d]isothiazol-3-yl)piperazino, and 4-(benzo[d] isoxazol-3-yl)piperazino moieties, respectively. Simultaneously, an influence of arylpiperazine moiety on the affinity for 5-HT, receptors suggested that generally less lipophilic substituents were preferred, but this influence was much weaker than for 5-HT₆ and D₂ receptors,

e.g., compound **15** had comparable affinity for 5-HT₇Rs to those of compounds **13** and **14**.

Conclusions

We have designed and synthesized a series of 15 new *N*-(arylpiperazinylalkyl)acetamide derivatives of 1,3- and 3,7-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-diones. The study allowed for identification of potent 5-HT₆/D₂ receptor ligands (compounds **5** and **12**) and D₂ receptor agents (compounds **4**, **8**, and **15**). Structure-affinity relationships studies showed that the 3,7-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione core, a polymethylene spacer containing three methylene groups, and 2,3-dichlorophenypiperazine were the optimal elements for high affinity for 5-HT₆ and D₂ receptors.

Experimental

Melting points (mp) were determined with a Büchi Melting Point B-545 apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were taken with a Varian Mercury-VX (300 MHz) spectrometer in DMSO-*d*₆ solutions, using signals of solvent's residual ¹H and ¹³C atoms as internal standards ($\delta = 2.49$ and 39.7 ppm, respectively). LC/ MS analyses were performed on Waters Acquity TQD apparatus with $e\lambda$ DAD detector. For mass spectrometry, ESI+ (electrospray positive) ionization mode was used. The progress of the reactions and the purity of compounds were routinely checked by TLC using Merck Kieselgel 60 F_{254} sheets and eluting with dichloromethane/methanol, 90:10. Spots were detected by UV irradiation. All final compounds had purity over 95%. Elemental analyses were taken with Elementar Vario EL III apparatus. All *in vitro* radioligand binding assays were carried out using methods published by Zajdel et al. [10].

General procedure for preparation of *N*-(arylpiperazino) acetamide derivatives of 1,3- and 3,7-dimethyl-1*H*-pu-rine-2,6(3*H*,7*H*)-dione 1–15

A mixture of 1 equiv (0.0004 mol) of 2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetic acid (**I**) or 2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-1-yl)acetic acid (**II**) with 1.5 equiv of CDI in DFM was stirred in room temperature for 1 h. Afterward, 1 equiv of appropriate amine was added, and stirring was continued for 48 h. Then the mixture was concentrated under reduced pressure and crude product was purified by silica gel chromatography eluting with dichloromethane/methanol (95:5).

N-[2-(4-(Benzo[*d*]isothiazol-3-yl)piperazin-1-yl)ethyl]-2-(1,3-dime-thyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetamide (1): This compound was obtained from I in 59% yield; mp 218–220°C; $R_f = 0.31$; ¹H NMR: $\delta 2.53$ (t, ³*J* = 6.2 Hz, 2H), 2.63–2.66 (m, 4H), 3.27 (s, 3H),

3.33 (t, ${}^{3}J$ = 6.2 Hz, 2H), 3.45–3.47 (m, 4H), 3.48 (s, 3H), 4.87 (s, 2H), 7.28 (ddd, ${}^{3}J$ = 8.1 Hz, ${}^{3}J$ = 7.1 Hz, ${}^{4}J$ = 1.2 Hz, 1H), 7.39 (ddd, ${}^{3}J$ = 8.1 Hz, ${}^{3}J$ = 7.1 Hz, ${}^{4}J$ = 1.2 Hz, 1H), 7.69 (s, 1H), 7.70–7.76 (m, 1H), 7.80 (dt, ${}^{3}J$ = 8.1 Hz, ${}^{4}J$ = 1.0 Hz, 1H); 13 C NMR: δ 27.8, 29.7, 36.2, 48.9, 49.6, 52.6, 56.6, 106.9, 120.5, 123.7, 124.0, 127.7, 127.8, 142.8, 148.5, 151.6, 152.4, 155.4, 163.7, 166.1. Anal. Calcd for C $_{22}H_{26}N_8SO_3$: C, 54.76; H, 5.43; N, 23.22. Found: C, 54.89; H, 5.25; N, 23.12. LC/MS: calcd *m/z* 483.19, found *m/z* 483.32.

N-[2-(4-(Benzo[*d*]isoxazol-3-yl)piperazino)ethyl]-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetamide (2): This compound was obtained from I in 61% yield; mp 163–165°C; $R_f = 0.31$; ¹H NMR: $\delta 2.55$ (t, ³*J* = 6.0 Hz, 2H), 2.60–2.68 (m, 4H), 3.37 (s, 3H), 3.38–3.44 (m, 2H), 3.50–3.56 (m, 4H), 3.57 (s, 3H), 4.90 (s, 2H), 7.12–7.25 (m, 2H), 7.40–7.54 (m, 2H), 7.66 (d, ³*J* = 8.0 Hz), 7.72 (s, 1H); ¹³C NMR: $\delta 28.1$, 29.9, 36.4, 48.2, 49.9, 52.1, 56.4, 106.7, 110.5, 116.0, 122.0, 122.4, 129.6, 142.3, 148.9, 151.5, 155.6, 161.1, 164.0, 165.6. Anal. Calcd for C₂₂H₂₆N₈O₄: C, 56.64; H, 5.62; N, 24.02. Found: C, 56.54; H, 5.29; N, 24.10. LC/MS: calcd *m/z* 467.21, found *m/z* 467.37.

N-[2-(4-(2,3-Dichlorophenyl)piperazino)ethyl]-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetamide (3): This compound was obtained from I in 77% yield mp 222–223°C; $R_f = 0.28$; ¹H NMR: δ 2.44 (t, ³*J* = 6.3 Hz, 2H), 2.49–2.59 (m, 4H), 2.82–2.96 (m, 4H), 3.21 (s, 3H), 3.24–3.28 (m, 2H), 3.41 (s, 3H), 4.81 (s, 2H), 6.72–6.87 (m, 1H), 6.96–7.07 (m, 2H), 7.60–7.70 (m, 2H); ¹³C NMR: δ 27.7, 29.6, 36.2, 48.8, 50.7, 52.8, 56.5, 106.9, 118.4, 124.6, 127.2, 127.4, 133.8, 142.8, 148.4, 150.6, 151.6, 155.2, 166.2. Anal. Calcd for C₂₁H₂₅N₇O₃Cl₂: C, 51.02; H, 5.10; N, 19.83. Found: C, 51.20; H, 4.85; N, 19.91. LC/MS: calcd *m/z* 494.15, found *m/z* 494.29.

N-[3-(4-(Benzo[*d*]isothiazol-3-yl)piperazino)propyl]-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetamide (4): This compound was obtained from I in 58% yield; mp 104–106°C; $R_r = 0.40$; ¹H NMR: δ 1.69–1.79 (m, 2H), 2.52–2.59 (m, 2H), 2.69–2.72 (m, 4H), 3.33–3.42 (m, 2H), 3.36 (s, 3H), 3.53–3.58 (m, 4H), 3.57 (s, 3H), 4.86 (s, 2H), 7.35 (ddd, ³*J* = 8.4 Hz, ³*J* = 6.9 Hz, ⁴*J* = 1.0 Hz, 1H), 7.46 (ddd, ³*J* = 8.5 Hz, ³*J* = 6.9 Hz, ⁴*J* = 1.0 Hz, 1H), 7.70 (s, 1H), 7.80 (dt, ³*J* = 8.0 Hz, ⁴*J* = 1.0 Hz, 1H), 7.66–7.69 (m, 1H), 7.70 (s, 1H), 7.80 (dt, ³*J* = 8.0 Hz, ⁴*J* = 0.9 Hz, 1H), 7.87–7.90 (m, 1H); ¹³C NMR: δ 25.1, 28.0, 29.8, 39.4, 49.8, 50.1, 53.0, 56.9, 106.8, 120.6, 123.8, 124.0, 127.6, 127.9, 142.4, 148.7, 151.5, 152.7, 155.5, 163.7, 165.4. Anal. Calcd for C₂₃H₂₈N₈SO₃: C, 55.56; H, 5.68; N, 22.56. Found: C, 55.32; H, 5.55; N, 22.51. LC/MS: calcd *m/z* 497.21, found *m/z* 497.35.

N-[3-(4-(2,3-Dichlorophenyl)piperazino)propyl]-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetamide (5): This compound was obtained from I in 61% yield; mp 184–185°C; R_f = 0.25; ¹H NMR: δ 1.73 (quin, ³*J* = 6.4 Hz, 2H), 2.52 (t, ³*J* = 6.5 Hz, 2H), 2.28–2.77 (m, 4H), 2.99–3.21 (m, 4H), 3.34–3.40 (m, 2H), 3.38 (s, 3H), 3.58 (s, 3H), 4.87 (s, 2H), 6.98 (dd, ³*J* = 6.7 Hz, ⁴*J* = 3.1 Hz, 1H), 7.09–7.18 (m, 2H), 7.73 (s, 1H), 7.77–7.87 (m, 1H); ¹³C NMR: δ 25.1, 28.0, 29.8, 39.4, 49.8, 51.3, 53.3, 56.7, 106.7, 118.6, 124.7, 127.4, 127.5, 134.0, 142.4, 148.9, 151.0, 151.5, 155.6, 165.3. Anal. Calcd for C₂₂H₂₇N₇O₃Cl₂: C, 51.97; H, 5.35; N, 19.29. Found: C, 51.81; H, 5.12; N, 19.19. LC/MS: calcd *m*/*z* 508.16, found *m*/*z* 508.32.

N-[4-(4-(Benzo[*d*]isothiazol-3-yl)piperazino)butyl]-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetamide (6): This compound was obtained from I in 77% yield; mp 108–109°C; $R_f = 0.28$; ¹H NMR: δ 1.44–1.47 (m, 4H), 2.35 (t, ³*J* = 7.2 Hz, 2H), 2.58–2.62 (m, 4H), 3.23 (t, ${}^{3}J$ = 6.2 Hz, 2H), 3.24 (s, 3H), 3.43–3.46 (m, 4H), 3.45 (s, 3H), 4.82 (s, 2H), 7.25 (ddd, ${}^{3}J$ = 8.3 Hz, ${}^{3}J$ = 6.8 Hz, ${}^{4}J$ = 1.2 Hz, 1H), 7.37 (ddd, ${}^{3}J$ = 8.0 Hz, ${}^{3}J$ = 7.0 Hz, ${}^{4}J$ = 1.2 Hz, 1H), 7.50–7.52 (m, 1H), 7.67 (s, 1H), 7.68–7.69 (m, 1H), 7.78 (dd, ${}^{3}J$ = 6.8 Hz, ${}^{4}J$ = 1.2 Hz, 1H); 13 C NMR: δ 23.5, 26.8, 27.8, 29.6, 39.3, 48.8, 49.6, 52.7, 57.9, 106.9, 120.4, 123.7, 124.0, 127.6, 127.7, 142.9, 148.5, 151.6, 152.4, 155.3, 163.3, 166.0. Anal. Calcd for C₂₄H₃₀N₈SO₃: C, 56.45; H, 5.92; N, 21.94. Found: C, 56.55; H, 5.87; N, 21.81. LC/MS: calcd *m/z* 511.22, found *m/z* 511.37.

N-[4-(4-(Benzo[*d*]isoxazol-3-yl)piperazino)butyl]-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetamide (7): This compound was obtained from I in 94% yield; mp 146–147°C; $R_f = 0.38$; ¹H NMR: δ 1.50–1.58 (m, 4H), 2.40 (t, ³*J* = 6.9 Hz, 2H), 2.60–2.63 (m, 4H), 3.24–3.30 (m, 2H), 3.37 (s, 3H), 3.55–3.58 (m, 4H), 3.57 (s, 3H), 4.86 (s, 2H), 7.20 (ddd, ³*J* = 8.1 Hz, ³*J* = 6.4 Hz, ⁴*J* = 1.7 Hz, 1H), 7.37 (t, ³*J* = 5.4 Hz, 1H), 7.40–7.50 (m, 2H), 7.66–7.69 (m, 1H), 7.72 (s, 1H); ¹³C NMR: δ 23.9, 27.1, 28.1, 29.9, 39.7, 48.1, 50.1, 52.4, 57.9, 106.7, 110.5, 116.1, 122.1, 122.3, 129.5, 142.5, 149.0, 151.4, 155.8, 161.2, 163.9, 165.5. Anal. Calcd for C₂₄H₃₀N₈O₄: C, 58.29; H, 6.11; N, 22.66. Found: C, 58.48; H, 6.05; N, 22.55. LC/MS: calcd *m/z* 495.25, found *m/z* 495.42.

N-[4-(4-(2,3-Dichlorophenyl)piperazino)butyl]-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1*H*-purin-7(6*H*)-yl)acetamide (8): This compound was obtained from I in 50% yield; mp 167–169°C; $R_f = 0.14$; ¹H NMR: δ 1.54–1.58 (m, 4H), 2.44 (t, ³*J* = 6.7 Hz, 2H), 2.55–2.73 (m, 4H), 3.00–3.15 (m, 4H), 3.27 (q, ³*J* = 5.4 Hz, 2H), 3.39 (s, 3H), 3.59 (s, 3H), 4.86 (s, 2H), 6.96 (dd, ³*J* = 6.5 Hz, ⁴*J* = 3.2 Hz, 1H), 7.07–7.20 (m, 2H), 7.30–7.45 (m, 1H), 7.73 (s, 1H); ¹³C NMR: δ 24.0, 27.1, 28.1, 29.9, 39.7, 50.1, 51.1, 53.2, 57.8, 106.6, 118.6, 124.7, 127.4, 127.5, 134.0, 142.4, 149.1, 151.1, 151.4, 155.8, 165.3. Anal. Calcd for C₂₃H₂₉N₇O₃Cl₂: C, 52.88; H, 5.60; N, 18.77. Found: C, 53.01; H, 5.38; N, 18.73. LC/MS: calcd *m/z* 522.18, found *m/z* 522.34.

N-[2-(4-(Benzo[*d*]isothiazol-3-yl)piperazino)ethyl]-2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-1-yl)acetamide (9): This compound was obtained from II in 69% yield; mp 235–237°C; R_r = 0.33; ¹H NMR: δ 2.54 (t, ³*J* = 6.2 Hz, 2H), 2.64–2.67 (m, 4H), 3.34 (t, ³*J* = 6.2 Hz, 2H), 3.43–3.46 (m, 4H), 3.47 (s, 3H), 3.87 (s, 3H), 4.59 (s, 2H), 7.28 (ddd, ³*J* = 8.1 Hz, ³*J* = 7.0 Hz, ⁴*J* = 1.0 Hz, 1H), 7.39 (ddd, ³*J* = 8.1 Hz, ³*J* = 7.0 Hz, ⁴*J* = 1.0 Hz, 1H), 7.50–7.52 (m, 2H), 7.73 (dt, ³*J* = 8.1 Hz, ⁴*J* = 1.0 Hz, 1H), 7.80 (dt, ³*J* = 8.2 Hz, ⁴*J* = 1.0 Hz, 1H); ¹³C NMR: δ 29.7, 33.5, 35.8, 43.3, 49.6, 52.6, 56.7, 107.5, 120.5, 123.8, 124.1, 127.7, 127.8, 142.0, 148.9, 151.4, 152.4, 154.8, 163.7, 167.7. Anal. Calcd for C₂₂H₂₆N₈SO₃: C, 54.76; H, 5.43; N, 23.22. Found: C, 54.73; H, 5.22; N, 23.38. LC/MS: calcd *m/z* 483.19, found *m/z* 483.32.

N-[2-(4-(Benzo[*d*]isoxazol-3-yl)piperazino)ethyl]-2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-1-yl)acetamide (10): This compound was obtained from II in 41% yield; mp 208–210°C; $R_f =$ 0.33; ¹H NMR: δ 2.60 (t, ³*J* = 6.0 Hz, 2H), 2.67–2.70 (m, 4H), 3.44 (q, ³*J* = 5.6 Hz, 2H), 3.53–3.56 (m, 4H), 3.57 (s, 3H), 3.96 (s, 3H), 4.70 (s, 2H), 6.35–6.45 (m, 1H), 7.22 (ddd, ³*J* = 8.1 Hz, ³*J* = 6.3 Hz, ⁴*J* = 1.5 Hz, 1H), 7.41–7.54 (m, 3H), 7.66–7.69 (m, 1H); ¹³C NMR: δ 29.8, 33.6, 35.9, 43.6, 48.2, 52.1, 56.4, 107.5, 110.5, 116.1, 122.1, 122.4, 129.6, 141.8, 149.2, 151.4, 154.8, 161.2, 164.0, 167.2. Anal. Calcd for C₂₂H₂₆N₈O₄: C, 56.64; H, 5.62; N, 24.02. Found: C, 56.58; H, 5.71; N, 23.92. LC/MS: calcd *m/z* 467.21, found *m/z* 467.37.

 $\label{eq:N-[2-(4-(2,3-Dichlorophenyl)piperazino)ethyl]-2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)acetamide (11): This compound was obtained from II in 58% yield; mp 245–247°C; R_r =$

0.28; ¹H NMR: δ 2.50 (t, ³*J* = 6.3 Hz, 2H), 2.54–2.64 (m, 4H), 2.87–3.01 (m, 4H), 3.28–3.32 (m, 2H), 3.45 (s, 3H), 3.85 (s, 3H), 4.55 (s, 2H), 6.85 (dd, ³*J* = 5.4 Hz, ⁴*J* = 4.1 Hz, 1H), 6.97–7.10 (m, 2H), 7.51–7.53 (m, 2H); ¹³C NMR: δ 29.6, 33.4, 36.0, 43.2, 50.8, 52.9, 56.6, 107.5, 118.5, 124.7, 127.3, 127.4, 133.9, 142.0, 148.7, 150.7, 151.4, 154.8, 167.7 Anal. Calcd for $C_{21}H_{25}N_{7}O_{3}Cl_{2}$: C, 51.02; H, 5.10; N, 19.83. Found: C, 51.12; H, 5.19; N, 19.69. LC/MS: calcd *m/z* 494.15, found *m/z* 494.29.

N-[3-(4-(2,3-Dichlorophenyl)piperazino)propyl]-2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-1-yl)acetamide (12): This compound was obtained from **II** in 75% yield; mp 222–224°C; $R_r =$ 0.30; ¹H NMR: δ 1.68 (quin, ³*J* = 6.9 Hz, 2H), 2.46 (t, ³*J* = 7.0 Hz, 2H), 2.54–2.72 (m, 4H), 2.92–3.09 (m, 4H), 3.27 (t, ³*J* = 6.4 Hz, 2H), 3.48 (s, 3H), 3.89 (s, 3H), 4.56 (s, 2H), 6.88 (dd, ³*J* = 6.2 Hz, ⁴*J* = 3.3 Hz, 1H), 7.05–7.10 (m, 2H), 7.51–7.53 (m, 2H); ¹³C NMR: δ 25.3, 29.7, 33.5, 38.2, 43.3, 50.9, 53.0, 56.1, 107.5, 118.5, 124.7, 127.3, 127.5, 133.9, 141.9, 148.9, 150.7, 151.5, 154.8, 167.6. Anal. Calcd for C₂₂H₂₇N₇O₃Cl₂: C, 51.97; H, 5.35; N, 19.29. Found: C, 52.05; H, 5.21; N, 19.11. LC/MS: calcd *m/z* 508.16, found *m/z* 508.32.

N-[4-(4-(Benzo[*d*]isothiazol-3-yl)piperazino)butyl]-2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-1-yl)acetamide (13): This compound was obtained from **II** in 57% yield; mp 183–185°C; $R_f =$ 0.24; ¹H NMR: δ 1.58–1.64 (m, 4H), 2.45–2.49 (m, 2H), 2.68–2.71 (m, 4H), 3.29–3.35 (m, 2H), 3.56 (s, 3H), 3.56–3.59 (m, 4H), 3.95 (s, 3H), 4.65 (s, 2H), 6.45–6.49 (m, 1H), 7.33–7.36 (m, 1H), 7.45 (ddd, ³*J* = 8.1 Hz, ³*J* = 7.0 Hz, ⁴*J* = 1.7 Hz, 1H), 7.50 (s, 1H), 7.78–7.81 (m, 1H), 7.86–7.90 (m, 1H); ¹³C NMR: δ 24.1, 27.2, 29.8, 33.6, 39.5, 43.6, 49.9, 52.9, 57.9, 107.5, 120.5, 123.8, 123.9, 127.5, 127.9, 141.7, 149.1, 151.4, 152.7, 154.8, 163.8, 167.1 Anal. Calcd for C₂₄H₃₀N₈SO₃; C, 56.45; H, 5.92; N, 21.94. Found: C, 56.63; H, 5.99; N, 21.83. LC/MS: calcd *m/z* 511.22, found *m/z* 511.37.

N-[4-(4-(Benzo[*d*]isoxazol-3-yl)piperazino)butyl]-2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-1-yl)acetamide (14): This compound was obtained from II in 60% yield; mp 163–165°C; $R_r =$ 0.34; ¹H NMR: δ 1.57–1.51 (m, 4H), 2.44 (t, ³*J* = 6.4 Hz, 2H), 2.63–2.67 (m, 4H), 3.28–3.34 (m, 2H), 3.55 (s, 3H), 3.58–3.60 (m, 4H), 3.94 (s, 3H), 4.64 (s, 2H), 6.45 (t, ³*J* = 5.3 Hz, 1H), 7.20 (ddd, ³*J* = 8.1 Hz, ³*J* = 6.4 Hz, ⁴*J* = 1.7 Hz, 1H), 7.40–7.48 (m, 2H), 7.50 (s, 1H), 7.67 (d, ³*J* = 8.0 Hz, 1H); ¹³C NMR: δ 24.0, 27.2, 29.8, 33.6, 39.5, 43.6, 48.1, 52.4, 57.9, 107.5, 110.4, 116.1, 122.1, 122.3, 129.5, 141.7, 149.1, 151.5, 154.8, 161.2, 163.9, 167.2. Anal. Calcd for C₂₄H₃₀N₈O₄: C, 58.29; H, 6.11; N, 22.66. Found: C, 58.14; H, 6.11; N, 22.71. LC/MS: calcd *m/z* 495.25, found *m/z* 495.42.

N-[4-(4-(2,3-Dichlorophenyl)piperazino)butyl]-2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-1-yl)acetamide (15): This compound was obtained from **II** in 18% yield; mp 214–216°C; $R_r =$ 0.16; 'H NMR: δ 1.48–1.55 (m, 4H), 2.42 (t, ³*J* = 7.2 Hz, 2H), 2.55–2.75 (m, 4H), 2.94–3.11 (m, 4H), 3.21 (t, ³*J* = 6.2 Hz, 2H), 3.49 (s, 3H), 3.90 (s, 3H), 4.58 (s, 2H), 6.91 (dd, ³*J* = 6.2 Hz, ⁴*J* = 3.3 Hz, 1H), 7.03–7.13 (m, 2H), 7.52–7.55 (m, 2H); ¹³C NMR: δ 23.6, 27.0, 29.7, 33.5, 39.1, 43.2, 50.7, 53.0, 57.8, 107.5, 118.6, 124.7, 127.3, 127.5, 133.9, 141.9, 148.9, 150.8, 151.49, 154.9, 167.5. Anal. Calcd for C₂₃H₂₉N₇O₃Cl₂: C, 52.88; H, 5.60; N, 18.77. Found: C, 52.95; H, 5.44; N, 18.62. LC/MS: calcd *m/z* 522.18, found *m/z* 522.34.

Acknowledgments: This study was supported by the project 'Prokog,' UDAPOIG.01.03.01-12-063/09-00, co-financed by the European Union from the European Fund of Regional Development (EFRD).

References

- López-Rodríguez, M. L.; Porras, E.; Morcillo, M. J.; Benhamú, B.; Soto, L. J.; Lavandera, J. L.; Ramos, J. A.; Olivella, M.; Campillo, M.; Pardo, L. Optimization of the pharmacophore model for 5-HT_{7R} antagonism. Design and synthesis of new naphtholactam and naphthosultam derivatives. *J. Med. Chem.* 2003, 46, 5638–5350.
- [2] Carr, G. V.; Schechter, L. E.; Lucki, I. Antidepressant and anxiolytic effects of selective 5-HT₆ receptor agonists in rats. *Psychopharmacology* 2011, 213, 499–507.
- [3] Richtand, N. M.; Welge, J. A.; Logue, A. D.; Keck Jr., P. E.; Strakowski, S. M.; McNamara, R. K. Role of serotonin and dopamine receptor binding in antipsychotic efficacy. *Neuropsychopharmacology* 2007, *32*, 1715–1726.
- [4] Codony, X.; Vela, J. M.; Ramírez, M. J. 5-HT₆ receptor and cognition. *Curr. Opin. Pharm.* 2011, *11*, 94–100.
- [5] Benhamú, B.; Mrtín-Fontecha, M.; Vázquez-Villa, H.; Pardo, L.; López-Rodríguez, M. L. Serotonin 5-HT₆ receptor antagonists for the treatment of cognitive deficiency in Alzheimer's disease. J. Med. Chem. 2014, 57, 7160–7181.
- [6] Gacsály, I.; Nagy, K.; Pallagi, K.; Lévay, G.; Hársing Jr., L. G.; Móricz, K.; Kertész, Sz.; Varga, P.; Haller, J.; Gigler, G.;

et al. Egis-11150: a candidate antipsychotic compound with procognitive efficacy in rodents. *Neuropharmacology* **2013**, *64*, 254–263.

- [7] Zajdel, P.; Partyka, A.; Marciniec, K.; Bojarski, A. J.; Pawłowski, M.; Wesołowska, A. Quinoline- and isoquinolinesulfonamide analogs of aripiprazole: novel antipsychotic agents? *Future Med. Chem.* 2014, *6*, 57–75.
- [8] Chłoń-Rzepa, G.; Żmudzki, P.; Zajdel, P.; Bojarski, A. J.; Duszyńska, B.; Nikiforuk, A.; Tatarczyńska, E.; Pawłowski, M. 7-Arylpiperazinylalkyl and 7-tetrahydroisoquinolinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and some of their purine-2,6,8-trione analogs as 5-HT1A, 5-HT2A and 5-HT₇ serotonin receptor ligands. *Bioorg. Med. Chem.* **2007**, *15*, 5239–5250.
- [9] Maślankiewicz, A.; Syrek, B.; Nocuń, M.; Pluta, K. Synthesis of N,N'-dimethyl-7H-xanthine-N"-acetic acids. Acta Pol. Pharm. 1979, 36, 539-543.
- [10] Zajdel, P.; Marciniec, K.; Maślankiewicz, A.; Grychowska, K.; Satała, G.; Duszyńska, B.; Lenda, T.; Siwek, A.; Nowak, G.; Partyka, A.; et al. Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin $5-HT_{1A}/5-HT_{2A}/5-HT_{7}$ and dopamine D_{2}/D_{3} receptors. *Eur. J. Med. Chem.* **2013**, *60*, 42–50.