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Abstract-In this study, we compared the enzymatic reduction of 10 drugs with a ketone group by 
homogeneous carbonyl reductase, aldehyde reductase and three dihydrodiol dehydrogenases of human 
liver cytosol. At least one and in some cases all of the three dihydrodiol dehydrogenases reduced each 
of the ten drugs. Among these naloxone, naltrexone, befunolol, ethacrynic acid and ketoprofen were 
substrates specific for the dehydrogenases. The other drugs-haloperidol, metyrapone, loxoprofen, 
daunorubicin and acetohexamide-were highly reduced by carbonyl reductase and/or aldehyde 
reductase. The dihydrodiol dehydrogenases also showed lower K,,, values for haloperidol and loxoprofen 
than did carbasnyl reductase. The results indicate that the three dihydrodiol dehydrogenases, as well as 
the two reducl:ases, are implicated in the reduction of ketone-containing drugs in human liver cytosol. 
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Mammalian tissues contain cytosolic CRt (EC 
1.1.1.184), which (catalyzes the NADPH-linked 
reduction of various aldehydes and ketones to 
corresponding alcohols. CR differs from ALR (EC 
1.1.1.2) and aldose reductase (EC 1.1.1.21) in its 
ability to reduce iaromatic ketones and in its 
sensitivity to specific inhibitors [ 11. Although most 
CRs purified from mammalian tissues are monomers 
with molecular masses of 28-38 kDa, they can be 
divided into two groups with respect to specificity 
for endogenous substrates of prostaglandins and 
steroids. CRs of human tissues [2,4], pig kidney [4], 
and rat ovary [5] have been demonstrated or 
suggested to be identical to prostaglandin 9- 
ketoreductase or NADP+-dependent X-hydroxy- 
prostaglandin dehydrogenase. On the other hand, 
hepatic CRs of rats [6], rabbits [7, 81, guinea pigs [9] 
and mice [lo] possess SLY- or 17phydroxy- 
steroid dehydrogenase and DD (EC 1.3.1.20) 
activities, and are tlhought to be identical to the 
hydroxy-steroid dehydrogenases and DD. 

There have been many studies on the enzymatic 
reduction of ketone-containing drugs by human and 
animal tissues [ll, 121. Extensive studies on the 
reductases for several drugs have been done with 
rabbit liver, from which heterogeneous and drug- 
specific reductases with molecular masses around 
35 kDa have been separated and partially charac- 
terized [13-151. Subsequently, the major forms of 
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the reductases for acetohexamide [16], befunolol 
[17] and loxoprofen [18] were isolated from rabbit 
liver and kidney, and are thought to be identical to 
CR with 3Lu-hydroxysteroid dehydrogenase activity 
[7]. The properties of the human reductases for 
several drug ketones have been studied with crude 
or partially purified enzyme preparations [ 19-231, 
except that two daunorubicin reductases isolated 
from liver have been identified with ALR and CR 

v41. 
We previously purified four human liver DDs 

(DDl-DD4) with molecular masses around 36 kDa, 
of which DD3 was immunologically identified with 
ALR and the other DDs exhibited 3~- or 
3(20)cu-hydroxysteroid dehydrogenase activity [25]. 
Subsequently, DD2 and DD4 were demonstrated by 
their cDNA cloning to be members of the aldo-keto 
reductase family [26]. The sequence of DD4 is 
identical to that of human 3cu-hydroxysteroid 
dehydrogenase [27], but differs from that of human 
CR [28,29], a member of the short-chain alcohol 
dehydrogenase family. Since the DDs also exhibit 
CR activity [25,30], there are at least two structurally 
distinct types of carbonyl-reducing enzymes, CR and 
DD, in human liver. However, the CR activity of 
the human enzymes has been studied mostly with 
model carbonyl compounds, and few attempts have 
been made to examine their specificity for the 
ketone-containing drugs that are administered 
therapeutically. Because of the pharmacological and 
pharmacokinetic importance of the drugs, it is 
necessary to elucidate the relationship of the drug 
reductases to CR, ALR and DDs in human liver. 
This paper compares reactivity toward ten ketone- 
containing drugs among CR, ALR and DDs purified 
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from human liver, and shows that DDs play a more 
important role than the other enzymes in the 
reductive metabolism of several drug ketones. 

MATERIALS AND METHODS 

Chemicals. NADP(H), glucose-6-phosphate and 
glucose-6-phosphate dehydrogenase were obtained 
from Oriental Yeast (Tokyo, Japan); metyrapone 
and ethacrynic acid from the Sigma Chemical Co. 
(St. Louis, MO, U.S.A.); and haloperidol and its 
reduced metabolite, dihydrohaloperidol [4 - (4 - 
chlorophenyl) - (Y- (4 - fluorophenyl) - 4 - hydroxy - l- 
piperidinobutanol] from Research Biochemicals 
(Natick, MA, U.S.A.). Naltrexone, 6cu-naloxol and 
6cu-naltrexol were supplied by the National Institute 
of Drug Abuse (Lexington, KY, U.S.A.); and 
befunolol and its reduced metabolite, dihy- 
drobefunolol, by the Kaken Pharmaceuticals Co. 
(Tokyo, Japan). Acetohexamide and naloxone 
(Shionogi & Co., Osaka, Japan), daunorubicin 
(Meiji Seika, Tokyo, Japan), ketoprofen (Hisamitsu 
Pharmaceuticals, Saga, Japan), and loxoprofen 
(Sankyo, Tokyo, Japan) were provided by the 
manufacturers. Hydroxyhexamide and metyrapol 
were donated by Dr. Y. Imamura (Kumamoto 
University, Kumamoto, Japan) and Dr. E. Maser 
(Philipps University, Marburg, Germany), respect- 
ively. 6@-Naloxol and 6pnaltrexol were synthesized 
from naloxone and naltrexone, respectively, by the 
method of Ahmed et al. [14], and dihydroketoprofen, 
the reduced metabolite of ketoprofen, and cis- and 
trans-alcohols of loxoprofen were synthesized 
according to the method of Tanaka et al. [31]. 
Sephadex G-100 and Q-Sepharose were purchased 
from Pharmacia Fine Chemicals (Uppsala, Sweden). 
All other chemicals used in this study were reagent 
grade. 

Enzyme assay. The reductase activities for drugs 
and the model substrates, 4-benzoylpyridine and 4- 
nitrobenzaldehyde, were assayed spectrophoto- 
metrically by measuring the oxidation rate of 
NADPH at 340 nm. The standard reaction mixture 
consisted of 0.1 M potassium phosphate buffer, 
pH 6.0, 1 mM substrate or drug, 0.1 mM NADPH, 
and enzyme to a final volume of 1.5 mL. The 
reaction, determined in duplicate, was started by 
the addition of the enzyme. The control reaction 
mixture contained all the reactants except the 
enzyme. The reverse reaction rate with the reduced 
metabolite as the substrate was assayed by recording 
the NADPH fluorescence at 450 nm (excitation at 
340 nm) in 1.0 mL of 0.1 M glycine-NaOH buffer, 
pH 10.0, containing 0.25 mM NADP+, alcohol 
metabolite and enzyme. DD activity was determined 
with 1.8 mMnaphthalene dihydrodiol as the substrate 
[30]. One unit (U) of enzyme activity was defined 
as the oxidation and reduction of 1 pmol NADPH/ 
min at 25”. To estimate the kinetic constants, the 
initial rate determination of each substrate was 
carried out at five concentrations. Initial rates in the 
asymptotic region, which follows Michaelis kinetics, 
were plotted in a double-reciprocal form, and the 
constants were calculated with a computer program 
for least-squares linear regression. All the assay and 
kinetic values are expressed as the means of duplicate 
experiments. 

Identification of reaction products. The products 
formed from the reduction of the parent drugs by 
the human liver enzymes were identified by TLC. 
The reaction mixture contained 0.1 M potassium 
phosphate buffer, pH 6.5, 1 mM drug, one of the 
enzymes (80 pg) and an NADPH-generating system 
(0.5 mM NADP+, 5 mM glucose-6-phosphate, 2 U 
glucose-6-phosphate dehydrogenase), in a total 
volume of 2.0 mL. Incubation was carried out at 30” 

Table 1. Reductase activities of human liver DDs, ALR and CR toward drugs with a ketone 

group 

Specific activity (mU/mg) 

Substrate DDl DD2 DD4 CR ALR 

Group I 
Naloxone 
Naltrexone 
Befunolol 
Ethacrynic acid 
Ketoprofen 

Group II 
Haloperidol 
Metyrapone 
Loxbprbfen 

Group III 
DaLnorubicin 
Acetohexamide 

Model substrates 
4-Benzoylpyridine 
4-Nitrobenzaldehyde 

47 66 80 
100 67 52 
236 199 NS 

77 NS 40 
NS 17 43 

39 
NS 
NS 

23 NS 
NS 33 

42 52 

NS 
39 

203 134 110 12,600 NS 
438 1,248 308 2,860 15,200 

97 NS 
26 44 

NS* 
NS 
NS 
NS 
NS 

385 NS 
447 NS 
255 NS 

557 52 
NS 66 

NS 
NS 
NS 
NS 
NS 

Activity was assayed at pH 6.0 with 1 mM substrate and 0.1 mM NADPH. 
* NS, no significant activity was detected. 
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Table 2. TLC of drugs and their enzymatic metabolites 

Z$ value Enzymatic metabolite* by: 
Solvent 

Drug and metabolite Drug Alcohol DDl DD2 DD4 CR ALR system 

Naloxone 0.61 A 
6cu-Naloxol 0.30 - _ - NDt ND 
6PNaloxol 0.25 + + + ND ND 

Naltrexone 0.64 A 
ba-Naltrexol 0.35 - _ - ND ND 
6/?-Naltrexctl 0.29 + + + ND ND 

Befunolol 0.46 A 
Dihydrobefunolol 0.22 + + ND ND ND 

Ketoprofen 0.49 B 
DihydroketmDprofen 0.43 ND + + ND ND 

Metyrapone 0.39 C 
Metyrapol 0.10 ND ND + + ND 

Haloperidol 0.44 A 
Dihydrohaloperidol 0.35 + + _ + - 

Loxoprofen 0.45 B 
c&alcohol 0.40 ND + + _ ND 
fruns-alcohol 0.37 ND + + + ND 

Acetohexamicle 0.47 B 
Hydroxyhexamide 0.33 + + + ND + 

* The detection of the enzymatic products is expressed by a plus sign (+); a minus sign (-) represents 
non-detectable product. 

t ND, not determined. 

for 1 hr. For analyzing the enzymatic products from 
naltrexone, naloxone, befunolol, haloperidol and 
metyrapone, the reaction was terminated by the 
addition of 1 .O mL of 1 M sodium carbonate buffer, 
pH 10.0, and the products were extracted with 3 mL 
of ethyl acetate. The reaction products from 
ketoprofen and loxoprofen were extracted with ethyl 
acetate after the pH of the reaction mixtures was 
adjusted to 3.0 with 1 M HCl. The reduced products 
of acetohexamide were extracted using the method 
of Imamura et al. [32]. The extracts were concentrated 
under reduced pressure, and the residue was 
dissolved in methanol. The sample was subjected to 
TLC, in which the parent drugs and their authentic 
metabolites were cochromatographed on the same 
silica gel plate containing a fluorescence indicator 
(E. Merck, Darmstadt, Germany). The following 
solvent systems for TLC were used: (A) chloroform- 
methanol-ammonia ((90: 10: 3, byvol.); (B) benzene- 
ethyl acetate-acetic acid (30 : 15 : 1, by vol.); and (C) 
benzene-acetone-ammonia (70 : 30 : 1, by vol.). 
These systems have been used for TLC separation 
of most of the drugs and their metabolites [14,31]. 

Enzyme purification. Human liver DDs (DDl 
with a p1 of 9.1; DD2 and DD4 with a p1 of 5.4), 
ALR [25] and CR with a p1 of 8.3 [3] were purified 
to homogeneity from 81- and 28-year-old men 
undergoinglegalmedical autopsy. Force-purification 
of DD and drug reductase activities, a liver specimen 
(30g) obtained from a 65year-old man was used. 
The enzyme activities were purified by extraction, 
ammonium sulfate fractionation, Sephadex G-100 
filtration, and Q-S’epharose chromatography as 
previous described [:!5]. 

RESULTS 

Ten ketone-containing drugs were tested as 

substrates for homogeneous DDs, CR and ALR 
purified from human liver (Table 1). These enzymes 
reduced the drugs at different rates, although the 
reduction rates of the drugs were low compared with 
those of the model substrates, 4-benzoylpyridine and 
4-nitrobenzaldehyde. The drugs can be divided into 
three groups based on the reactivities of the enzymes. 
Naloxone, naltrexone, befunolol, ethacrynic acid 
and ketoprofen (group I drugs) were reduced only 
by DDs. Haloperidol, metyrapone and loxoprofen 
(group II drugs) were accepted as substrates for 
DDs and CR. Daunorubicin and acetohexamide 
(group III drugs) were reduced by DDs, CR and 
ALR. In addition, the three DDs (DDl, DD2 and 
DD4) showed different specificity for the drugs, 
except for naloxone, naltrexone and acetohexamide. 

The validity of monitoring NADPH oxidation at 
340 nm as an indirect assay of carbonyl reduction by 
the enzymes was established by examining the 
reaction products by TLC. The enzymatic reductions 
of the drugs each yielded a product on TLC analysis 
of the extracts of the reaction mixtures. The reduced 
products from the drugs, except for ethacrynic acid 
and daunorubicin, were confirmed as the respective 
secondary alcohols of the drugs by comparing their 
Rf values with those of the corresponding authentic 
alcohols (Table 2). In the cases of the reactions with 
naloxone , naltrexone and loxoprofen as the 
substrates, the two isomers of the reduced products, 
SLY- and 6phydroxy derivatives for naloxone and 
naltrexone [33,34], and cis- and truns-alcohols for 
loxoprofen [31], were expected. The Rf values of 
the enzymatic products of naloxone and naltrexone 
by all of the DDs were consistent with those of 6& 
hydroxy derivatives of the drugs. On the other hand, 
both &- and trans-alcohol products of loxoprofen 
were obtained from the reaction mixture containing 



224 H. OHARA et al. 

F 
; 600 
E 

(Al 

6 7 8 9 

PH 

G 60 
E 

(B) 

I I I I 1 
6 7 8 

P” 

Fig. 1. The pH dependency of daunorubicin and acetohexamide reductase activities of DDs, CR and 
ALR. The activities of DDl (Cl), DD2 (O), DD4 (A), CR (A) and ALR (0) were determined with 

1 mM daunorubicin (A) or acetohexamide (B) as the substrate. 

Table 3. Apparent K,,, and V,,,/K,,, values for drugs 

DDl DD2 DD4 CR ALR 

Drug 

Naloxone 
Naltrexone 
Befunolol 
Ethacrynic acid 
Ketoprofen 
Haloperidol 
Metyrapone 
Loxoprofen 
Daunorubicin 
Acetohexamide 

0.74 108 
0.21 595 
0.52 707 
1.7 124 
- - 

0.19 232 
- 

- - 
- - 

1.3 70 

1.9 100 
1.6 110 
0.76 455 
- - 

0.38 63 
0.62 61 

- 

1.1 78 
3.2 116 
3.9 59 

0.41 270 
0.19 332 
- 

1.1 78 
0.50 133 
- - 

19 35 
1.2 96 
- 

0.5 133 

- - - - 

- - - - 
1.2 736 - - 
0.93 534 - - 

38 260 - 

0.36 2140 0.26 312 
- - 0.22 467 

* -, the constant was not determined. 

DD2 and DD4, but CR produced only the trans- 
alcohol. 

The pH optima of the reductase activities of DDs, 
CR and ALR for the drugs were around 6.0, except 
for the daunorubicin reductase activity of ALR, 
which was maximal at pH8.0 (Fig. 1). Therefore, 
the apparent kinetic constants of the enzymes for 
the drugs were compared at identical conditions of 
pH6.0 (Table 3). Of the three DDs, the highest 
catalytic efficiency (V,,,,,/K, value) for naloxone and 
ketoprofen was exhibited by DD4, and that for 
naltrexone, befunolol and ethacrynic acid by DDl. 
CR showed high catalytic efficiency for the group II 
drugs and daunorubicin, but its K,,, values for 
haloperidol and loxoprofen were higher than those 
of the DDs. ALR efficiently reduced daunorubicin 
as well as acetohexamide, and its K,,, and V,,,,/K,,, 

values for daunorubicin at the pH optimum of 8.0 
were 0.16 mM and 4520 U/mg/M, respectively. 

Since DDs oxidize several alicyclic alcohols as 
well as trans-dihydrodiols of aromatic hydrocarbons 
[25,30], their NADP+-linked dehydrogenase activi- 
ties were examined against several alcohols that are 
chemically produced by the reduction of the carbonyl 
group of the parent drugs. DDl and DD2, but not 
DD4, showed low dehydrogenase activity for some 
alcohols at a pH optima of 10.0 (Table 4). The K, 
values of DDl and DD2 for dihydrobefunolol were 
2.0 and 1.1 mM, respectively. No dehydrogenase 
activity for these alcohols by CR and ALR was 
observed at pH 8-10. 

To test whether DDs are the major reductases 
toward naloxone and befunolol in human liver 
cytosol, we co-purified the drug reductase activities 
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Fig. 2. Q-Sepharose chromatography of DD and drug reductase activities of human liver. The enzyme 
fraction obtained from Sephadex G-100 chromatography was applied to the Q-Sepharose column 
(2 x 30 cm), and then the adsorbed proteins were eluted with a linear 0 to 0.1 M NaCl gradient. The 
fractions (4mL) were analyzed for protein (---) and enzyme activities. The activities of DD (O), 
naloxone reductase (A) and befunolol reductase (0) were assayed with 1.8 mM naphthalene dihydrodiol, 

1.0 mM naloxone and 1.0 mM befunolol, respectively, as the substrate. 

Table 4. Dehydrogenase activity for secondary alcohol 
metabolites of ketone-containing drugs 

Alcohol 

Dihydrobefunolol 
Hydroxyhexamide 
Dihydroketoprofen 
6cY-Naloxol 
6PNaloxol 
Metyrapol 
Dihydrohaloperidol 
(S)-1-Indanol 

Specific activity 

DDl DD2 DD4 
(mD/mg) (mD/mg) (mD/mg) 

18 77 NS* 
NS 15 NS 
NS 5 NS 
NS NS NS 
NS NS NS 
NS NS NS 
NS NS NS 
400 1330 1810 

Enzyme activities were assayed with 1 mM substrate, 
except for dihydrohaloperidol at 0.2 mM. 

* NS, no significant activity was observed. 

with DDs. The activ ties of DDs and drug reductases 
were eluted as a single broad peak around 33 kDa 
on Sephadex G-100 chromatography of the 30-75% 
ammonium sulfate fraction of the human liver 
extract. In the subsequent Q-Sepharose chroma- 
tography, most peaks of the drug reductase activities 
were co-eluted with DDl, DD2 and/or DD4 (Fig. 

2). 

DISCUSSION 

The present study revealed that human liver DD, 
CR and ALR showed distinct specificity for the ten 
ketone-containing drugs employed therapeutically. 
Although the specificity for the drugs was also 
different among the three DDs of human liver, it 

was an outstanding feature of DD that the group I 
drugs were reduced only by this enzyme. The co- 
purification of DD activity and reductase activity for 
naloxone or befunolol strongly suggests that the 
DDs are major reductases for the two drugs. In 
addition, the stereospecific reduction of naloxone 
and naltrexone by the three DDs is consistent with 
the in vivo study of naltrexone metabolism with 
human subjects, in which only 6pnaltrexol is 
excreted as the urinary reduced metabolite [35]. 
Furthermore, DDs may be predominant reductases 
toward ethacrynic acid, whose activity has been 
detected in human liver cytosol [14]. 

The second characteristic of DD was a broad 
specificity for the drugs, compared with the relatively 
narrow specificity of CR and ALR. Since the catalytic 
efficiencies of DDs for drugs of groups II and III 
were lower than those of CR and ALR, DDs seem 
to be minor reductases for these drugs in human 
liver. However, the contribution of DDs to the 
hepatic reduction of haloperidol and loxoprofen may 
be significant because their K,,, values for the two 
drugs were lower than those of CR. 

DD has been shown to be important for the 
oxidative metabolism of trans-dihydrodiols derived 
from polycyclic aromatic hydrocarbons [36-381. The 
isolation and characterization of the enzyme from 
several mammalian tissues have revealed that DDs 
are simply additional activities of 3~ and/or 17p 
hydroxysteroid dehydrogenases, which are also 
associated with CR activity. The identity of the 
hydroxysteroid dehydrogenases with major forms of 
DD and CR has been demonstrated in liver cytosols 
of rats [6], guinea pigs [9] and mice [lo]. Although 
this is not the case in human liver because of the 
existence of a distinct CR without DD activity, the 
present data clearly indicate that human liver DDs 
with 3cu-hydroxysteroid dehydrogenase activity play 
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an important role in the reduction of several ketone- 
containing drugs. Of the human DDs, DD2 and 
DD4 are structurally related to rat liver 3ac 
hydroxysteroid dehydrogenase [26,39]. These find- 
ings suggest that reductases for befunolol [17], 
loxoprofen [18] and acetohexamide [ 161, previously 
purified from rabbit tissues, are enzymes similar to 
rat and human dehydrogenases, because the 
rabbit reductases show high 3cy-hydroxysteroid 
dehydrogenase activity and broad specificity for 
several drug ketones tested in this study. In addition, 
DDs purified from rabbit liver exhibit 3&- and/or 
17phydroxysteroid dehydrogenase and CR activities 
PI. 

2. 

3. 

4. 

In contrast to the broad specificity of DDs, CR 
and ALR accepted a limited range of drugs as 
substrates. CR reduced loxoprofen in addition to 
previously known drug substrates, metyrapone [3], 
daunorubicin [24] and haloperidol [40]. The 
comparative kinetic data for the drugs among CR, 
DD, and ALR suggest that CR is a predominant 
reductase only for metyrapone and daunorubicin in 
human liver cytosol. ALR has been shown to reduce 
daunorubicin at an alkaline pH optimum [24]. The 
present study not only confirmed the ability of the 
enzyme, but also demonstrated that the enzyme 
reduced acetohexamide to hydroxyhexamide. The 
high catalytic efficiency of ALR compared with those 
of DDs, together with its high amount in human 
liver [3,25], suggests that ALR is the predominant 
acetohexamide reductase in human liver. 
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