

Full Paper ____

Structure–5-HT Receptor Affinity Relationship in a New Group of 7-Arylpiperazynylalkyl and 7-Tetrahydroisoquinolinylalkyl Derivatives of 8-Amino-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione

Paweł Żmudzki¹, Grażyna Chłoń-Rzepa¹, Andrzej J. Bojarski², Małgorzata Zygmunt³, Grzegorz Kazek⁴, Barbara Mordyl⁵, and Maciej Pawłowski¹

¹ Department of Medicinal Chemistry, Jagiellonian University Medical College, Kraków, Poland

² Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland

³ Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland

⁴ Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland

⁵ Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland

In our previous paper, we have reported that some 8-alkoxy-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione derivatives possessed high affinity and displayed agonistic activity for the serotonin 5-HT_{1A} receptor. In order to examine the influence of the substituent in the position 8 of the purine moiety on the affinity for the serotonin 5-HT_{1A}, 5-HT_{2A}, and 5-HT₇ receptors, a series of 7-arylpiperazynylalkyl and 7-tetrahydroisoquinolinylalkyl (THIQ) derivatives of 8-amino-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione were synthesized. All the final compounds were investigated in *in vitro* competition binding experiments for serotonin 5-HT_{1A}, 5-HT_{2A}, and 5-HT₇ receptors. The structure–affinity relationships for this group of compounds were discussed. For selected compounds, functional assays for the 5-HT_{1A} receptor were carried out. The results of the assays indicated that these groups of derivatives possessed antagonistic activity for this receptor.

Keywords: 5-HT_{1A} / 5-HT_{2A} / 5-HT₇ / LCAPs / Theophylline

Received: October 21, 2014; Revised: January 17, 2015; Accepted: January 23, 2015

DOI 10.1002/ardp.201400392

Additional supporting information may be found in the online version of this article at the publisher's web-site.

Introduction

It is well known that the serotoninergic receptors $5-HT_{1A}$, $5-HT_{2A}$, and $5-HT_7$ present in central nervous system are involved in such psychiatric disorders as anxiety, depression, and schizophrenia. Big group of compounds acting on these receptors are derivatives possessing arylpiperazine moiety connected to cyclic amide core with linker, so called long-chain arylpiperazines (LCAPs).

For several years, we have been interested in developing new series of LCAPs with different xanthine moieties playing the role of cyclic amides. In our previous paper, we have described a series of derivatives possessing 8-alkoxy-1,3dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione core, which proved to be 5-HT_{1A} receptor agonists with moderate-to-high affinity for these receptors [1]. One of them, shown in Fig. 1, displayed antidepressant and anxiolytic activity in *in vivo* tests.

The aim of our study was to investigate the influence of further modifications of the substituent in position 8 of xanthine core. In this purpose, we have designed a new series of 1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione derivatives possessing in position 8 differently substituted amine moiety, i.e., dibenzylamine, *N*-ethylbenzylamine, *N*-methylbenzylamine, ethylamine, methylamine, or unsubstituted amine moiety. This gave us opportunity to investigate a relationship between lipophilicity and size of the substituent and affinity to different serotoninergic receptors. The influence of the structural modifications was investigated in classic arylpiperazine (R = H, 2-OCH₃, 3-Cl, and 4-F) or 1,2,3,4-tetrahydroisoquinolie (THIQ) derivatives with three to five methylene group linkers. All the new compounds were tested for 5-HT_{1A}, 5-HT_{2A}, and 5-HT₇

Correspondence: Dr. Paweł Żmudzki, Faculty of Pharmacy, Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland. E-mail: zmudzki.p@gmail.com Fax: +48 12 6205450

Fig. 1. 8-Alkoxytheophylline derivative with agonistic activity for 5-HT_{1A} receptor, $K_i = 11 \text{ nM}$ [1].

receptor affinity. For selected compounds, the functional assays for $5-HT_{1A}$ receptor were carried out.

Results and discussion

Chemistry

Structures of the investigated compounds and their syntheses are presented in Schemes 1 and 2.

The starting 8-(*N*-alkylbenzylamino)-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-diones (I and II) and 8-(dibenzylamino)-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione (III) were prepared in a reaction of 8-bromo-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione with the appropriate *N*-alkylbenzylamine (*N*-methylbenzylamine or *N*-ethylbenzylamine, respectively) or dibenzylamine

Scheme 1. Reagents and conditions: (a) *N*-Methylbenzylamine or *N*-ethylbenzylamine or dibenzylamine, 2-(2-methoxyethoxy)ethanol, reflux; (b) 1-bromo-3-chloropropane or 1-bromo-4-chlorobutane or 1,4-dibromobutane or 1,5-dibromopentane, K_2CO_3 , TEBA, acetone, reflux; (c) arylpiperazine or THIQ, K_2CO_3 , 1-propanol, reflux; (d) conc. HCl, anhydrous ethanol.

Scheme 2. Reagents and conditions: (a) 90% H₂SO₄, rt; (b) 30% NaOH.

according to the previously described method [2-4]. 7-w-Haloalkyl-8-(N-alkylbenzylamino)-1,3-dimethyl-1H-purine-2,6 (3H,7H)-diones (1, 2, 4, and 5) and 7-ω-haloalkyl-8-(dibenzylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-diones (3, 6, and 7) were prepared in a reaction of I-III with an appropriate dihaloalkane (1-bromo-3-chloropropane, 1-bromo-4-chlorobutane, 1,4-dibromobutane, or 1,5-dibromobutane) in presence of K₂CO₃ and TEBA (N,N,N-triethylbenzylammonium chloride) in acetone. The designed 7-(ω-(4-arylpiperazin-1-yl)alkyl)-8-(N-alkylbenzylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)diones (8-12, 18, 19, 21, and 22), 7-(ω-(4-arylpiperazin-1-yl)alkyl)-8-(dibenzylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-diones (13-16, 24-27, and 29-32) and their 7-(ω-(3,4-dihydroisoquinolin-2(1H)-yl)alkyl counterparts (17, 20, 23, 28, and 33) were synthesized by nucleophilic substitution of 1-7 with the appropriate arylpiperazines or 1,2,3,4-tetrahydroisoquinoline (THIQ) in the presence of K₂CO₃. The compounds 8-33 were isolated from the reaction mixtures as hydrochloric salts. The designed 7-(ω-(4-arylpiperazin-1-yl)alkyl)-8-(alkylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-diones (39-43, 49, and 50), 7-(ω-(4-arylpiperazin-1-yl)alkyl)-8-amino-1,3-dimethyl-1*H*-purine-2,6(3H,7H)-diones (34-37, 44-47, and 52-55), as well as their 7-(ω -(3,4-dihydroisoquinolin-2(1*H*)-yl)alkyl counterparts (38, 48, and 51) were prepared by debenzylation of compounds 8-33 with 90% H_2SO_4 in room temperature. Resulting compounds were isolated from the reaction mixtures as free bases and then converted into hydrochloric salts in a reaction with conc. HCl in dry ethanol.

The structures of the newly synthesized compounds **1–55** were confirmed by ¹H NMR spectra, LC/MS, and elemental analysis. The investigated compounds were pharmacologically tested as hydrochloride salts.

Pharmacology

The compounds were tested in competition binding experiments for rats' serotonin 5-HT_{1A}, 5-HT_{2A}, and 5-HT₇ receptors. The affinity data are shown in Tables 1 and 2.

In order to determine the influence of the structure of the substituent in the position 8 of 1,3-dimethyl-1*H*-purine-2,6 (3*H*,7*H*)-dione on the functional profile for 5-HT_{1A} receptor compounds possessing moderate-to-high affinity for this receptor and preference for binding to 5-HT_{1A} receptor (compounds 9, 14, and 23) or 5-HT_{1A}, 5-HT_{2A}, and 5-HT₇ receptors (compounds 26 and 54) were selected. For the selected compounds, the functional assays for 5-HT_{1A} receptor were carried out. The results are presented in Table 3.

The newly synthesized derivatives of 8-amino-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione showed diversified level of affinity for 5-HT_{1A} ranging from 14 to 5332 nM, for 5-HT_{2A} from 18 to 22,880 nM, and for 5-HT₇ receptors from 20 to 12,750 nM.

Influence of the linker length on the affinity for these receptors was evident: elongation of the linker caused augmentation of affinity, although strength of this influence depended on the receptor type. For $5-HT_{1A}$ and especially $5-HT_7$ receptors, this influence was strong, while for $5-HT_{2A}$ receptors weaker. For example, comparison between **34**, with three methylene groups in linker, and its higher homolog **52**, with five methylene groups, showed, that elongation of the linker caused almost 16-fold increase for $5-HT_7$, over 3.6-fold increase of affinity for $5-HT_{1A}$ receptors.

Analysis of the results of affinity for 5-HT_{1A} receptors showed, that the derivatives with (2-methoxyphenyl)piperazine moiety possessed the highest affinity for these receptors. Derivatives possessing (3-chlorophenyl)piperazine moiety generally had lower, 1.39- to 8.09-fold (14 vs. 15 and 40 vs. 41, respectively), or even comparative affinity, as for 45 and 46. (4-Fluorophenyl)piperazine moiety caused great diminution of affinity for these receptors, e.g., affinity of 16 was over 72-fold lower than 14. Generally, the affinity of investigated derivatives for 5-HT_{1A} receptors changed according to the scheme:

 $\label{eq:2-Methoxyphenyl} (2\mbox{-Methoxyphenyl}) piperazines > (3\mbox{-chlorophenyl}) piperazines > phenylpiperazines \gg (4\mbox{-fluorophenyl}) piperazines$

Table 1. Structure and binding affinity data on serotonin 5-HT_{1A}, 5-HT_{2A}, and 5-HT₇ receptors of the investigated 7-(ω -(4-arylpiperazin-1-yl)alkyl)-8-amino-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione derivatives.

Comp.	n	R ₁	R ₂	R ₃	<i>К</i> і (nM) 5-НТ _{1А}	<i>К</i> і (nM) 5-НТ _{2А}	<i>K_i</i> (nM) 5-HT ₇
8	1	CH ₂ C ₆ H ₅	CH₃	Н	243	182	109
9	1	CH ₂ C ₆ H ₅	CH ₃	2-OCH₃	25	239	243
10	1	CH ₂ C ₆ H ₅	CH ₃	3-Cl	141	55	163
11	1	CH ₂ C ₆ H ₅	C ₂ H ₅	Н	98	18	298
12	1	CH ₂ C ₆ H ₅		2-OCH₃	14	588	105
13	1	CH ₂ C ₆ H ₅	CH ₂ C ₆ H ₅	H	329	230	492
14	1	CH ₂ C ₆ H ₅	CH ₂ C ₆ H ₅	2-OCH₃	33	1239	135
15	1	CH ₂ C ₆ H ₅	CH ₂ C ₆ H ₅	3-Cl	267	280	335
16	1	CH ₂ C ₆ H ₅	CH ₂ C ₆ H ₅	4-F	2403	255	1178
18	2	$CH_2C_6H_5$	CH ₃	н	78	241	47
19	2	$CH_2C_6H_5$	CH₃	2-OCH ₃	45	202	152
21	2	$CH_2C_6H_5$	C_2H_5	Н	72	102	149
22	2	$CH_2C_6H_5$	C_2H_5	2-OCH₃	77	121	114
24	2	CH₂C ₆ H₅	CH₂C ₆ H₅	н	246	790	493
25	2	CH₂C ₆ H₅	CH₂C ₆ H₅	2-OCH₃	120	288	88
26	2	CH ₂ C ₆ H ₅	CH ₂ C ₆ H ₅	3-Cl	176	119	116
27	2	$CH_2C_6H_5$	CH ₂ C ₆ H ₅	4-F	678	115	478
29	3	$CH_2C_6H_5$	CH ₂ C ₆ H ₅	Н	226	700	84
30	3	CH ₂ C ₆ H ₅	CH₂C ₆ H₅	2-OCH ₃	42	856	20
31	3	CH ₂ C ₆ H ₅	CH₂C ₆ H₅	3-Cl	169	264	78
32	3	CH ₂ C ₆ H ₅	CH₂C ₆ H₅	4-F	555	198	228
34	1	н	н	Н	887	871	5721
35	1	н	Н	2-OCH₃	272	372	3258
36	1	н	Н	3-Cl	590	186	2609
37	1	н	Н	4-F	1269	48	1604
39	1	н	CH₃	Н	108	134	335
40	1	Н	CH ₃	2-OCH ₃	51	1766	814
41	1	н	CH ₃	3-Cl	/1	128	347
42	1	н	C ₂ H ₅	H	226	88	157
43	1	н	C ₂ H ₅	2-0CH ₃	/3	937	659
44	2	н	н	H	60	613	32/4
45	2	н	н	2-0CH ₃	29	705	504
46	2	н	н	3-CI	25	184	211
47	2			4-F	150	284	1384
49	2				485	0/	233
50	2		С2H5 Ц	2-UCH3 Ц	109	221	109
52	2				240 111	291 252	559 140
55	2				00	200	140 77
55	2			3-CI 4 E	30 757	20	121
	5	- 11	11	4-F	101	000	151

Influence of THIQ moiety strongly depended on the structure of 8-amino substituent: derivatives with lipophilic substituents, such as *N*-methylbenzylamine (**20**), *N*-ethylbenzylamine (**23**), had K_i below 60 nM, while those with unsubstituted amine group (**48**) or alkylamine moiety (**51**) had K_i over

1000 nM. In case of the derivatives with dibenzylamine moiety, affinity for 5-HT_{1A} receptors was between earlier described groups and depended on length of the linker between THIQ moiety and purine: elongation of the linker caused augmentation of affinity, e.g., compound **33** with five methylene

Table 2.Structure and binding affinity data on serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors of the investigated 8-amino-7-(ω -(3,4-dihydroisoquinolin-2(1H)-yl)alkyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives.

Comp.	n	R ₁	R ₂	<i>K_i</i> (nM) 5-HT _{1A}	<i>K_i</i> (nM) 5-HT _{2A}	<i>K_i</i> (nM) 5-HT ₇
17	1	CH₂C ₆ H₅	CH₂C ₆ H₅	841	22,880	1926
20	2	$CH_2C_6H_5$	CH₃	59	1050	72
23	2	$CH_2C_6H_5$	C ₂ H ₅	21	1102	72
28	2	$CH_2C_6H_5$	CH ₂ C ₆ H ₅	161	5036	56
33	3	$CH_2C_6H_5$	CH ₂ C ₆ H ₅	47	2609	94
38	1	Н	Н	5332	2666	12,750
48	2	Н	Н	1320	309	639
51	2	н	C_2H_5	1579	963	207

groups in linker showed over 17-fold higher affinity than its lower homolog **17**, possessing three methylene groups.

Analysis of the influence of the structure of the substituent in the position 8 of purine moiety showed, that the affinity for $5-HT_{1A}$ receptors changed according to the scheme:

N-Ethylbenzylamine > N-methylbenzylamine > methylamine > ethylamine > amine \approx dibenzylamine

For example, affinity of **12** (*N*-ethylbenzylamine) was almost 2-fold higher than **9** (*N*-methylbenzylamine), over 3.5-fold higher than **40** (methylamine), over 5-fold higher than **43** (ethylamine), 23.5-fold higher than **13** (dibenzylamine) and over 63-fold higher than **34** (amine).

The lowest affinity of the derivatives with 8-dibenzylamine moiety might suggest, that although lipophilic substituent was preferred for interaction with the 5-HT_{1A} receptors, its size was also important – substituents larger than *N*-ethylbenzylamine were not preferred.

Analysis of the results of affinity for $5-HT_{2A}$ receptors showed, that the derivatives with (3-chlorophenyl)piperazine

moiety possessed the highest affinity for these receptors. Derivatives possessing (4-fluorophenyl)piperazine moiety generally had lower or comparable affinity, e.g., **54** versus **55** and **15** versus **16**, respectively. Derivatives with (2-methoxyphenyl)piperazine moiety generally had low affinity for these receptors, e.g., affinity of **40** was over 10-fold lower than **39**, possessing phenylpiperazine moiety, and **41**, possessing (3-chlorophenyl)piperazine moiety. Derivatives with THIQ moiety possessed the lowest affinity for 5-HT_{2A} receptors among the investigated compounds. The affinity of the investigated derivatives for 5-HT_{2A} receptors changed according to the scheme:

 $(\textbf{3-Chlorophenyl}) piperazines \approx (\textbf{4-fluorophenyl}) piperazines$

 $> phenylpiperazines \approx (\text{2-methoxyphenyl}) piperazines > \text{THIQ}$

Influence of the structure of the substituent in the position 8 of purine moiety on affinity for $5-HT_{2A}$ receptors was analogical to that described for $5-HT_{1A}$ receptors, except for the derivatives with unsubstituted 8-amine moiety, which possessed the lowest affinity for these receptors. The affinity

	Agonist mode ^{a)}						Antagonist mode ^{b)}						
Concentration of compounds	10 ⁻⁵ M			10 ⁻⁶ M		10 ^{−5} M			10 ⁻⁶ M				
Comp.	Mean	SD	SEM	Mean	SD	SEM	Mean	SD	SEM	Mean	SD	SEM	
9	4.0	1.8	0.9	5.5	0.6	0.3	98.3	1.0	0.5	78.0	0.8	0.4	
14	4.0	2.3	1.2	6.5	1.3	0.6	97.5	0.6	0.3	89.8	1.3	0.6	
23	101.8	5.3	2.7	76.5	7.0	3.5	99.5	0.6	0.3	99.8	0.5	0.3	
26	3.8	2.1	1.0	7.0	0.8	0.4	99.5	0.6	0.3	90.3	1.5	0.8	
54	18.8	9.1	4.5	18.8	3.0	1.5	99.8	0.5	0.3	86.3	1.5	0.8	

Table 3. Functional assay results for the tested compounds.

^{a)}Percent of maximal agonist response (serotonin 10^{-6} M).

^{b)}Percent of inhibition of reference agonist signal (serotonin 10^{-7} M corresponding to the EC₈₀).

for 5-HT_{2A} receptors changed according to the scheme:

N-Ethylbenzylamine > *N*-methylbenzylamine > ethylamine

> methylamine > dibenzylamine > amine

Analysis of the results of affinity for 5-HT_7 receptors indicated, that the influence of the arylpiperazine or THIQ moiety for the derivatives with substituted 8-amine moiety was similar to that observed for 5-HT_{1A} receptors. In case of derivatives with unsubstituted 8-amine moiety affinity for 5-HT_7 receptors changed according to the scheme:

(3-Chlorophenyl)piperazines > (2-methoxyphenyl)piperazines > (4-fluorophenyl)piperazines > phenylpiperazines > THIQ

The influence of the structure of the substituent in the position 8 of purine moiety was also comparable to that observed for $5-HT_{2A}$ receptors.

Further analysis of the results of the competition binding experiments let us to divide the compounds according to their preference for binding the investigated receptors:

- compounds with preference for binding to 5-HT_{1A} receptors: 9, 12, 14, 19, 20, 23, 43, 44, 45, and 46,
- compounds with preference for binding to 5-HT_{2A} receptors: 10, 11, 37, 42, and 49,
- compound with preference for binding to 5-HT7 receptors: 28,
- compound with preference for binding to 5-HT_{1A} and 5-HT_{2A} receptors: **39**,
- compounds with preference for binding to 5-HT_{1A} and 5-HT₇ receptors: 18, 20, 25, and 30,
- compounds with preference for binding to 5-HT_{1A}, 5-HT_{2A}, and 5-HT₇ receptors: 21, 22, 26, and 54.

The results of the functional assays for $5-HT_{1A}$ receptor showed, that all the arylpiperazine derivatives were antagonists of the receptor, regardless of the structure of the substituent in the position 8 of purine moiety or the linker length. The compound **23** displayed partial agonist properties, what might be the result of the substitution of the arylpiperazine moiety with THIQ. Comparison of the results with the results presented in our previous paper for 8-alkoxy derivatives [1] may suggest that the oxygen atom in close vicinity to the 8 position of purine moiety was needed for the agonistic activity of the derivatives.

Experimental

Chemistry

Melting points (m.p.) were determined with a Büchi Melting Point B-545 apparatus and were uncorrected.

¹H NMR spectra were taken with a Varian Mercury-VX (300 MHz) spectrometer in CDCl₃ (1–7, 41–43, and 49–50) or DMSO- d_6 (8–40, 44–48, and 51–55) solutions, using signal of solvent's residual ¹H atoms as internal standard (δ = 7.26 and 2.48 ppm, respectively). Chemical shifts were expressed in δ (ppm) and the coupling constants J in Hertz (Hz). For

compounds **8–55**, spectra were taken for hydrochloric salts if not described differently.

LC/MS analyses were performed on Waters Acquity TQD apparatus with $e\lambda$ DAD detector. For mass spectrometry ESI+ (electrospray positive) ionization mode was used. UV spectra were taken in 200–700 nm range. For establishing the purity of compounds UV chromatograms were used. All the investigated final compounds had purity over 95%.

All the compounds were routinely checked by TLC using Merck Kieselgel 60 F_{254} sheets with the following eluents: A: methylene chloride/methanol=95:5, B: methylene chloride/ methanol=90:10. Spots were detected by UV absorption.

Elemental analyses were taken with Elementar Vario EL III apparatus. All analyses were within $\pm 0.4\%$ of the theoretical values. The results of the analyses are presented in the Supporting Information.

General procedure for preparing 7- ω -haloalkyl-8-(Nalkylbenzylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)diones (**1**, **2**, **4**, and **5**) and 7- ω -haloalkyl-8-(dibenzylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-diones (**3**, **6**, and **7**) Mixture of 1 eq. (0.1 mol) of 8-(N-methylbenzylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (**1**), 8-(N-ethylbenzylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (**1**) or 8-(dibenzylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (**11**), 2 eq. of appropriate alkylating agent dihaloalkane (1-bromo-3-chloropropane, 1-bromo-4-chlorobutane, 1,4-dibromobutane or 1,5dibromobutane), 2 eq. of K₂CO₃ and 0.1 eq. of TEBA in acetone (50 mL) was refluxed for 10 h. Then the mixture was filtered off and the filtrate was evaporated under reduced pressure. The residue was crystallized from methanol.

8-(N-Methylbenzylamino)-7-(3-chloropropyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (1)

From I in 60% yield: m.p. 114–116°C, $R_f = 0.67$ (A), 0.81 (B), ¹H NMR δ 2.25–2.35 (m, 2H, CH₂CH₂CH₂), 2.91 (s, 3H, NCH₃), 3.38 (s, 3H, N(1)CH₃), 3.51 (t, ³J = 6.0 Hz, 2H, CH₂Cl), 3.54 (s, 3H, N(3)CH₃), 4.30 (t, ³J = 7.4 Hz, 2H, N(7)CH₂), 4.44 (s, 2H, CH₂C₆H₅), 7.26–7.36 (m, 5H, C₆H₅). LC/MS: 86%, *m/z* calc. 376.15, found 376.26. Anal. (C₁₈H₂₂ClN₅O₂) C, H, N.

8-(N-Ethylbenzylamino)-7-(3-chloropropyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (**2**)

From II in 62% yield: m.p. 85–87°C, $R_f = 0.71$ (A), 0.81 (B), ¹H NMR δ 1.17 (t, ³J = 7.0 Hz, 3H, NCH₂CH₃), 2.19–2.28 (m, 2H, CH₂CH₂CH₂), 3.26 (q, ³J = 7.0 Hz, 2H, NCH₂CH₃), 3.36 (s, 3H, N(1) CH₃), 3.46 (t, ³J = 6.5 Hz, 2H, CH₂Cl), 3.53 (s, 3H, N(3)CH₃), 4.24 (t, ³J = 7.4 Hz, 2H, N(7)CH₂), 4.40 (s, 2H, CH₂C₆H₅), 7.27– 7.36 (m, 5H, C₆H₅). LC/MS: 91%, *m/z* calc. 390.17, found 390.31. Anal. (C₁₉H₂₄ClN₅O₂) C, H, N.

8-(Dibenzylamino)-7-(3-chloropropyl)-1,3-dimethyl-1Hpurine-2,6(3H,7H)-dione (**3**)

From III in 82% yield: m.p. 118–120°C, $R_f = 0.77$ (A), 0.87 (B), ¹H NMR δ 2.09–2.18 (m, 2H, CH₂CH₂CH₂), 3.37 (s, 3H, N(1)CH₃), 3.44 (t, ³J = 6.0 Hz, 2H, CH₂Cl), 3.55 (s, 3H, N(3)CH₃), 4.22 (t, ${}^{3}J = 7.6$ Hz, 2H, N(7)C<u>H₂</u>), 4.35 (s, 4H, N(C<u>H₂C₆H₅)₂), 7.26–7.36</u> (m, 10H, N(CH₂C₆<u>H₅)₂). LC/MS: 95%</u>, *m/z* calc. 452.18, found 452.28. Anal. (C₂₄H₂₆ClN₅O₂) C, H, N.

8-(N-Methylbenzylamino)-7-(4-bromobutyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (4)

From I in 75% yield: m.p. 75–77°C, $R_f = 0.67$ (A), 0.81 (B), ¹H NMR δ 1.74–1.81 (m, 2H, CH₂CH₂CH₂CH₂Br), 1.89–1.99 (m, 2H, CH₂CH₂CH₂CH₂Br), 2.90 (s, 3H, NCH₃), 3.36 (t, ³J=4.0 Hz, 2H, CH₂Br), 3.38 (s, 3H, N(1)CH₃), 3.54 (s, 3H, N(3)CH₃), 4.15 (t, ³J=7.3 Hz, 2H, N(7)CH₂), 4.42 (s, 2H, CH₂C₆H₅), 7.26–7.36 (m, 5H, C₆H₅). LC/MS: 83%, *m/z* calc. 434.11, found 434.25. Anal. (C₁₉H₂₄BrN₅O₂) C, H, N.

8-(N-Ethylbenzylamino)-7-(4-bromobutyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (5)

From II in 64% yield: m.p. 67–69°C, $R_f = 0.73$ (A), 0.81 (B), ¹H NMR δ 1.16 (t, ³J = 7.1 Hz, 3H, NCH₂CH₃), 1.71–1.79 (m, 2H, CH₂CH₂CH₂CH₂Br), 1.84–1.92 (m, 2H, CH₂CH₂CH₂CH₂Br), 3.26 (q, ³J = 7.1 Hz, 2H, NCH₂CH₃), 3.33 (t, ³J = 7.0 Hz, 2H, CH₂Br), 3.37 (s, 3H, N(1)CH₃), 3.54 (s, 3H, N(3)CH₃), 4.11 (t, ³J = 7.3 Hz, 2H, N(7) CH₂), 4.39 (s, 2H, CH₂C₆H₅), 7.24–7.34 (m, 5H, C₆H₅). LC/MS: 84%, *m/z* calc. 448.13, found 448.25. Anal. (C₂₀H₂₆BrN₅O₂) C, H, N.

8-(Dibenzylamino)-7-(4-chlorobutyl)-1,3-dimethyl-1Hpurine-2,6(3H,7H)-dione (6)

From III in 74% yield: m.p. 108–110°C, $R_f = 0.77$ (A), 0.87 (B), ¹H NMR δ 1.56–1.65 (m, 2H, CH₂CH₂CH₂Cl, 1.75–1.85 (m, 2H, CH₂CH₂CH₂Cl), 3.37 (s, 3H, N(1)C<u>H₃</u>), 3.42 (t, ³J = 6.4 Hz, 2H, C<u>H₂</u>Cl), 3.56 (s, 3H, N(3)C<u>H₃</u>), 4.08 (t, ³J = 7.6 Hz, 2H, N(7)C<u>H₂</u>), 4.35 (s, 4H, N(C<u>H₂C₆H₅)₂), 7.26–7.36 (m, 10H, N(CH₂C₆<u>H₅)₂). LC/MS: 89%</u>, *m/z* calc. 466.20, found 466.32. Anal. (C₂₅H₂₈ClN₅O₂) C, H, N.</u>

8-(Dibenzylamino)-7-(5-chloropentyl)-1,3-dimethyl-1Hpurine-2,6(3H,7H)-dione (**7**)

General procedure for preparing 7-(ω -(4-arylpiperazin-1yl)-alkyl)-8-(N-alkylbenzylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione hydrochlorides (8–12, 18, 19, 21, and 22), 7-(ω -(4-arylpiperazin-1-yl)alkyl)-8-(dibenzylamino)-1,3dimethyl-1H-purine-2,6(3H,7H)-dione hydrochlorides (13–16, 24–27, and 29–32) and their 7-(ω -(3,4dihydroisoquinolin-2(1H)-yl)alkyl counterparts (17, 20, 23, 28, and 33)

Mixture of 1 eq. (10 mmol) of the appropriate $7-\omega$ -haloalkyl-8-(*N*-alkylbenzylamino)-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)dione derivative (**1**, **2**, **4**, or **5**) or $7-\omega$ -haloalkyl-8-(dibenzylamino)-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione derivative (3, 6, or 7), 1 eq. of the appropriate arylpiperazine (1-phenylpiperazine, 1-(2-methoxyphenyl)piperazine, 1-(3-chlorophenyl)piperazine or 1-(4-fluorophenyl)piperazine) or 1,2,3,4-tetrahydroisoquinoline, 2 eq. of K_2CO_3 in 1-propanol (20 mL) was refluxed for 40 h. Then the mixture was filtered off and the filtrate was reduced under reduced pressure. The residue was dissolved in small volume of dry ethanol (ca. 10 mL), acidified with conc. HCl to pH ca. 3 and cooled. Precipitate was filtered off and purified by crystallization from ethanol.

8-(N-Methylbenzylamino)-1,3-dimethyl-7-(3-(4phenylpiperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**8**)

From 1 in 75% yield: m.p. 237–239°C, $R_f = 0.27$ (A), 0.65 (B), ¹H NMR δ 2.10–2.30 (m, 2H, CH₂CH₂CH₂), 2.89 (s, 3H, NCH₃), 3.00–3.19 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.21 (s, 3H, N(1)CH₃), 3.38 (s, 3H, N(3)CH₃), 3.48–3.55 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.76–3.80 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.20 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 4.48 (s, 2H, CH₂C₆H₅), 6.84 (t, ³J = 7.2 Hz, 1H, p-NC₆H₅), 6.97 (d, ³J = 8.0 Hz, 2H, o-NC₆H₅), 7.24 (t, ³J = 8.0 Hz, 2H, m-NC₆H₅), 7.24–7.37 (m, 5H, CH₂C₆H₅), 10.50–10.60 (s, 1H, NH⁺). LC/MS: *m/z* calc. 502.29, found 502.41. Anal. (C₂₈H₃₆ClN₇O₂) C, H, N.

8-(N-Methylbenzylamino)-1,3-dimethyl-7-(3-(4-(2methoxyphenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**9**)

From 1 in 92% yield: m.p. 238–240°C, $R_f = 0.19$ (A), 0.58 (B), ¹H NMR δ 2.15–2.25 (m, 2H, CH₂CH₂CH₂), 2.89 (s, 3H, NCH₃), 3.04–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.20 (s, 3H, N(1)CH₃), 3.38 (s, 3H, N(3)CH₃), 3.44–3.47 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.77 (s, 3H, OCH₃), 3.80–3.90 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.20 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 4.48 (s, 2H, CH₂C₆H₅), 6.85–7.04 (m, 4H, NC₆H₄OCH₃), 7.24–7.37 (m, 5H, CH₂C₆H₅), 10.80–10.95 (s, 1H, NH⁺). LC/MS: *m/z* calc. 532.03, found 532.11. Anal. (C₂₉H₃₈ClN₇O₃) C, H, N.

8-(N-Methylbenzylamino)-1,3-dimethyl-7-(3-(4-(3chlorophenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-

dione hydrochloride (**10**)

From **1** in 66% yield: m.p. 221–223°C, $R_f = 0.40$ (A), 0.71 (B), ¹H NMR δ 2.10–2.25 (m, 2H, CH₂CH₂CH₂), 2.89 (s, 3H, NCH₃), 3.05–3.19 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.20 (s, 3H, N(1)CH₃), 3.38 (s, 3H, N(3)CH₃), 3.45–3.53 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.75–3.80 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.22 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 4.48 (s, 2H, CH₂C₆H₅), 6.86 (d, ³J = 7.1 Hz, 1H, 6-NC₆H₄Cl), 6.95 (d, ³J = 7.9 Hz, 1H, 4-NC₆H₄Cl), 7.04 (s, 1H, 2-NC₆H₄Cl), 7.22–7.37 (m, 6H, 5-NC₆H₄Cl, CH₂C₆H₅), 10.70– 10.80 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 536.25, found 536.29. Anal. (C₂₈H₃₅Cl₂N₇O₂) C, H, N.

8-(N-Ethylbenzylamino)-1,3-dimethyl-7-(3-(4-

phenylpiperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (11)

From **2** in 72% yield: m.p. 189–191°C, $R_f = 0.35$ (A), 0.69 (B), ¹H NMR δ 1.10 (t, ³J = 7.0 Hz, 3H, NCH₂CH₂), 2.10–2.25 (m, 2H,

CH₂CH₂CH₂), 2.95–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.20 (s, 3H, N(1)CH₃), 3.23 (q, ³J = 7.1 Hz, 2H, NCH₂CH₃), 3.38 (s, 3H, N(3)CH₃), 3.40–3.50 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.75–3.85 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.14 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 4.43 (s, 2H, CH₂C₆H₅), 6.84 (t, ³J = 7.3 Hz, 1H, *p*-NC₆H₅), 6.97 (d, ³J = 8.5 Hz, 2H, *o*-NC₆H₅), 7.24 (t, ³J = 8.0 Hz, 2H, *m*-NC₆H₅), 7.27–7.38 (m, 5H, CH₂C₆H₅), 10.75–10.85 (s, 1H, NH⁺). LC/MS: *m/z* calc. 516.31, found 516.45. Anal. (C₂₉H₃₈ClN₇O₂) C, H, N.

8-(N-Ethylbenzylamino)-1,3-dimethyl-7-(3-(4-(2methoxyphenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**12**)

From **2** in 53% yield: m.p. 178–180°C, $R_f = 0.27$ (A), 0.65 (B), ¹H NMR δ 1.10 (t, ³J = 7.0 Hz, 3H, NCH₂CH₃), 2.10–2.20 (m, 2H, CH₂CH₂CH₂), 2.90–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.20 (s, 3H, N(1)CH₃), 3.23 (q, ³J = 7.1 Hz, 2H, NCH₂CH₃), 3.30–3.35 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.39 (s, 3H, N(3)CH₃), 3.43–3.46 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.77 (s, 3H, OCH₃), 4.13 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 4.43 (s, 2H, CH₂C₆H₅), 6.88–7.00 (m, 4H, NC₆H₄OCH₃), 7.25–7.38 (m, 5H, CH₂C₆H₅), 10.20–10.40 (s, 1H, NH⁺). LC/MS: *m/z* calc. 546.32, found 546.36. Anal. (C₃₀H₄₀CIN₇O₃) C, H, N.

8-(Dibenzylamino)-1,3-dimethyl-7-(3-(4-phenylpiperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (13)

From **3** in 95% yield: m.p. 158–160°C, $R_f = 0.40$ (A), 0.74 (B), ¹H NMR δ 2.00–2.18 (m, 2H, CH₂CH₂CH₂), 2.88–3.10 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.19 (s, 3H, N(1)CH₃), 3.35–3.50 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.37 (s, 3H, N(3)CH₃), 3.75–3.85 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.15 (t, ³J = 6.4 Hz, 2H, N(7)CH₂), 4.38 (s, 4H, N(CH₂C₆H₅)₂), 6.85 (t, ³J = 7.0 Hz, 1H, *p*-NC₆H₅), 6.98 (d, ³J = 6.0 Hz, 2H, *o*-NC₆H₅), 7.26–7.36 (m, 12H, *m*-NC₆H₅, N-(CH₂C₆H₅)₂), 9.80–10.05 (s, 1H, NH⁺). LC/MS: *m/z* calc. 578.32, found 578.43. Anal. (C₃₄H₄₀ClN₇O₂) C, H, N.

8-(Dibenzylamino)-1,3-dimethyl-7-(3-(4-(2methoxyphenyl)piperazin-1-yl)propyl)-1H-purine-

2,6(3H,7H)-dione hydrochloride (**14**) From **3** in 94% yield: m.p. 145–147°C, $R_f = 0.33$ (A), 0.68 (B), ¹H NMR δ 2.00–2.20 (m, 2H, CH₂CH₂CH₂), 2.89–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.19 (s, 3H, N(1)CH₃), 3.30–3.41 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.38 (s, 3H, N(3)CH₃), 3.43–3.55 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.78 (s, 3H, OCH₃), 4.416 (t, ³J = 6.8 Hz, 2H, N(7)CH₂), 4.39 (s, 4H, N(CH₂C₆H₅)₂), 6.86– 7.00 (m, 4H, NC₆H₄OCH₃), 7.25–7.38 (m, 5H, CH₂C₆H₅), 10.15– 10.30 (s, 1H, NH⁺). LC/MS: *m/z* calc. 608.33, found 608.48. Anal. (C₃₅H₄₂ClN₇O₂) C, H, N.

8-(Dibenzylamino)-1,3-dimethyl-7-(3-(4-(3-chlorophenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**15**)

From **3** in 93% yield: m.p. 191–192°C, $R_f = 0.46$ (A), 0.77 (B), ¹H NMR δ 2.00–2.15 (m, 2H, CH₂CH₂CH₂), 2.90–3.10 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.19 (s, 3H, N(1)CH₃), 3.32–3.42 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.37 (s, 3H, N(3)CH₃), 3.86–3.90 (m, 2H,

 $\begin{array}{l} \mathsf{CH}_2\mathsf{NH}^+(\mathsf{C}\underline{\mathsf{H}}_2\mathsf{C}\mathsf{H}_2)_2\mathsf{N}), \ 4.15 \ (\mathsf{t}, \ {}^3J = 6.9 \ \mathsf{Hz}, \ \mathsf{2H}, \ \mathsf{N}(7)\mathsf{C}\underline{\mathsf{H}}_2), \ 4.38 \ (\mathsf{s}, \\ \mathsf{4H}, \ \mathsf{N}(\mathsf{C}\underline{\mathsf{H}}_2\mathsf{C}_6\mathsf{H}_5)_2), \ 6.86 \ (\mathsf{d}, \ {}^3J = 7.1 \ \mathsf{Hz}, \ \mathsf{1H}, \ 6-\mathsf{NC}_6\underline{\mathsf{H}}_4\mathsf{C}\mathsf{I}), \ 6.95 \ (\mathsf{d}, \\ {}^3J = 7.8 \ \mathsf{Hz}, \ \mathsf{1H}, \ 4-\mathsf{NC}_6\underline{\mathsf{H}}_4\mathsf{C}\mathsf{I}), \ 7.04 \ (\mathsf{s}, \ \mathsf{1H}, \ 2-\mathsf{NC}_6\underline{\mathsf{H}}_4\mathsf{C}\mathsf{I}), \ 7.22-7.38 \\ (\mathsf{m}, \ \mathsf{6H}, \ 5-\mathsf{NC}_6\underline{\mathsf{H}}_4\mathsf{C}\mathsf{I}, \ \mathsf{CH}_2\mathsf{C}_6\underline{\mathsf{H}}_5), \ \mathsf{10.00}-\mathsf{10.20} \ (\mathsf{s}, \ \mathsf{1H}, \ \mathsf{N}\underline{\mathsf{H}}^+). \ \mathsf{LC/MS}: \\ \textit{m/z calc. } 612.28, \ \mathsf{found} \ 612.44. \ \mathsf{Anal.} \ (\mathsf{C}_{34}\mathsf{H}_{39}\mathsf{C}\mathsf{I}_2\mathsf{N}_7\mathsf{O}_2) \ \mathsf{C}, \ \mathsf{H}, \ \mathsf{N}. \end{array}$

8-(Dibenzylamino)-1,3-dimethyl-7-(3-(4-(4-fluorophenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**16**)

From 3 in 91% yield: m.p. 183–185°C, $R_f = 0.37$ (A), 0.74 (B), ¹H NMR δ 2.00–2.15 (m, 2H, CH₂CH₂CH₂), 2.85–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.19 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3) CH₃), 3.39–3.50 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.70–3.80 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.14 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 4.38 (s, 4H, N(CH₂C₆H₅)₂), 6.95–7.15 (m, 4H, NC₆H₄F), 7.28–7.40 (m, 5H, CH₂C₆H₅), 9.60–9.75 (s, 1H, NH⁺). LC/MS: *m/z* calc. 596.31, found 596.42. Anal. (C₃₄H₃₉ClFN₇O₂) C, H, N.

8-(Dibenzylamino)-7-(3-(3,4-dihydroisoquinolin-2(1H)-yl)propyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione hydrochloride (**17**)

From **3** in 85% yield: m.p. 209–210°C, $R_f = 0.35$ (A), 0.68 (B), ¹H NMR δ 2.10–2.25 (m, 2H, CH₂CH₂CH₂), 2.88–3.20 (m, 4H, CH₂NH⁺THIQ, 4,4-THIQ), 3.19 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3) CH₃), 3.50–3.60 (m, 2H, 3,3-THIQ), 4.10–4.20 (m, 1H, 1-THIQ), 4.19 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 4.39 (s, 4H, N(CH₂C₆H₅)₂), 4.40–4.50 (m, 1H, 1-THIQ), 7.10–7.36 (m, 14H, 5,6,7,8-THIQ, N(CH₂C₆H₅)₂), 10.30–10.50 (s, 1H, NH⁺). LC/MS: *m/z* calc. 549.30, found 549.47. Anal. (C₃₃H₃₇ClN₆O₂) C, H, N.

8-(N-Methylbenzylamino)-1,3-dimethyl-7-(4-(4phenylpiperazin-1-yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**18**)

From 4 in 73% yield: m.p. 210–212°C, $R_f = 0.25$ (A), 0.65 (B), ¹H NMR δ 1.55–1.70 (m, 2H, N(7)CH₂CH₂CH₂CH₂), 1.70–1.80 (m, 2H, N(7)CH₂C<u>H₂CH₂CH₂</u>), 2.88 (s, 3H, NC<u>H₃</u>), 3.00–3.15 (m, 6H, C<u>H₂NH⁺</u>(CH₂C<u>H₂</u>), 3.20 (s, 3H, N(1)C<u>H₃</u>), 3.37 (s, 3H, N(3) C<u>H₃</u>), 3.40–3.50 (m, 2H, CH₂NH⁺(C<u>H₂CH₂</u>)₂N), 3.70–3.85 (m, 2H, CH₂NH⁺(C<u>H₂C</u>H₂)₂N), 4.15 (t, ³J = 6.9 Hz, 2H, N(7)C<u>H₂</u>), 4.47 (s, 2H, C<u>H₂C</u>₆H₅), 6.84 (t, ³J = 7.2 Hz, 1H, *p*-NC₆H₅), 6.98 (d, ³J = 8.0 Hz, 2H, o-NC₆H₅), 7.24 (t, ³J = 8.0 Hz, 2H, *m*-NC₆H₅), 7.24–7.37 (m, 5H, CH₂C₆H₅), 10.00–10.15 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 516.31, found 516.49. Anal. (C₂₉H₃₈ClN₇O₂) C, H, N.

8-(N-Methylbenzylamino)-1,3-dimethyl-7-(4-(4-(2methoxyphenyl)piperazin-1-yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**19**)

From 4 in 77% yield: m.p. 170–172°C, $R_f = 0.42$ (A), 0.77 (B), ¹H NMR δ 1.50–1.65 (m, 2H, N(7)CH₂CH₂CH₂CH₂), 1.70–1.80 (m, 2H, N(7)CH₂CH₂CH₂), 2.85 (s, 3H, NCH₃), 3.05–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.22 (s, 3H, N(1)CH₃), 3.39 (s, 3H, N(3) CH₃), 3.40–3.47 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.73 (s, 3H, OCH₃), 3.75–3.85 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.17 (t, ³*J* = 7.0 Hz, 2H, N(7)CH₂), 4.48 (s, 2H, CH₂C₆H₅), 6.85–7.00 (m, 4H, NC₆H₄OCH₃), 7.24–7.36 (m, 5H, CH₂C₆H₅), 10.20–10.40 (s, 1H, NH⁺). LC/MS: *m/z* calc. 546.32, found 546.45. Anal. (C₃₀H₄₀ClN₇O₃) C, H, N.

8-(N-Methylbenzylamino)-7-(4-(3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione hydrochloride (**20**)

From 4 in 78% yield: m.p. 174–176°C, $R_{\rm f} = 0.40$ (A), 0.73 (B), ¹H NMR δ 1.80–1.90 (m, 4H, N(7)CH₂CH₂CH₂CH₂), 2.88 (s, 3H, NCH₃), 3.05–3.20 (m, 4H, CH₂NH⁺THIQ, 4,4-THIQ), 3.19 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3)CH₃), 3.55–3.65 (m, 2H, 3,3-THIQ), 4.15 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 4.15–4.25 (m, 1H, 1-THIQ), 4.39–4.47 (m, 1H, 1-THIQ), 4.47 (s, 2H, CH₂C₆H₅), 7.15–7.40 (m, 9H, 5,6,7,8-THIQ, CH₂C₆H₅), 10.30–10.50 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 487.28, found 487.38. Anal. (C₂₈H₃₅CIN₆O₂) C, H, N.

8-(N-Ethylbenzylamino)-1,3-dimethyl-7-(4-(4phenylpiperazin-1-yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**21**)

From **5** in 67% yield: m.p. 195–197°C, $R_f = 0.45$ (A), 0.81 (B), ¹H NMR δ 1.14 (t, ³J = 7.1 Hz, 3H, NCH₂CH₃), 1.70–1.75 (m, 2H, N(7) CH₂CH₂CH₂CH₂), 1.80–1.90 (m, 2H, N(7)CH₂CH₂CH₂CH₂), 3.05–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.22 (s, 3H, N(1)CH₃), 3.24 (q, ³J = 7.1 Hz, 2H, NCH₂CH₃), 3.35 (s, 3H, N(3)CH₃), 3.35–3.45 (m, 2H, CH₂NH⁺(CH₂CH₃), 3.35 (s, 3H, N(3)CH₂), 4.43 (s, 2H, CH₂C₆H₅), 6.84 (t, ³J = 6.9 Hz, 2H, N(7)CH₂), 4.43 (s, ³J = 8.0 Hz, 2H, o-NC₆H₅), 7.24 (t, ³J = 8.0 Hz, 2H, m-NC₆H₅), 7.24–7.37 (m, 5H, CH₂C₆H₅), 10.20–10.30 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 530.32, found 530.44. Anal. (C₃₀H₄₀ClN₇O₂) C, H, N.

8-(N-Ethylbenzylamino)-1,3-dimethyl-7-(4-(4-(2methoxyphenyl)piperazin-1-yl)butyl)-1H-purine-

2,6(3H,7H)-dione hydrochloride (22)

From **5** in 75% yield: m.p. 185–187°C, $R_f = 0.42$ (A), 0.77 (B), ¹H NMR δ 1.16 (t, ³J = 7.0 Hz, 3H, NCH₂C<u>H₃</u>), 1.75–1.80 (m, 2H, N(7)CH₂CH₂C<u>H₂</u>CH₂), 1.80–1.90 (m, 2H, N(7)CH₂C<u>H₂CH₂CH₂CH₂), 3.00–3.20 (m, 6H, C<u>H₂NH⁺(CH₂C<u>H₂</u>)₂N), 3.22 (s, 3H, N(1) C<u>H₃</u>), 3.24 (q, ³J = 7.1 Hz, 2H, NC<u>H₂CH₃</u>), 3.35 (s, 3H, N(3) C<u>H₃</u>), 3.40–3.45 (m, 2H, CH₂NH⁺(C<u>H₂CH₂</u>)₂N), 3.72 (s, 3H, OC<u>H₃</u>), 3.75–3.80 (m, 2H, CH₂NH⁺(C<u>H₂CH₂</u>)₂N), 4.18 (t, ³J = 7.0 Hz, 2H, N(7)C<u>H₂</u>), 4.47 (s, 2H, C<u>H₂C₆H₅</u>), 6.85–7.05 (m, 4H, NC₆<u>H₄OCH₃</u>), 7.24–7.36 (m, 5H, CH₂C₆<u>H₅</u>), 10.20–10.40 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 560.33, found 560.39. Anal. (C₃₁H₄₂ClN₇O₃) C, H, N.</u></u>

8-(N-Ethylbenzylamino)-7-(4-(3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione hydrochloride (**23**)

From **5** in 86% yield: m.p. 195–197°C, $R_f = 0.13$ (A), 0.50 (B), ¹H NMR δ 1.09 (t, ³J = 7.0 Hz, 3H, NCH₂CH₃), 1.65–1.80 (m, 4H, N(7)CH₂CH₂CH₂CH₂), 3.05–3.20 (m, 4H, CH₂NH⁺THIQ, 4,4-THIQ), 3.18 (s, 3H, N(1)CH₃), 3.23 (q, ³J = 7.2 Hz, 2H, NCH₂CH₃), 3.37 (s, 3H, N(3)CH₃), 3.50–3.65 (m, 2H, 3,3-THIQ), 4.07–4.13 (m, 2H, N(7)CH₂), 4.20–4.25 (m, 1H, 1-THIQ), 4.35– 4.45 (m, 1H, 1-THIQ), 4.42 (s, 2H, CH₂C₆H₅), 7.15–7.35 (m, 9H, 5,6,7,8-THIQ, CH₂C₆H₅), 10.80–10.90 (s, 1H, NH⁺). LC/MS: *m/z* calc. 501.30, found 501.44. Anal. (C₂₉H₃₇ClN₆O₂) C, H, N. 8-(Dibenzylamino)-1,3-dimethyl-7-(4-(4-phenylpiperazin-1-yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**24**) From **6** in 97% yield: m.p. 187–189°C, $R_f = 0.27$ (A), 0.64 (B), ¹H NMR δ 1.40–1.70 (m, 4H, N(7)CH₂CH₂CH₂CH₂), 2.95–3.20 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.19 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3) CH₃), 3.35–3.50 (m, 4H, CH₂NH⁺(CH₂CH₂)₂N), 4.07–4.13 (m, 2H, N(7)CH₂), 4.39 (s, 4H, N(CH₂C₆H₅)₂), 6.84 (t, ³J = 7.0 Hz, 1H, p-NC₆H₅), 6.98 (d, ³J = 6.0 Hz, 2H, o-NC₆H₅), 7.26–7.35 (m, 12H, m-NC₆H₅, N(CH₂C₆H₅)₂), 9.90–10.10 (s, 1H, NH⁺). LC/MS: *m/z* calc. 592.34, found 592.47. Anal. (C₃₅H₄₂ClN₇O₂) C, H, N.

8-(Dibenzylamino)-1,3-dimethyl-7-(4-(4-(2methoxyphenyl)piperazin-1-yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**25**)

From **6** in 90% yield: m.p. 210–212°C, $R_f = 0.25$ (A), 0.58 (B), ¹H NMR δ 1.45–1.70 (m, 4H, N(7)CH₂CH₂CH₂CH₂), 2.80–3.20 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.18 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3) CH₃), 3.35–3.50 (m, 4H, CH₂NH⁺(CH₂CH₂)₂N), 3.78 (s, 3H, OCH₃), 4.06–4.11 (m, 2H, N(7)CH₂), 4.39 (s, 4H, N(CH₂C₆H₅)₂), 6.91–7.05 (m, 4H, NC₆H₄OCH₃), 7.25–7.37 (m, 10H, N(CH₂C₆H₅)₂), 10.20–10.40 (s, 1H, NH⁺). LC/MS: *m/z* calc. 622.35, found 622.52. Anal. (C₃₆H₄₄ClN₇O₃) C, H, N.

8-(Dibenzylamino)-1,3-dimethyl-7-(4-(4-(3-chlorophenyl)piperazin-1-yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**26**)

From **6** in 97% yield: m.p. 124–125°C, $R_f = 0.35$ (A), 0.74 (B), ¹H NMR δ 1.50–1.70 (m, 4H, N(7)CH₂C<u>H₂CH₂CH₂C</u>, 3.00–3.16 (m, 6H, C<u>H₂NH⁺</u>(CH₂C<u>H₂)₂N), 3.18 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3) CH₃), 3.37–3.49 (m, 2H, CH₂NH⁺(C<u>H₂CH₂)₂N), 3.84–3.88 (m, 2H, CH₂NH⁺(C<u>H₂CH₂)₂N), 4.07–4.11 (m, 2H, N(7)CH₂), 4.39 (s, 4H, N(C<u>H₂C₆H₅)₂), 6.88 (d, ³J = 9.0 Hz, 1H, 6-NC₆H₄Cl), 6.96 (d, ³J = 7.9 Hz, 1H, 4-NC₆H₄Cl), 7.04 (s, 1H, 2-NC₆H₄Cl), 7.22–7.38 (m, 11H, 5-NC₆H₄Cl, N(CH₂C₆H₅)₂), 10.20–10.40 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 626.30, found 626.47. Anal. (C₃₅H₄₁Cl₂N₇O₂) C, H, N.</u></u></u></u>

8-(Dibenzylamino)-1,3-dimethyl-7-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**27**)

From **6** in 95% yield: m.p. 155–157°C, $R_f = 0.27$ (A), 0.72 (B), ¹H NMR δ 1.45–1.70 (m, 4H, N(7)CH₂C<u>H₂CH₂CH₂C</u>, 2.90–3.17 (m, 6H, C<u>H₂NH⁺(CH₂C<u>H₂)₂N)</u>, 3.18 (s, 3H, N(1)C<u>H₃</u>), 3.37 (s, 3H, N(3) C<u>H₃</u>), 3.37–3.43 (m, 2H, CH₂NH⁺(C<u>H₂CH₂)₂N</u>), 3.69–3.73 (m, 2H, CH₂NH⁺(C<u>H₂CH₂)₂N</u>), 4.06–4.12 (m, 2H, N(7)C<u>H₂</u>), 4.39 (s, 4H, N(C<u>H₂C₆H₅)₂), 6.95–7.15 (m, 4H, NC₆<u>H₄F</u>), 7.25–7.38 (m, 10H, N(CH₂C₆<u>H₅)₂), 9.80–10.00 (s, 1H, NH⁺)</u>. LC/MS: *m/z* calc. 610.33, found 610.46. Anal. (C₃₅H₄₁ClFN₇O₂) C, H, N.</u></u>

8-(Dibenzylamino)-7-(4-(3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione hydrochloride (**28**)

From **6** in 92% yield: m.p. 182–184°C, $R_f = 0.28$ (A), 0.66 (B), ¹H NMR δ 1.60–1.75 (m, 4H, N(7)CH₂CH₂CH₂CH₂), 2.90–3.10 (m, 4H, CH₂NH⁺THIQ, 4,4-THIQ), 3.17 (s, 3H, N(1)CH₃), 3.32 (s, 3H, N(3)CH₃), 3.55–3.65 (m, 2H, 3,3-THIQ), 4.07–4.11 (m, 2H, N(7)

CH₂), 4.20–4.25 (m, 1H, 1-THIQ), 4.39 (s, 4H, N(CH₂C₆H₅)₂), 4.40– 4.45 (m, 1H, 1-THIQ), 7.15–7.37 (m, 14H, 5,6,7,8-THIQ, N-(CH₂C₆H₅)₂), 10.60–10.80 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 563.31, found 563.44. Anal. (C₃₄H₃₉ClN₆O₂) C, H, N.

8-(Dibenzylamino)-1,3-dimethyl-7-(5-(4-phenylpiperazin-1-yl)pentyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**29**)

From **7** in 91% yield: m.p. 154–156°C, $R_f = 0.32$ (A), 0.68 (B), ¹H NMR δ 1.00–1.10 (m, 2H, N(7)CH₂CH₂CH₂CH₂CH₂CH₂), 1.50– 1.70 (m, 4H, N(7)CH₂CH₂CH₂CH₂CH₂), 2.90–3.10 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.17 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3) CH₃), 3.46–3.49 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.76–3.80 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.07 (t, ³J = 7.6 Hz, 2H, N(7)CH₂), 4.39 (s, 4H, N(CH₂C₆H₅)₂), 6.85 (t, ³J = 7.3 Hz, 1H, *p*-NC₆H₅), 6.98 (d, ³J = 7.9 Hz, 2H, *o*-NC₆H₅), 7.22–7.40 (m, 12H, *m*-NC₆H₅, N(CH₂C₆H₅)₂), 10.60–10.80 (s, 1H, NH⁺). LC/MS: *m/z* calc. 606.36, found 606.50. Anal. (C₃₆H₄₄ClN₇O₂) C, H, N.

8-(Dibenzylamino)-1,3-dimethyl-7-(5-(4-(2methoxyphenyl)piperazin-1-yl)pentyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**30**)

From **7** in 81% yield: m.p. 106–107°C, $R_f = 0.26$ (A), 0.60 (B), ¹H NMR δ 1.00–1.15 (m, 2H, N(7)CH₂CH₂CH₂CH₂CH₂C, 1.50– 1.70 (m, 4H, N(7)CH₂CH₂CH₂CH₂C, 2.90–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.18 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3) CH₃), 3.45–3.49 (m, 4H, CH₂NH⁺(CH₂CH₂)₂N), 3.78 (s, 3H, OCH₃), 4.08 (t, ³J = 7.2 Hz, 2H, N(7)CH₂), 4.40 (s, 4H, N(CH₂C₆H₅)₂), 6.89–7.02 (m, 4H, NC₆H₄OCH₃), 7.20–7.37 (m, 10H, N-(CH₂C₆H₅)₂), 9.90–10.10 (s, 1H, NH⁺). LC/MS: *m/z* calc. 636.36, found 636.55. Anal. (C₃₇H₄₆ClN₇O₃) C, H, N.

8-(Dibenzylamino)-1,3-dimethyl-7-(5-(4-(3-chlorophenyl)piperazin-1-yl)pentyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**31**)

From **7** in 92% yield: m.p. 167–168°C, $R_f = 0.40$ (A), 0.72 (B), ¹H NMR δ 1.00–1.15 (m, 2H, N(7)CH₂CH₂CH₂CH₂CH₂), 1.50– 1.70 (m, 4H, N(7)CH₂C<u>H₂CH₂CH₂CH₂), 2.90–3.15 (m, 6H, CH₂NH⁺(CH₂C<u>H₂)₂N), 3.17 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3) CH₃), 3.45–3.48 (m, 2H, CH₂NH⁺(C<u>H₂CH₂)₂N), 3.84–3.88 (m, 2H,</u> CH₂NH⁺(C<u>H₂CH₂)₂N), 4.06–4.09 (m, 2H, N(7)CH₂), 4.39 (s, 4H, N(C<u>H₂C₆H₅)₂), 6.86 (d, ³J = 7.6 Hz, 1H, 6-NC₆H₄Cl), 6.95 (d, ³J = 8.4 Hz, 1H, 4-NC₆H₄Cl), 7.04 (s, 1H, 2-NC₆H₄Cl), 7.22–7.37 (m, 11H, 5-NC₆H₄Cl, N(CH₂C₆H₅)₂), 10.30–10.50 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 640.32, found 640.51. Anal. (C₃₆H₄₃Cl₂N₇O₂) C, H, N.</u></u></u></u>

8-(Dibenzylamino)-1,3-dimethyl-7-(5-(4-(4-fluorophenyl)piperazin-1-yl)pentyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**32**)

From **7** in 94% yield: m.p. 164–166°C, $R_f = 0.30$ (A), 0.66 (B), ¹H NMR δ 1.00–1.10 (m, 2H, N(7)CH₂CH₂CH₂CH₂CH₂), 1.50– 1.70 (m, 4H, N(7)CH₂CH₂CH₂CH₂CH₂), 2.90–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.17 (s, 3H, N(1)CH₃), 3.37 (s, 3H, N(3) CH₃), 3.46–3.48 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.68–3.71 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.07 (t, ³J = 7.2 Hz, 2H, N(7)CH₂), 4.39 (s, 4H, N(C $\underline{H}_2C_6H_5$)₂), 6.98–7.12 (m, 4H, NC $_6\underline{H}_4F$), 7.19–7.37 (m, 10H, N(CH $_2C_6H_5$)₂), 10.60–10.70 (s, 1H, N \underline{H}^+). LC/MS: *m/z* calc. 624.34, found 624.49. Anal. (C₃₆H₄₃ClFN₇O₂) C, H, N.

8-(Dibenzylamino)-7-(5-(3,4-dihydroisoquinolin-2(1H)-yl)pentyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione hydrochloride (**33**)

From 7 in 84% yield: m.p. 158–160°C, $R_f = 0.26$ (A), 0.60 (B), ¹H NMR δ 1.00–1.15 (m, 2H, N(7)CH₂CH₂CH₂CH₂CH₂CH₂), 1.55– 1.70 (m, 4H, N(7)CH₂CH₂CH₂CH₂CH₂), 2.95–3.15 (m, 4H, CH₂NH⁺THIQ, 4,4-THIQ), 3.17 (s, 3H, N(1)CH₃), 3.31 (s, 3H, N(3)CH₃), 3.60–3.67 (m, 2H, 3,3-THIQ), 4.06–4.11 (m, 2H, N(7) CH₂), 4.20–4.25 (m, 1H, 1-THIQ), 4.38 (s, 4H, N(CH₂C₆H₅)₂), 4.40– 4.45 (m, 1H, 1-THIQ), 7.17–7.37 (m, 14H, 5,6,7,8-THIQ, N-(CH₂C₆H₅)₂), 10.30–10.40 (s, 1H, NH⁺). LC/MS: *m/z* calc. 577.33, found 577.43. Anal. (C₃₅H₄₁ClN₆O₂) C, H, N.

General procedure for preparing 7-(ω -(4-arylpiperazin-1-yl)alkyl)-8-amino-1,3-dimethyl-1H-purine-2,6(3H,7H)-diones (34–37, 44–47, and 52–55), 7-(ω -(4-arylpiperazin-1-yl)alkyl)-8-(N-alkylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-diones (39–43, 49, and 50) and their 7-(ω -(3,4-dihydroisoquinolin-2(1H)-yl)alkyl counterparts (38, 48, and 51)

Five millimoles of appropriate 7-(ω -(4-arylpiperazin-1-yl)alkyl) or 7-(ω -(3,4-dihydroisoquinolin-2(1*H*)-yl)alkyl derivative of 8-(*N*alkylbenzylamino)-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione or 8-(dibenzylamino)-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione was dissolved in 10 mL of 90% H₂SO₄ and left in room temperature for 24 h. Afterwards 20 mL of water was added and mixture was filtered off. Filtrate was alkalized with 30% NaOH and extracted with chloroform (2 × 10 mL). Organic layer was evaporated under reduced pressure and residue was dissolved in dry ethanol and acidified with conc. HCl to pH ca. 3 and cooled. Precipitate was filtered off and purified by crystallization from ethanol.

8-Amino-1,3-dimethyl-7-(3-(4-phenylpiperazin-1-yl)-

propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**34**) From **13** in 91% yield: m.p. 317–319°C, $R_f = 0.19$ (A), 0.46 (B), ¹H NMR δ 2.00–2.18 (m, 2H, CH₂CH₂CH₂), 2.99–3.13 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.17 (s, 3H, N(1)CH₃), 3.32 (s, 3H, N(3) CH₃), 3.54–3.58 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.78–3.83 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.10 (t, ³J = 6.7 Hz, 2H, N(7)CH₂), 6.84 (t, ³J = 7.2 Hz, 1H, p-NC₆H₅), 6.98 (d, ³J = 7.9 Hz, 2H, o-NC₆H₅), 7.07 (s, 2H, NH₂), 7.24 (t, ³J = 8.0 Hz, 2H, m-NC₆H₅), 9.80–10.00 (s, 1H, NH⁺). LC/MS: *m/z* calc. 398.23, found 398.33. Anal. (C₂₀H₂₈ClN₇O₂) C, H, N.

8-Amino-1,3-dimethyl-7-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**35**)

From **14** in 61% yield: m.p. 298–300°C, $R_f = 0.13$ (A), 0.42 (B), ¹H NMR δ 2.00–2.15 (m, 2H, CH₂CH₂CH₂), 2.90–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.18 (s, 3H, N(1)CH₃), 3.32 (s, 3H, N(3)CH₃), 3.50–3.60 (m, 4H, CH₂NH⁺(CH₂CH₂)₂N), 3.77 (s, 3H, OCH₃), 4.10 (t, ³J = 6.7 Hz, 2H, N(7)CH₂), 6.84–7.00 (m, 4H, $NC_{6}H_{4}OCH_{3}$), 7.07 (s, 2H, N H_{2}), 9.90–10.10 (s, 1H, N H^{+}). LC/MS: *m/z* calc. 428.24, found 428.36. Anal. (C₂₁H₂₈ClN₇O₃) C, H, N.

8-Amino-1,3-dimethyl-7-(3-(4-(3-chlorophenyl)piperazin-1yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**36**) From **15** in 93% yield: m.p. 290–292°C, $R_f = 0.22$ (A), 0.52 (B), ¹H NMR δ 2.00–2.15 (m, 2H, CH₂CH₂CH₂), 3.00–3.17 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.17 (s, 3H, N(1)CH₃), 3.32 (s, 3H, N(3) CH₃), 3.53–3.60 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.86–3.89 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.10 (t, ³J = 6.7 Hz, 2H, N(7)CH₂), 6.85 (dd, ³J = 7.7 Hz, ⁴J = 1.8 Hz, 1H, 6-NC₆H₄Cl), 6.94 (dd, ³J = 8.4 Hz, ⁴J = 1.9 Hz, 1H, 4-NC₆H₄Cl), 7.03 (t, ⁴J = 2.2 Hz, 1H, 2-NC₆H₄Cl), 7.07 (s, 2H, NH₂), 7.24 (t, ³J = 8.2 Hz, 1H, 5-NC₆H₄Cl), 10.00– 10.20 (s, 1H, NH⁺). LC/MS: *m/z* calc. 432.19, found 432.24. Anal. (C₂₀H₂₇Cl₂N₇O₂) C, H, N.

8-Amino-1,3-dimethyl-7-(3-(4-(4-fluorophenyl)piperazin-1yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**37**) From **16** in 93% yield: m.p. 292–294°C, $R_f = 0.21$ (A), 0.48 (B), ¹H NMR δ 2.00–2.15 (m, 2H, CH₂CH₂CH₂), 2.96 (t, ³J = 12.2 Hz, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.05–3.17 (m, 4H, CH₂NH⁺(CH₂CH₂)₂N), 3.17 (s, 3H, N(1)CH₃), 3.33 (s, 3H, N(3)CH₃), 3.54–3.58 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.70–3.74 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.10 (t, ³J = 6.5 Hz, 2H, N(7)CH₂), 6.97–7.11 (m, 6H, NC₆H₄F, NH₂), 9.08–10.00 (s, 1H, NH⁺). LC/MS: *m/z* calc. 416.22, found 416.32. Anal. (C₂₀H₂₇CIFN₇O₂) C, H, N.

8-Amino-7-(3-(3,4-dihydroisoquinolin-2(1H)-yl)propyl)-1,3dimethyl-1H-purine-2 6(3H,7H)-dione hydrochloride (38)

dimethyl-1H-purine-2,6(3H,7H)-dione hydrochloride (**38**) From **17** in 56% yield: m.p. 266–268°C, $R_f = 0.19$ (A), 0.46 (B), ¹H NMR δ 2.05–2.20 (m, 2H, CH₂CH₂CH₂), 2.85–3.19 (m, 4H, CH₂NH⁺THIQ, 4,4-THIQ), 3.18 (s, 3H, N(1)CH₃), 3.35 (s, 3H, N(3) CH₃), 3.45–3.60 (m, 2H, 3,3-THIQ), 4.10–4.20 (m, 1H, 1-THIQ), 4.14 (t, ³J = 7.1 Hz, 2H, N(7)CH₂), 4.40–4.50 (m, 1H, 1-THIQ), 7.08 (s, 2H, NH₂), 7.10–7.26 (m, 4H, 5,6,7,8-THIQ), 10.00–10.20 (s, 1H, NH⁺). LC/MS: *m/z* calc. 396.20, found 369.37. Anal. (C₁₉H₂₅CIN₆O₂) C, H, N.

1,3-Dimethyl-8-(methylamino)-7-(3-(4-phenylpiperazin-1yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**39**) From **8** in 60% yield: m.p. 281–283°C, $R_f = 0.17$ (A), 0.54 (B), ¹H NMR δ 2.00–2.15 (m, 2H, CH₂CH₂), 2.89 (s, 3H, NHCH₃), 3.08– 3.17 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.18 (s, 3H, N(1)CH₃), 3.36 (s, 3H, N(3)CH₃), 3.54–3.56 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.76–3.79 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.13 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 6.84 (t, ³J = 7.2 Hz, 1H, p-NC₆H₅), 6.98 (d, ³J = 7.0 Hz, 2H, o-NC₆H₅), 7.24 (t, ³J = 8.0 Hz, 2H, m-NC₆H₅), 7.35 (s, 1H, N<u>H</u>CH₃), 10.50–10.70 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 412.24, found 412.35. Anal. (C₂₁H₃₀ClN₇O₂) C, H, N.

1,3-Dimethyl-8-(methylamino)-7-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**40**)

From **9** in 50% yield: m.p. 287–289°C, $R_f = 0.13$ (A), 0.44 (B), ¹H NMR δ 2.00–2.20 (m, 2H, CH₂CH₂CH₂), 2.89 (s, 3H, NHC<u>H₃</u>), 3.02–3.17 (m, 6H, C<u>H₂</u>NH⁺(CH₂C<u>H₂</u>)₂N), 3.17 (s, 3H, N(1)C<u>H₃</u>), 3.38 (s,

3H, N(3)C<u>H₃</u>), 3.44–3.48 (m, 2H, CH₂NH⁺(C<u>H₂</u>CH₂)₂N), 3.51–3.55 (m, 2H, CH₂NH⁺(C<u>H₂</u>CH₂)₂N), 3.77 (s, 3H, OC<u>H₃</u>), 4.14 (t, ³*J*=7.0 Hz, 2H, N(7)C<u>H₂</u>), 6.85–7.03 (m, 4H, NC₆<u>H₄</u>OCH₃), 7.20 (s, 1H, N<u>H</u>CH₃), 10.80–10.95 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 442.26, found 442.34. Anal. (C₂₂H₃₂ClN₇O₃) C, H, N.

1,3-Dimethyl-8-(methylamino)-7-(3-(4-(3-chlorophenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**41**)

From **10** in 76% yield: m.p. 301–303°C, $R_f = 0.19$ (A), 0.54 (B), ¹H NMR (base) $\delta 2.05-2.15$ (m, 2H, CH₂CH₂CH₂), 2.37 (t, ³*J* = 6.2 Hz, 2H, CH₂N(CH₂CH₂)₂N), 2.62 (t, ³*J* = 4.9 Hz, 4H, CH₂N-(CH₂CH₂)₂N), 3.03 (d, ³*J* = 4.9 Hz, 3H, NHCH₃), 3.26 (t, ³*J* = 4.9 Hz, 4H, CH₂N(CH₂CH₂)₂N), 3.37 (s, 3H, N(1)CH₃), 3.54 (s, 3H, N(3)CH₃), 4.04 (t, ³*J* = 5.6 Hz, 2H, N(7)CH₂), 6.81 (ddd, ³*J* = 8.5 Hz, ⁴*J* = 2.4 Hz, ⁵*J* = 0.8 Hz, 1H, 6-NC₆H₄Cl), 6.86 (ddd, ³*J* = 8.0 Hz, ⁴*J* = 2.0 Hz, ⁵*J* = 0.8 Hz, 1H, 4-NC₆H₄Cl), 6.90 (t, ⁴*J* = 2.0 Hz, 1H, 2-NC₆H₄Cl), 7.14–7.18 (m, 1H, NHCH₃), 7.17 (t, ³*J* = 8.1 Hz, 1H, 5-NC₆H₄Cl). LC/MS: *m/z* calc. 446.21, found 446.35. Anal. (C₂₁H₂₉Cl₂N₇O₂) C, H, N.

8-(Ethylamino)-1,3-dimethyl-7-(3-(4-phenylpiperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**42**)

propyl)-1H-purne-2, 6(3H, 7H)-dione hydrochloride (42) From 11 in 69% yield: m.p. 286–287°C, $R_f = 0.17$ (A), 0.50 (B), ¹H NMR (base) δ 1.19 (t, ³J = 7.0 Hz, 3H, NHCH₂CH₃), 2.05–2.15 (m, 2H, CH₂CH₂CH₂), 2.38 (t, ³J = 6.1 Hz, 2H, CH₂N(CH₂CH₂)₂N), 2.62 (m, 4H, CH₂N(CH₂CH₂)₂N), 3.14 (m, 4H, CH₂N(CH₂CH₂)₂N), 3.36 (s, 3H, N(1)CH₃), 3.47 (q, ³J = 7.0 Hz, 2H, NHCH₂CH₃), 3.53 (s, 3H, N(3)CH₃), 4.06 (t, ³J = 7.0 Hz, 2H, N(7)CH₂), 6.83 (t, ³J = 7.0 Hz, 1H, p-NC₆H₅), 6.96 (d, ³J = 8.5 Hz, 2H, o-NC₆H₅), 7.25 (t, ³J = 8.0 Hz, 2H, m-NC₆H₅), 7.26 (t, ³J = 6.0 Hz, 1H, N<u>H</u> CH₂CH₃). LC/MS: m/z calc. 426.26, found 426.38. Anal. (C₂₂H₃₂ClN₇O₂) C, H, N.

8-(Ethylamino)-1,3-dimethyl-7-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**43**)

From **12** in 65% yield: m.p. 286–287°C, $R_f = 0.13$ (A), 0.48 (B), ¹H NMR (base) δ 1.26 (t, ³J = 7.2 Hz, 3H, NHCH₂CH₃), 2.09–2.16 (m, 2H, CH₂CH₂), 2.39 (t, ³J = 6.0 Hz, 2H, CH₂N(CH₂CH₂)₂N), 2.68 (m, 4H, CH₂N(C<u>H₂CH₂), 2</u>N), 3.15 (m, 4H, CH₂N(CH₂C<u>H₂), 2</u>N), 3.88 (s, 3H, N(1)C<u>H₃), 3.47 (q, ³J = 7.0 Hz, 2H, NHC<u>H₂CH₃), 3.53 (s, 3H, N(3)C<u>H₃), 3.88 (s, 3H, OCH₃), 4.04 (t, ³J = 5.7 Hz, 2H, N(7)C<u>H₂), 6.88–7.08 (m, 4H, NC₆H₄OCH₃), 7.23 (t, ³J = 5.3 Hz, 1H, N<u>H</u>CH₂CH₃). LC/MS: *m/z* calc. 456.27, found 456.38. Anal. (C₂₃H₃₄ClN₇O₃) C, H, N.</u></u></u></u>

8-Amino-1,3-dimethyl-7-(4-(4-phenylpiperazin-1-yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (44)

From **24** in 94% yield: m.p. 252–254°C, $R_f = 0.06$ (A), 0.26 (B), ¹H NMR δ 1.60–1.80 (m, 4H, N(7)CH₂CH₂CH₂CH₂), 3.05–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.16 (s, 3H, N(1)CH₃), 3.31 (s, 3H, N(3) CH₃), 3.48–3.50 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.77–3.80 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.00–4.05 (m, 2H, N(7)CH₂), 6.84 (t, ³J=7.3 Hz, 1H, *p*-NC₆H₅), 6.98 (d, ³J=7.7 Hz, 2H, *o*-NC₆H₅), 7.24 (t, ³J=8.0 Hz, 2H, *m*-NC₆H₅), 6.90–7.30 (s, 2H, NH₂), 10.60–

10.70 (s, 1H, N<u>H</u>⁺). LC/MS: *m/z* calc. 412.24, found 412.37. Anal. ($C_{21}H_{30}CIN_7O_2$) C, H, N.

8-Amino-1,3-dimethyl-7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**45**)

From **25** in 61% yield: m.p. 234–235°C, $R_f = 0.14$ (B), ¹H NMR δ 1.60–1.80 (m, 4H, N(7)CH₂CH₂CH₂CH₂), 3.00–3.15 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.17 (s, 3H, N(1)CH₃), 3.32 (s, 3H, N(3) CH₃), 3.45–3.48 (m, 4H, CH₂NH⁺(CH₂CH₂)₂N), 3.77 (s, 3H, OCH₃), 4.04 (m, 2H, N(7)CH₂), 6.85–7.05 (m, 4H, NC₆H₄OCH₃), 6.90–7.30 (s, 2H, NH₂), 10.40–10.60 (s, 1H, NH⁺). LC/MS: *m/z* calc. 442.26, found 442.35. Anal. (C₂₂H₃₂ClN₇O₃) C, H, N.

8-Amino-1,3-dimethyl-7-(4-(4-(3-chlorophenyl)piperazin-1yl)butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**46**) From **26** in 93% yield: m.p. 201–203°C, $R_f = 0.04$ (A), 0.24 (B), ¹H

NMR δ 1.55–1.75 (m, 4H, N(7)CH₂CH₂CH₂CH₂), 3.00–3.20 (m, 6H, CH₂NH⁺(CH₂CH₂)N), 3.16 (s, 3H, N(1)CH₃), 3.31 (s, 3H, N(3) CH₃), 3.46–3.49 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.83–3.87 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.03 (t, ³J = 6.4Hz, 2H, N(7)CH₂), 6.84 (dd, ³J = 7.9 Hz, ⁴J = 1.3 Hz, 1H, 6-NC₆H₄Cl), 6.90–7.30 (s, 2H, NH₂), 6.93 (dd, ³J = 8.2 Hz, ⁴J = 2.1 Hz, 1H, 4-NC₆H₄Cl), 7.03 (t, ⁴J = 2.2 Hz, 1H, 2-NC₆H₄Cl), 7.24 (t, ³J = 8.1Hz, 1H, 5-NC₆H₄Cl), 10.60–10.70 (s, 1H, NH⁺). LC/MS: *m/z* calc. 446.21, found 446.37. Anal. (C₂₁H₂₉Cl₂N₇O₂) C, H, N.

8-Amino-1,3-dimethyl-7-(4-(4-(4-fluorophenyl)piperazin-1-

yl)butyl)-1H-purine-2, 6(3H,7H)-dione hydrochloride (47) From 27 in 87% yield: m.p. 200–202°C, $R_f = 0.02$ (A), 0.18 (B), ¹H NMR δ 1.60–1.80 (m, 4H, N(7)CH₂C<u>H₂CH₂CH₂</u>), 3.00–3.15 (m, 6H, C<u>H₂NH⁺</u>(CH₂C<u>H₂</u>)₂N), 3.16 (s, 3H, N(1)C<u>H₃</u>), 3.32 (s, 3H, N(3) C<u>H₃</u>), 3.48–3.50 (m, 2H, CH₂NH⁺(C<u>H₂CH₂</u>)₂N), 3.67–3.71 (m, 2H, CH₂NH⁺(C<u>H₂CH₂</u>)₂N), 4.04 (t, ³J = 8.7 Hz, 2H, N(7)C<u>H₂</u>), 6.97– 7.12 (m, 2H, NC₆H₄F, N<u>H₂</u>), 10.70–10.80 (s, 1H, N<u>H⁺</u>). LC/MS: *m/z* calc. 430.24, found 430.36. Anal. (C₂₁H₂₉ClFN₇O₂) C, H, N.

8-Amino-7-(4-(3,4-dihydroisoquinolin-2(1H)-yl)butyl)-1,3-

dimethyl-1H-purine-2,6(3H,7H)-dione hydrochloride (**48**) From **28** in 65% yield: m.p. 232–234°C, $R_f = 0.16$ (B), ¹H NMR (base) δ 1.40–1.55 (m, 2H, N(7)CH₂CH₂CH₂CH₂), 1.60–1.70 (m, 2H, N(7)CH₂CH₂CH₂CH₂), 2.41 (t, ³J = 7.2 Hz, 2H, CH₂NTHIQ), 2.58 (t, ³J = 5.9 Hz, 2H, 3,3-THIQ), 2.75 (t, ³J = 5.6 Hz, 2H, 4,4-THIQ), 3.14 (s, 3H, N(1)CH₃), 3.30 (s, 3H, N(3)CH₃), 3.46 (s, 2H, 1,1-THIQ), 3.99 (t, ³J = 7.1 Hz, 2H, N(7)CH₂), 6.88 (s, 2H, NH₂), 6.97–6.99 (m, 1H, 8-THIQ), 7.04–7.09 (m, 3H, 5,6,7-THIQ). LC/MS: *m/z* calc. 383.22, found 383.34. Anal. (C₂₀H₂₇CIN₆O₂) C, H, N.

8-(Ethylamino)-1,3-dimethyl-7-(4-(4-phenylpiperazin-1-yl)-

butyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**49**) From **21** in 68% yield: m.p. 181–183°C, $R_f = 0.06$ (A), 0.37 (B), ¹H NMR (base) δ 1.26 (t, ³J = 7.2 Hz, 3H, NHCH₂CH₃), 1.61 (quin, ³J = 7.1 Hz, 2H, N(7)CH₂CH₂CH₂CH₂), 1.80 (quin, ³J = 7.2 Hz, 2H, N(7)CH₂CH₂CH₂CH₂), 2.46 (t, ³J = 7.1 Hz, 2H, CH₂N(CH₂CH₂)₂N), 2.59–2.63 (m, 2H, CH₂N(CH₂CH₂)₂N), 3.18–3.22 (m, 2H, CH₂N-(CH₂CH₂)₂N), 3.37 (s, 3H, N(1)CH₃), 3.51 (q, ³J = 7.2 Hz, 2H, NHC<u>H₂</u>CH₃), 3.52 (s, 3H, N(3)C<u>H₃</u>), 4.07 (t, ${}^{3}J = 7.4$ Hz, 2H, N(7) C<u>H₂</u>), 6.85 (t, ${}^{3}J = 7.7$ Hz, 1H, p-NC₆<u>H₅</u>), 6.90 (d, ${}^{3}J = 6.6$ Hz, 2H, o-NC₆<u>H₅</u>), 6.94 (s, 1H, N<u>H</u>CH₂CH₃), 7.26 (t, ${}^{3}J = 7.8$ Hz, 2H, m-NC₆<u>H₅</u>). LC/MS: m/z calc. 440.28, found 440.36. Anal. (C₂₃H₃₄ClN₇O₂) C, H, N.

8-(Ethylamino)-1,3-dimethyl-7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**50**)

From **22** in 49% yield: m.p. 192–194°C, $R_f = 0.04$ (A), 0.33 (B), ¹H NMR (base) δ 1.28 (t, ³J = 7.2 Hz, 3H, NHCH₂C<u>H₃</u>), 1.60–1.75 (m, 2H, N(7)CH₂CH₂C<u>H₂CH₂</u>), 1.75–1.90 (m, 2H, N(7)CH₂C<u>H₂CH₂CH₂CH₂), 2.51 (t, ³J = 6.9 Hz, 2H, C<u>H₂N(CH₂CH₂)</u>, 2.55–2.70 (m, 2H, CH₂N(C<u>H₂CH₂)₂N), 2.95–3.15 (m, 2H, CH₂N(CH₂C<u>H₂)₂N), 3.38 (s,</u> 3H, N(1)C<u>H₃</u>), 3.40–3.60 (m, 2H, NHC<u>H₂CH₃</u>), 3.52 (s, 3H, N(3) C<u>H₃</u>), 3.87 (s, 3H, OC<u>H₃</u>), 4.07 (t, ³J = 7.6 Hz, 2H, N(7)C<u>H₂</u>), 6.86– 7.20 (m, 5H, NC₆<u>H₄OCH₃</u>, N<u>H</u>CH₂CH₃). LC/MS: *m/z* calc. 470.29, found 470.41. Anal. (C₂₄H₃₆CIN₇O₃) C, H, N.</u></u>

7-(4-(3,4-Dihydroisoquinolin-2(1H)-yl)butyl)-8-(ethylamino)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione hydrochloride (**51**)

From **23** in 35% yield: m.p. 178–180°C, $R_f = 0.06$ (A), 0.35 (B), ¹H NMR (base) δ 1.12 (t, ³J = 7.2 Hz, 3H, NHCH₂CH₃), 1.35–1.48 (m, 2H, N(7)CH₂CH₂CH₂CH₂), 1,58–1.68 (m, 2H, N(7)CH₂CH₂CH₂CH₂), 2.41 (t, ³J = 7.1 Hz, 2H, CH₂NTHIQ), 2.58 (t, ³J = 5.8 Hz, 2H, 3,3-THIQ), 2.75 (t, ³J = 5.6 Hz, 2H, 4,4-THIQ), 3.14 (s, 3H, N(1)CH₃), 3.30–3.40 (m, 2H, NHCH₂CH₃), 3.32 (s, 3H, N(3)CH₃), 3.46 (s, 2H, 1,1-THIQ), 4.01 (t, ³J = 7.1 Hz, 2H, N(7)CH₂), 6.93–7.01 (m, 2H, 8-THIQ, NHCH₂CH₃), 7.04–7.09 (m, 3H, 5,6,7-THIQ). LC/MS: *m/z* calc. 411.25, found 411.38. Anal. (C₂₂H₃₁CIN₆O₂) C, H, N.

8-Amino-1,3-dimethyl-7-(5-(4-phenylpiperazin-1-yl)-

pentyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**52**) From **29** in 74% yield: m.p. 267–269°C, $R_f = 0.20$ (B), ¹H NMR δ 1.27 (quin, ³J = 7.2 Hz, 2H, N(7)CH₂CH₂CH₂CH₂CH₂CH₂), 1.65 (quin, ³J = 7.2 Hz, 2H, N(7)CH₂CH₂CH₂CH₂), 1.74 (quin, ³J = 7.7 Hz, 2H, N(7)CH₂CH₂CH₂CH₂), 3.00–3.11 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.18 (s, 3H, N(1)CH₃), 3.30 (s, 3H, N(3) CH₃), 3.46–3.52 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.75–3.79 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.01 (t, ³J = 6.9 Hz, 2H, N(7)CH₂), 6.84 (t, ³J = 7.3 Hz, 1H, p-NC₆H₅), 6.85–7.00 (s, 2H, NH₂), 6.98 (d, ³J = 8.0 Hz, 2H, o-NC₆H₅), 7.23 (t, ³J = 8.0 Hz, 2H, m-NC₆H₅), 10.70–10.90 (s, 1H, NH⁺). LC/MS: m/z calc. 426.26, found 426.40. Anal. (C₂₂H₃₂ClN₇O₂) C, H, N.

8-Amino-1,3-dimethyl-7-(5-(4-(2-methoxyphenyl)piperazin-1-yl)pentyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**53**)

From **30** in 66% yield: m.p. 253–255°C, $R_f = 0.18$ (B), ¹H NMR (base) δ 1.24 (quin, ³J = 7.6 Hz, 2H, N(7)CH₂CH₂CH₂CH₂CH₂CH₂), 1.43 (quin, ³J = 7.3 Hz, 2H, N(7)CH₂CH₂CH₂CH₂CH₂), 1.63 (quin, ³J = 7.3 Hz, 2H, N(7)CH₂CH₂CH₂CH₂), 2.25 (t, ³J = 7.3 Hz, 2H, CH₂N(CH₂CH₂)₂N), 2.48 (m, 4H, CH₂N(CH₂CH₂)₂N), 2.90 (m, 4H, CH₂N(CH₂CH₂)₂N), 3.15 (s, 3H, N(1)CH₃), 3.30 (s, 3H, N(3)CH₃), 3.74 (s, 3H, OCH₃), 3.97 (t, ³J = 7.2 Hz, 2H, N(7)CH₂), 6.83–6.95 (m, 6H, NC₆ H_4 OCH₃, NH₂). LC/MS: *m*/*z* calc. 456.27, found 456.45. Anal. (C₂₃H₃₄ClN₇O₃) C, H, N.

8-Amino-1,3-dimethyl-7-(5-(4-(3-chlorophenyl)piperazin-1yl)pentyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**54**) From **31** in 84% yield: m.p. 259–261°C, $R_f = 0.02$ (A), 0.29 (B), ¹H NMR δ 1.27 (quin, ³J = 6.9 Hz, 2H, N(7)CH₂CH₂CH₂CH₂CH₂), 1.58–1.78 (m, 4H, N(7)CH₂CH₂CH₂CH₂CH₂), 2.98–3.11 (m, 6H, CH₂NH⁺(CH₂CH₂)₂N), 3.17 (s, 3H, N(1)CH₃), 3.30 (s, 3H, N(3) CH₃), 3.48–3.52 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 3.82–3.88 (m, 2H, CH₂NH⁺(CH₂CH₂)₂N), 4.00 (t, ³J = 7.1 Hz, 2H, N(7)CH₂), 6.80-7.10 (s, 2H, NH₂), 6.85 (dd, ³J = 8.0 Hz, ⁴J = 1.7 Hz, 1H, 6-NC₆H₄Cl), 6.94 (dd, ³J = 8.2 Hz, ⁴J = 2.3 Hz, 1H, 4-NC₆H₄Cl), 7.03 (t, ⁴J = 2.2 Hz, 1H, 2-NC₆H₄Cl), 7.24 (t, ³J = 8.1 Hz, 1H, 5-NC₆H₄Cl), 10.50–10.70 (s, 1H, NH⁺). LC/MS: *m/z* calc. 460.22, found 460.41. Anal. (C₂₂H₃₁Cl₂N₇O₂) C, H, N.

8-Amino-1,3-dimethyl-7-(5-(4-(4-fluorophenyl)piperazin-1yl)pentyl)-1H-purine-2,6(3H,7H)-dione hydrochloride (**55**) From **32** in 95% yield: m.p. 265–267°C, $R_f = 0.21$ (B), ¹H NMR δ 1.24 (quin, ³J=7.2 Hz, 2H, N(7)CH₂CH₂CH₂CH₂CH₂), 1.43 (quin, ³J=7.2 Hz, 2H, N(7)CH₂CH₂CH₂CH₂), 1.62 (quin, ³J=6.8 Hz, 2H, N(7)CH₂CH₂CH₂CH₂), 2.25 (t, ³J=7.3 Hz, 2H, CH₂N(CH₂CH₂)N), 2.43 (t, ³J=4.9 Hz, 4H, CH₂N(CH₂CH₂)N), 3.00 (t, ³J=4.9 Hz, 4H, CH₂N(CH₂CH₂)N), 3.15 (s, 3H, N(1)CH₃), 3.29 (s, 3H, N(3)CH₃), 3.97 (t, ³J=7.2 Hz, 2H, N(7)CH₂), 6.87 (s, 2H, NH₂), 6.87–7.04 (m, 4H, NC₆H₄F). LC/MS: *m/z* calc. 444.25, found 444.40. Anal. (C₂₂H₃₁ClFN₇O₂) C, H, N.

Pharmacology

In vitro radioligand binding assays

In vitro radioligand binding assays for $5-HT_{1A}$, $5-HT_{2A}$, and $5-HT_7$ receptors were carried out using methods published by Zajdel et al. [5].

Functional assays for the 5-HT_{1A} receptor

The functional assays for the selected compounds were carried out according to the methods published by Kołaczkowski et al. [6]. The compounds were tested in concentrations 10^{-5} and 10^{-6} M.

The competition binding experiments were financed by project of Polish-Norwegian Research Fund "Creating an academia-based platform to discover substances acting on serotonergic and glutamatergic systems as potential new antidepressant or anxiolytic drugs".

The authors have declared no conflict of interest.

References

- G. Chłoń-Rzepa, P. Żmudzki, P. Zajdel, A. J. Bojarski, B. Duszyńska, A. Nikiforuk, E. Tatarczyńska, M. Pawłowski, *Bioorg. Med. Chem.* 2007, 15, 5239–5250.
- [2] Patent Laboratoire Lebrun S.A., *Pharmacologically Active* 8-Aminotheophylline Derivatives, **1972**, FR 2132582.
- [3] M. Pawłowski, *Dissertation*, **1992**, Akademia Medyczna im. M. Kopernika, Cracow.
- [4] M. Pawłowski, Pol. J. Chem. 1983, 57, 461-465.
- [5] P. Zajdel, K. Marciniec, A. Maślankiewicz, K. Grychowska, G. Satała, B. Duszyńska, T. Lenda, A. Siwek, G. Nowak, A. Partyka, D. Wróbel, M. Jastrzębska-Więsek, A. J. Bojarski, A. Wesołowska, M. Pawłowski, *Eur. J. Med. Chem.* 2013, 60, 42–50.
- [6] M. Kołaczkowski, M. Marcinkowska, A. Bucki, M. Pawłowski, K. Mitka, J. Jaśkowska, P. Kowalski, G. Kazek, A. Siwek, A. Wasik, A. Wesołowska, P. Mierzejewski, P. Bienkowski, J. Med. Chem. 2014, 57, 4543–4557.