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Trilobolide (Tb), a potent natural counterpart of thapsigargin, is a sesquiterpene lactone of guaianolide
type isolated from horse caraway (Laser trilobum, L. Borkh). Tb exerts remarkable pharmacological prop-
erties based on irreversible inhibition of sarco/endoplasmic reticulum calcium ATPase (SERCA), thus
being of increasing interest for cancer cure. Additionally, another pharmacological activity of Tb, as well
as of thapsigargin, was reported in several studies, Tb as being an effective inductor of nitric oxide and
cytokine production. These extraordinary biological properties move these molecules in further pre-clin-
ical evaluation.

Because of ubiquitous character of SERCA expression, development of specifically targeted bioactive
molecules is inevitable. Since it is well known that porphyrins are preferentially taken up by cancer cells,
we have designed and synthesized novel Tb–porphyrin conjugates. Copper-catalyzed azide–alkyne cyclo-
addition was used to link Tb with porphyrin at once. Two model conjugates of Tb and porphyrin were
synthesized and properly characterized. Employing naturally occurring fluorescence properties of por-
phyrins, we investigated the intracellular localization of the conjugates employing fluorescence micros-
copy in living cells. Intriguingly, the prepared conjugates localized both in mitochondria and lysosomes of
HeLa and LNCaP cells. Furthermore, the cytotoxicity of Tb–porphyrin conjugates was assessed in a num-
ber of human cancer cell lines and rat peritoneal cells. Likewise in cancer cell lines, viability of rat peri-
toneal cells was not affected by the tested conjugates. Interestingly, we observed dose-dependent nitric
oxide (iNOS) production induced by the tested conjugates. The effect was related to the type of a linker
used and the overall size of the molecule. Another potent immunobiological effects are under evaluation.

In summary, the results presented here indicate notable immunobiological potential of the prepared Tb
conjugates. Moreover, they could help to decipher the molecular mechanism of Tb for its possible bio-
medical applications.

� 2014 Published by Elsevier Inc.
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1. Introduction

Porphyrins are a class of naturally occurring compounds which
have become intensively studied in last decades due to their
unique photochemical properties. The ability of porphyrins to pas-
sively target tumors in vivo enables their utilization in cancer ther-
apy and diagnostics [1]. The passive tumor targeting by porphyrins
is based on enhanced retention and permeability effect of solid
tumors [2]. Photodynamic therapy (PDT) is a non-invasive thera-
73

74

75

76
peutic approach based on a use of light-sensitive molecules, photo-
sensitizers. PDT is used worldwide for treatment of a number of
diseases, including age-related macular degeneration, psoriasis
and cancer [3–8]. Moreover, the photophysical properties of por-
phyrins allow visualization of their localization as well as of their
conjugates both in vitro and in vivo. Conjugation of the macrocycle
with counterpart of choice facilitates its transport via drug- or
receptor-mediated endocytosis, affects delivery to a specific loca-
tion within the cells and generally improves biological effects.
Therefore, many drugs based on porphyrins are designed as pro-
drug systems to enhance their physico-chemical and pharmacoki-
netic properties [9]. Many groups have focused on conjugation of
porphyrins with other biologically active compounds, such as
(2014),
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saccharides [10,13], peptides [12,14], steroids [15] and polymers
[16]. Conjugation is also responsible for specific accumulation in
cells [10], which determines biological effects of the conjugate.
Mitochondria [11], endoplasmic reticulum [10] and nucleus [12]
are believed to be the main organelles for the pharmacotherapeutic
intervention. Unfortunately, until now most of the conjugates
accumulate in endosomes and lysosomes, as it was described for
porphyrins conjugated to saccharides [10,13], peptides [14],
dendrimers [15,16], and retinoids [17].

In this study, we present synthesis of two porphyrin conjugates
containing a sesquiterpene lactone, trilobolide (Tb). Kmoníčková
et al. [18] reported immunostimulatory properties of Tb, which is
able to induce interferon gamma (INF-c) secretion and nitric oxide
(NO) release [18]. Another pharmacological feature of Tb is its
potency to inhibit sarco/endoplasmic reticulum Ca2+-ATPase
(SERCA). The SERCA inhibition leads to accumulation of calcium
ions in cytosol, and a sustained increase of Ca2+ induces apoptotic
pathway and cell death. [19]. We imaged the transfer of the
prepared compounds in cells of various tumor origins. Biological
activities of the bioconjugates, such as induction of NO release in
rat macrophages have also been evaluated. Moreover, we assessed
cytotoxic potency of Tb–porphyrin conjugated in cancer cell lines
of various histogenic types.

2. Results and discussion

2.1. Chemistry

We chose copper-catalyzed azide-alkyne cycloaddition [20,21]
(CuAAC) as the key reaction of the designed synthesis. Thus, both
parts of the conjugate, Tb and porphyrin, were modified to provide
intermediates suitable for click chemistry. The chemical transfor-
mation of Tb is displayed in Scheme 1 and all of the experimental
synthetic details are described in Supplementary Section 1. We
synthesized the carboxymethyloxime (CMO) derivative 1c in three
steps. Briefly, Tb was transformed to its demethylbutanoyl deriva-
tive (1a) by mild solvolysis and successively the sole secondary
hydroxy group was oxidized using pyridinium chlorochromate
(PCC). Obtained 8-oxo-Tb derivative 1b was transformed to
Tb–CMO 1c by the reaction with O-(carboxymethyl)hydroxyl-
amine hemihydrochloride under pyridine catalysis. Finally, we
introduced terminal alkyne moiety by the reaction of 1c with
propargyl alcohol in presence of N-(3-dimethylaminopropyl)-N0-
ethylcarbodiimide (EDC). Obtained propargylester 1d was used in
subsequent click reaction.

The synthesis of 5-(4-carboxyphenyl)-10,15,20-triphenylporfy-
rin derivatives is displayed in Scheme 2. First we prepared the
O
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Scheme 1. Synthesis of functionalized Tb via carboxymethyloxime derivative. Reagents
74%; (c) O-(carboxymethyl)hydroxylamine hemihydrochloride, pyridine, MeOH, rt, 70 m
86%. Compound 1e was available in our laboratory.
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basic porphyrin according to a previously described method [22],
see Supplementary information 1.2.5 and Scheme S1. Thereafter,
we introduced azido PEG3–amine and propargyl moiety into the
porphyrin molecule using EDC chemistry (see Scheme 3).

Desired Tb–porphyrin conjugates were prepared using standard
click chemistry protocol with CuI and Tris[(1-benzyl-1H-1,2,3-
triazolyl)-methyl]amine (TBTA) [23] as an accelerator of the
product formation. The analytical data including NMR, IR, HRMS,
and optical rotation characteristics are described in Supplementary
Section 1.2. Both conjugates showed absorbance maxima at
424 nm (Soret band) and emission maxima at 605 and 655 nm
(excitation wavelength of 429 nm; see Supplementary 1.3 and
Fig. S1), which are typical porphyrin spectral properties. Prior
to biological testing, all samples were re-purified by column chro-
matography and their purity was checked by chromatographic
methods.

2.2. Intracellular localization of Tb–porphyrin conjugates

After successful synthesis of Tb–porphyrin conjugates, we stud-
ied their intracellular localization in several human cancer cell
lines: HeLa, LNCaP, U-2 OS, MCF-7, and MiaPaCa-2. We performed
live-cell fluorescence microscopy of these red-emitting conjugates
(3 and 4) for time intervals ranging from 20 min up to 24 h. Detect-
able fluorescent emission intensity of the tested derivatives 3 and 4
was observed only after 2 h of incubation with the model cell lines.
Thus, the kinetics of Tb–porphyrin conjugates was significantly
decreased when compared with the rapid intracellular uptake of
Tb-Bodipy occurring already after 20 min of incubation with
human cancer cells reported by Jurášek et al. [24]. In HeLa cells,
Tb–porphyrin 3 (5 lM) localized in network-like patterned organ-
elles, probably of mitochondrial origin, after 2 h of incubation. The
localization of 3 did not change over prolonged incubation periods
of 5 h (see Fig. 1), 16 h, and 24 h. Compound 4 (5 lM) was distrib-
uted in vesicles of endosomal or lysosomal origin in HeLa cells after
2 h and the intracellular distribution was retained at least up to
24 h. Compound 4 occurred partially also in large fluorescent
aggregates probably caused by decreased water solubility. We
have observed similar behavior of both compounds in living pros-
tatic cancer cells (LNCaP), data shown in Supplementary Section in
Fig. S2, and in human osteosarcoma cells (U-2 OS, see Fig. S3), the
only difference was more pronounced aggregation of compound 4.

2.3. NO production in primary macrophages

Within a group of sesquiterpene lactones, Tb possesses strong
activity in stimulating nitric oxide (NO) production by immune
O
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O
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O

AngO
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H OH
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O

O
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d

O
O

O
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PEG4 Link
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and conditions: (a) Et3N, MeOH, 17 h, rt, yield 69%; (b) PCC, CH2Cl2, rt, 2.5 h, yield
in, yield 89%; (d) propargyl alcohol, EDC, HOBt, DMAP, CH2Cl2, 0 �C ? rt, 12 h, yield
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cells [25]. Based on this, we investigated nitric oxide release
induced by Tb–porphyrin conjugates (Fig. 2). We found different
effects of compounds tested in range of 0.01–100.0 lM. The high-
est NO release was induced by Tb–CMO derivative (1d). Also, the
potency of compound 1d with CMO link is closer to Tb itself than
to 1e containing PEG4 link. The ability of derivatives 1d and 1e to
induce NO production started at concentration of 1 lM and contin-
ued up to 40 lM concentration. It would be easy to simply
conclude that also Tb–porphyrin conjugates 3 and 4 possessed an
immunological activity even though weaker in comparison to Tb
itself or Tb non-fluorescent derivatives. But together with these
findings, we mentioned that porphyrin alone in concentration
10–100 lM was able to release NO to supernatant in macrophages.
In fact, this result is probably caused by physico-chemical proper-
ties of porphyrin. Standard analysis using Griess reagent was
applied to measure nitrite concentration. This spectrophotometric
method is routinely used to assess NO production; absorbance is
recorded at 540 nm. Unfortunately, this wavelength coincided with
the absorption spectra of the tested porphyrins. Q-bands of
Tb–porphyrin conjugates 3 and 4 in visible spectra overlap with
the absorbance wavelength (540 nm) for NO detection. Other than
spectrophotometric methods used for NO detection in cell-free
samples are just under evaluation.

The effect of naturally occurring zinc protoporphyrin (ZnPP)
was studied with respect to inducible HO-1 (heme oxygenase)
Please cite this article in press as: Tomanová P et al. Trilobolide–porphyrin co
http://dx.doi.org/10.1016/j.steroids.2014.08.024
gene expression and activity [26,27]. ZnPP acts as competitive
inhibitor of HO-1. HO-1 is known to work opposite to iNOS and
both enzymes are studied in pro-inflammatory and anti-inflamma-
tory conditions. It is interesting that no article has mentioned
possible interference of ZnPP with measurement of nitrite concen-
tration using Griess reagent recorded at 540 nm, so far. Chow et al.
[26] and Li et al. [27] conclude that ZnPP directly inhibits inflam-
matory iNOS expression (inducible nitric oxide synthase)/NO pro-
duction in macrophages. However, we noticed that Tb–porphyrin
conjugates 3 and 4 induced slight up-regulation of NO production
stimulated by lipopolysaccharides (LPS, 1000 pg mL�1) in rat
macrophages. More detailed study is needed to thoroughly explain
biological activities of porphyrin conjugates and the role of
porphyrins in immune cells, as well as Tb itself in their estimated
pharmacological applications [28].

2.4. Cytotoxicity assays

The Tb–porphyrin conjugates were tested for in vitro cytotoxic-
ity against rat peritoneal cells and four human tumor cell lines:
LNCaP (prostate carcinoma), U-2 OS (osteosarcoma), MCF-7 (breast
carcinoma), and MiaPaCa-2 (pancreatic carcinoma). The cytotoxic
activity was determined using WST-1 assay based on mitochon-
drial activity causing conversion of tetrazolium salt into a colored
product, formazan. The results are presented in Supplementary
njugates: On synthesis and biological effects evaluation. Steroids (2014),
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Section in Fig. S4. Interestingly, we found that compounds 3 and 4
were not cytotoxic after 24 h and 48 h of incubation with the
model cell lines. The IC50 value was not reached in any of the tested
cell lines up to 50 lM concentration of the studied conjugates.
Similar data for compounds 3 and 4 were found in primary rat
peritoneal cells measured after 24 h (data not shown). Thus, the
innate original cytotoxicity of pristine Tb reported by Kmoníčková
et al. [18] was not retained upon porphyrin conjugation. It might
Please cite this article in press as: Tomanová P et al. Trilobolide–porphyrin co
http://dx.doi.org/10.1016/j.steroids.2014.08.024
be caused by steric reasons and inefficient membrane penetration
in contrast to the original molecule in immune cells and cancer cell
lines as well.

3. Conclusion

In conclusion, this is the first report on conjugation of a sesqui-
terpene lactone trilobolide with a red-emitting porphyrin moiety.
njugates: On synthesis and biological effects evaluation. Steroids (2014),
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Conjugates 3 and 4 were prepared in good yields and were
thoroughly characterized. On the basis of previously reported
immunostimulatory activities of a pristine Tb, we evaluated immu-
nobiological potency of the prepared Tb–porphyrin conjugates in
rat macrophages as a measure of NO production. The more pro-
nounced NO production was induced by Tb-derivative 1d than by
Tb–porphyrin conjugates in comparison with Tb. Moreover, these
compounds did not exhibit cytotoxic effect in vitro in a number
of model cell lines, such as primary macrophages, LNCaP, MCF-7,
U-2 OS, and MiaPaCa-2. The IC50 value was not reached up to 50
lM concentration of the tested compounds. Utilizing the inherent
fluorescence properties of porphyrins, we examined intracellular
localization of the Tb–porphyrin conjugates in living cells in real
time. Interestingly, the compounds 3 and 4 localized in mitochon-
dria and lysosomes of the model cancer cell lines in 5 lM concen-
tration already after 2 h. Further biological analysis is needed for
differentiation between physico-chemical properties and possible
immunobiological effect (NO production) of porphyrin and its
conjugates in macrophages.
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