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Thapsigargin (1) is a biologically active hexaoxygenated 

guaianolide belonging to the sesquiterpene family which has 
been intensively studied during the past decades (Figure 1).

1
 This 

natural product, isolated from Thapsia garganica L. (Apiaceae), 

an umbelliferous plant growing in the Mediterranean area, is a 

potent inhibitor of the sarco/endoplasmic reticulum Ca
2+

-ATPase 

(SERCA).
2
 More than forty years of collaborative and intensive 

research to decipher its chemistry and pharmacology has recently 
led to several targeted prodrugs, by conjugation of thapsigargin 

to different peptides, for possible treatment of various cancer 

types such as prostate and liver cancer.
3
 Among these prodrugs, 

G202, which was named mipsagargin by the USAN council, is 

currently in phase II clinical trial for patients with hepatocellular 

carcinoma.
4
 As it is foreseen that the annual demand for 

thapsigargin will become an amount of approximately 1 ton per 

year, there is consequently a need to develop short and efficient 

synthetic or semisynthetic methods to prepare thapsigargin (1) 

and potential analogues on a large scale. Several chemical studies 

have been reported for the preparation of thapsigargin and related 

guaianolides but this has required considerable synthetic effort, 
providing methods that are not suitable for large scale synthesis.

5
 

For example, Ley and co-workers recently published the total 

synthesis of thapsigargin from (S)-carvone in 42 steps.
6
  

Pentaoxygenated guaianolides such as nortrilobolide (2) can 

be isolated from the genera Thapsia and Laser (Figure 1).
7
 We 

speculated that a probable pathway for accessing hexaoxygenated 
thapsigargin could involve the use of nortrilobolide as a starting 

material. Indeed, although direct oxygenation of the C-2 position 

in derivative 2 is not feasible, an appropriate transformation of C-

3 into a ketone could possibly allow the stereoselective ´-
acyloxylation of C-2 which after subsequent chemical 

modifications would provide thapsigargin (1).  

 

Figure 1. Structures of thapsigargin (1), nortrilobolide (2) and epimeric 

alcohol intermediates 3. Oct = octanoyl. 

Herein, we wish to report an expedient semisynthetic protocol 
for the preparation of compound 1 from natural product 2 in only 

4 steps and 21% overall yield. This concise synthesis highlights 

two key transformations: a one-pot cleavage of the angelate ester 

and subsequent oxidation of the alcohol intermediate to its 

corresponding ketone as well as a stereoselective ´-

acyloxylation.  

First, the angelate moiety was cleaved upon treatment of 

nortrilobolide (2) with acid (AcOH, HF, TFA, p-TsOH·H2O) in 

the presence of water and acetonitrile to afford the corresponding 

epimeric alcohols 3. However, these allylic alcohols were 

extremely sensitive substrates and tended to decompose and/or 
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2+
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ketone reduction. 
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quickly dehydrate forming several by-products which explained 

the observed high conversion of the starting material but 

relatively low isolated yield.
8
 Due to the labile nature of 3 it was 

deemed crucial to trap this intermediate during angelic ester 

cleavage and it was expected that this could be accomplished by 

oxidizing the alcohol as soon as it was formed. A one-pot, two-
step procedure as illustrated in Scheme 1 was therefore 

developed. We envisioned chromium(VI) oxide as the reagent of 

choice due to its solubility in aqueous acidic media, ease of 

handling and removal and noteworthy its inertness when mixed 

with nortrilobolide (2). Aqueous hydrogen fluoride (HF) was 

chosen as the acidic medium for the reaction. Preliminary 
attempts showed that the use of an equivalent amount of CrO3 

was not sufficient to fully convert the starting material (Table 1, 

entry 1). To our delight, an increase to 2.5 equivalents of 

chromium(VI) oxide provided the desired ketone 4 in 60% after 

6.5 h at 85 °C (Table 1, entry 2). The reaction was enhanced by 

the use of microwave (MW) irradiation (Table 1, entries 3–6) 
leading to the desired ketone in yields ranging from 61–68%. 

Finally, the use of 1.4 equivalents of the oxidizing reagent under 

MW conditions at 95 °C for 2 h in the presence of 2 equivalents 

of HF gave compound 4 in 74% yield (Table 1, entry 7). 

Pleasingly, this reaction could be easily performed on a gram 

scale. 

 

Scheme 1. Reagents and conditions: (i) HF (2 equiv), CrO3 (1.4 equiv), 

CH3CN, MW, 95 °C, 2 h, 74%. 

Table 1. Synthesis of ketone 4 from nortrilobolide (2). 

Entry 
HF 

(equiv) 
CrO3 

(equiv) 
Temp. 
(°C) 

Time 
(h) 

Yield 
(%) 

1 5 0.3 60
a
 16 20

c
 

2 5 2.5 85
a
 6.5 60

d
 

3 5 2.5 80
b
 1.5 61 

4 5 2.5 85
b
 1.5 67 

5 5 2.5 100
b
 0.5 68 

6 2.5 1.25 100
b
 1 68 

7 2 1.4 95
b
 2 74 

a
 Heating in an oil bath. 

b
 Under microwave conditions. 

c
 TLC showed the 

presence of the intermediate alcohols 3, the starting material 2 as well as 

several by-products. 
d
 Starting material 2 (12%) was recovered after 

purification by chromatography. 

The next challenge was the stereoselective introduction of the 
octanoyl backbone at the C-2 position of the ketone intermediate 

4 via ′-acyloxylation. Several methods for selective -

oxygenation of carbony groups have been reported including 

oxidation with heavy metals,
9
 hypoiodite catalyzed -

oxyacylation,
10

 and sigmatropic rearrangement of 

acyloxyenamines.
11

 We recently obtained successful results
8
 

using manganese(III) acetate.
12

 Thus, ketone 4 was heated for 7 h 

at 120 °C in a mixture of dry benzene–octanoic acid (5:1) in the 

presence of 2.5 equivalents of Mn(OAc)3·2H2O using a Dean-

Stark apparatus to give ´-acylated ketone 5 in 51% yield 

(Scheme 2).
13

 Notably, this procedure resulted in the formation of 

5 with the desired C-2 stereochemistry as confirmed by 
1
H NMR 

comparison with a pure isolated sample.
14

 

 

Scheme 2. Reagents and conditions: (i) Mn(OAc)3·2H2O (2.5 equiv), dry 

benzene–octanoic acid (5:1), 120 °C, Dean-Stark, 7 h, 51%. 

Stereoselective reductions of similar ketones to give the -

alcohols have previously been performed using zinc 

borohydride.
6,15

 In this case, treatment of acylated ketone 5 with 
Zn(BH4)2 in THF provided, after subsequent treatment with 

disodium dihydrate EDTA, two epimeric alcohols 6S and 6R in a 

4:3 ratio.
16

 To our delight, the target alcohol 6S was isolated in 

87% yield when the reaction was performed in dry Et2O with 

only trace amounts of 6R (Scheme 3). 

 

Scheme 3. Reagents and conditions: (i) Zn(BH4)2 (11.6 equiv), dry Et2O, -20 

°C, 3.5 h, 87%.  

Finally, angeloylation of alcohol 6S furnished thapsigargin (1) 

in 65% yield (Scheme 4).
17

  

 

Scheme 4. Reagents and conditions: (i) benzoyl chloride (3.5 equiv), angelic 

acid (3.5 equiv), TEA (3.5 equiv), dry PhMe, 90 °C, 72 h, 65%. 

In conclusion, an expedient synthesis of thapsigargin (1) has 
been performed in 4 steps starting from the natural product 

nortrilobolide (2). It is noteworthy that the strategy does not 

involve any protection/deprotection steps. Further optimization 

and studies concerning the construction of new thapsigargin 

derivatives are currently in progress. 
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