

Subscriber access provided by University of Sunderland

Note

Copper-Mediated N-Arylations of Hydantoins

Pierre Thilmany, Phidéline Gérard, Agathe Vanoost, Christopher Deldaele, Laurent Petit, and Gwilherm Evano

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02284 • Publication Date (Web): 09 Nov 2018

Downloaded from http://pubs.acs.org on November 9, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Copper-Mediated N-Arylations of Hydantoins

Pierre Thilmany,^{a,‡} Phidéline Gérard,^{a,‡} Agathe Vanoost,^b Christopher Deldaele,^a Laurent Petit, ^{*,b} and Gwilherm Evano, ^{*,a}

^a Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques,

Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels,

Belgium

^b Minakem Recherche, 145 Chemin des Lilas, 59310 Beuvry-La-Forêt, France

laurent.petit@minakem.com, gevano@ulb.ac.be

ABSTRACT. A set of two broadly applicable procedures for the N-arylation of hydantoins is reported. The first one relies on the use of stoichiometric copper(I) oxide under ligandless and base-free conditions and enables a clean regioselective arylation at the N³ nitrogen atom while the second one is based on the use of catalytic copper(I) iodide and *trans-N,N'*-dimethylcyclohexane-1,2-diamine and promotes arylation at the N¹ nitrogen atom. Importantly, the combination of these two procedures affords a straightforward entry to diarylated hydantoins.

Since their discovery by Adolf von Baeyer in 1861,¹ imidazolidine-2,4-diones, more commonly known as hydantoins, have become a major scaffold with applications in many

areas of science.² Indeed, in addition to their occurrence in some natural products³ and to their use in organic synthesis,⁴ coordination chemistry,⁵ polymer science,⁶ or for the design of molecular switches,⁷ they had a deep impact in medicinal chemistry and agrochemistry.² The most famous and representative hydantoin drugs² include Sanofi-Aventis' anti-androgen Nilutamide **1**, Pfizer's anticonvulsant Fosphenytoin **2** or Shionogi's antibacterial Nitrofurantoin **3** (Figure 1). Various clinical candidates based on the hydantoin skeleton have in addition been recently reported, Bristol-Myers Squibb's anti-psoriasis BMS-587101 **4** or Galapagos' anticachexia GLGP-0492 **5** being representative examples. Hydantoin derivatives such as thiohydantoins have in addition also revealed to be important in healthcare, as highlighted with Medivation/Astellas' anticancer drug Enzalutamide **6**.⁸

Figure 1. Representative (thio)hydantoin drugs and clinical candidates.

During the past decade, the interest for hydantoins has not declined, which resulted in more than 3.000 publications and patents. This has stimulated many efforts for the development of synthetic routes to hydantoins: in addition to be efficient, reliable and short, they moreover need to be highly modular in a diversity-oriented approach. Classical synthetic pathways to hydantoins such as the Read,⁹ Bucherer-Bergs¹⁰ or Blitz¹¹ reactions indeed all suffer from Page 3 of 35

limitations and a variety of alternative processes have been reported over the years.² However, among all classes of hydantoins, N-arylated ones, that are of particular interest in medicinal chemistry, are not trivial to access using classical methods, notably in terms of the starting materials required. An interesting strategy that would, in addition to involve a limited number of steps from readily available starting materials, be especially relevant for structural diversification, would be based on direct N-arylations of the bare hydantoin scaffold. For some reasons, this attractive approach to *N*-aryl-hydantoins has been mostly restricted to nucleophilic aromatic substitutions and barely investigated:¹²⁻¹⁴ we report in this manuscript a set of efficient procedures for the selective arylation of hydantoins at the two nitrogen atoms.

Copper-mediated N³-arylation of hydantoins. Indeed, based on our combined interests in copper-catalysis^{15,16} and process chemistry,¹⁷ we became interested at developing general processes for the arylation of hydantoins at the two nucleophilic nitrogen atoms. We initiated our studies by carefully investigating the scope of the copper-mediated arylation at N³, a reaction that is best performed under ligandless conditions in the presence of stoichiometric copper(I) oxide,^{12b-d} most certainly due to the starting hydantoins acting as supporting ligands that can in addition result in the formation of catalytically inactive copper complexes in the presence of catalytic amounts of copper(I) only. Results from these studies are shown in Figure

2.

Figure 2. Scope of the copper-mediated N³-arylation of hydantoins.

As illustrated with results from Figure 2, the arylation at N³ was found to be rather general since upon simple reaction with one equivalent of copper(I) oxide and aryl iodides **7** in DMF at 150 °C for 14 h without an additional base, a range of hydantoins **8** could be readily and selectively arylated at N³, providing the corresponding N^3 -aryl-hydantoins **9a-n** that could be isolated in good to excellent yields. The reaction was found to proceed smoothly with a range of aryl iodides, regardless of their electronic properties and a variety of hydantoins could be arylated under these conditions. The substitution pattern of the starting hydantoin was however found to have a significant impact on the selectivity of the reaction starting from hydantoins unsubstituted at N¹. Indeed, while 5,5-disubstituted hydantoins were selectivity arylated at N³ in all cases, removing one of these substituents led to significant competing

Page 5 of 35

arylation at N¹, as demonstrated with the isolation of **9m** and **9m'** in a ca. 2:1 ratio, and the absence of substituents at this position favored the N¹ arylation, N^1 -phenyl-hydantoin **9n** being now obtained with significant amounts of diarylated product **9n"**. Gratifyingly, the reaction could be successfully extended to the use of aryl bromides, as demonstrated with the arylation to **9o-r** isolated in fair to good yields.

Copper-catalyzed N¹-arylation of hydantoins. After briefly studying the scope of the arylation at N³, we then moved to the more challenging N¹-arylation. To make sure aryl bromides could be used in this transformation, the optimization was performed using 1.2 equiv of aryl bromide 10 and sterically hindered hydantoin 9f, the resulting N^1 -arylated product **11a** being an oxygenated analogue of Enzalutamide **6**. These model substrates were therefore reacted with 20 mol % of copper(I) iodide, 40 mol % of various ligands in the presence of 2 equiv of potassium carbonate in toluene at 110 °C for 64 h: results from these studies are shown in Figure 3. Most ligands commonly used in copper-catalyzed cross-coupling reactions including 2,2,6,6-tetramethyl-3,5-heptanedione L₁, proline L₂, 1,2-dimethylimidazole L_3 , 2,2'-bipyridine L_4 , and 1,10-phenanthroline L_5 failed to promote the arylation, most certainly because of catalyst deactivation due to multiple coordination of the starting hydantoin, as suggested by its non-total recovery. Excepted for TMEDA, diamine ligands turned out to be more efficient, trans-N,N'-dimethylcyclohexane-1,2-diamine (Me₂CyDA) being by far the most efficient and promoting the coupling to **11a** in 61% yield, a yield that could be further improved to 70% by using 1.4 equivalents of aryl bromide 10. As for the reaction time, it could be reduced to 48 h without affecting the yield. Further evaluation of different copper sources (CuBr, CuCl, CuTC, CuOAc, Cu(CH₃CN)₄PF₆), bases (K₃PO₄, Cs₂CO₃), solvents (dioxane, acetonitrile, DMF, DMSO) and additives (NaI) did not allow a significant further improvement.

Figure 3. Effect of the ligand on the copper-catalyzed N¹-arylation of hydantoins.

Having these optimized conditions in hand, we next turned our attention to the study of the scope and limitations of the N¹-arylation using representative hydantoins **12** and aryl halides **7** (Figure 4). Gratifyingly, the reaction scope was found to be especially broad, the arylation proceeding smoothly with eletron-rich (**11b-d**) and electron-poor (**11e-g**) aryl bromides. It could be extended to the introduction of heteroaryl substituents such as a thiophene (**11j**), a pyridine (**11k**) or a benzofuran (**11l**), the main limitation being the absence of reactivity starting with *ortho*-substituted aryl bromides (**11i**). Not surprisingly, aryl iodides performed equally well and similar trends were observed with these reagents. The nature of the substituent(s) at C5 on the starting hydantoin was found to have little effect on the reaction outcome, as demonstrated with the arylation to **11s-v** which all proceeded smoothly. The arylation to **11t** is in addition quite remarkable due to the high steric hindrance close to the reacting center that still did not inhibit the arylation. Finally, it should be noted that various

Figure 4. Scope of the copper-catalyzed N¹-arylation of hydantoins.

Interestingly, the N^3 -aryl-hydantoins **9** resulting from the first arylation were also shown to be excellent substrates for the copper-catalyzed N¹-arylation, as highlighted in Figure 5. Our two procedures therefore enable clean, selective and efficient iterative arylations to N^1 , N^3 diaryl-hydantoins **11a**,**w**-**ad**, attractive scaffolds in medicinal chemistry, and facilitate diversification by a simple modulation of the two aryl groups introduced.

Figure 5. Iterative arylations to N^1 , N^3 -diaryl-hydantoins.

Copper-mediated iterative arylations of hydantoins on multigram scales. In a final effort to demonstrate the synthetic potential of our procedures, a scale up of the iterative arylations was finally explored. As highlighted in Scheme 1, this turned out to be especially efficient, the first copper-mediated ligandless and base-free arylation of **8a** with **13** providing the desired N³-arylated product **9f** in 93% on a 84 g scale, using simple purification by precipitation and successive washes with DMF, aqueous ammonia and water. The second arylation at N¹ was undertaken on a 50 g scale using iodobenzene **14** as the arylating agent and gave, after treatment with a mixture of silica and Carcel^{*}, filtration, reslurry in a mixture of toluene and heptane and filtration, the desired doubly arylated hydantoin **11aa** with 82% yield, therefore demonstrating the robustness of the sequence.

Scheme 1. Multigram scale iterative arylations.

C⁴-selective thionation of Diarylhydantoins. We finally turned our attention to the extension of these procedures to the arylations of thiohydantoins: despite extensive trials, we could not find conditions enabling these arylations, which might be due to competing complexation of copper by these substrates which are excellent ligands for copper. Considering in addition that thiohydantoins are known to coordinate to copper by the sulfur atom,¹⁸ their arylation might proceed at sulfur rather than nitrogen. To circumvent this problem, the regioselective thionation of N^1 , N^3 -diphenylhydantoin **11m** with various reagents was examined: of all reagents evaluated, phosphorus pentasulfide P₂S₅ was found the most efficient and enabled a clean and C4-selective thionation to **15** (Scheme 2).¹⁹

Scheme 2. C4-selective thionation of a N^1 , N^3 -diarylhydantoin.

Conclusions

In conclusion, we have developed and studied a set of two efficient and broadly applicable procedures for the N-arylation of hydantoins at the two nitrogen atoms. The first one relies on the use of stoichiometric amounts of copper(I) oxide under ligandless and base-free conditions and enables a clean and regioselective arylation at the N³ nitrogen atom while the second one is based on the use of catalytic amounts of copper(I) iodide and *trans-N,N'-* dimethylcyclohexane-1,2-diamine and promotes arylation at the N¹ nitrogen atom. The scope of these two procedures have been shown to be quite broad and they are both tolerant to a range of functional groups. Moreover, they rely on simple copper salts and ligands and their robustness on multigram scale has been demonstrated. Importantly, the combination of these two procedures affords a straightforward and general entry to diarylated hydantoins, important scaffolds in medicinal chemistry.

Experimental Section

General Information. All reactions were carried out in oven-dried glassware under an argon atmosphere employing standard techniques in handling air-sensitive materials unless otherwise stated.

All reagents and solvents were reagent grade. *N*,*N*-dimethylformamide (99.8%, Extra Dry over Molecular Sieve, AcroSeal[®]) and toluene (99.5%, Extra Dry over Molecular Sieve, AcroSeal[®]) were purchased from ACROS Organics and used as supplied.

Copper(I) iodide (99,999% purity) was purchased from Aldrich and used as supplied. Finely powdered anhydrous cesium carbonate was used for copper-mediated coupling reactions. All other reagents were used as supplied.

Reactions were magnetically stirred and monitored by thin layer chromatography using Merck-Kiesegel 60F254 plates. Flash chromatography was performed with silica gel 60 (particle size 35-70 μ m) supplied by Merck. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated.

Proton NMR spectra were recorded using an internal deuterium lock at ambient temperature on Bruker 300 or Jeol 400 and 600 MHz spectrometers. Internal reference of $\delta_{\rm H}$ 7.26 was used for CDCl₃, $\delta_{\rm H}$ 2.05 was used for acetone- d_6 and $\delta_{\rm H}$ 2.50 was used for DMSO- d_6 . Data are presented as follows: chemical shift (in ppm on the δ scale relative to $\delta_{\rm TMS}$ = 0), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sext. = sextuplet, m = multiplet, br. = broad, app. = apparent), coupling constant (J/Hz) and integration. Carbon-13 NMR spectra were recorded at 100 or 150 MHz using CDCl₃ ($\delta_{\rm C}$ 77.16), acetone- d_6 ($\delta_{\rm C}$ 29.84) or DMSO- d_6 ($\delta_{\rm C}$ 39.52) as internal reference. Fluorine-19 NMR spectra were recorded at 376 MHz using CF₃CH₂OH ($\delta_{\rm F}$ -77.59) as internal reference.

Melting points were recorded on a Stuart Scientific Analogue SMP11. Infrared spectra were recorded on a Bruker Alpha (ATR). High-resolution mass-spectra were recorded using a Agilent QTOF 6520 spectrometer.

N³-Arylation of Hydantoins

General Procedure. A 15 mL pressure tube was charged with the hydantoin (3.0 mmol) and copper oxide (I) (286 mg, 2.0 mmol); the aryl halide (2.0 mmol) was added at this stage if solid.

The tube was fitted with a rubber septum, evacuated under high vacuum and backfilled with argon (three times) before adding the aryl halide (added at this stage if liquid) (2.0 mmol) and anhydrous DMF (5mL). The rubber septum was then replaced by a Teflon-coated screw cap before heating the heterogeneous reaction mixture at 150 °C for 14 hours. The suspension was cooled to room temperature, filtered through a pad of Celite[®] (washed with EtOAc) and the filtrate was concentrated to *ca.* one tenth of its volume under reduced pressure, poured into a mixture of ice and water (10 mL) and stirred for 30 minutes before adding a 28% aqueous ammonia solution (3 mL). The resulting suspension was stirred for 30 minutes and the precipitate collected by filtration then dried under high vacuum to give the desired arylated hydantoin which was, whenever required, further purified by flash column chromatography over silica gel.

5,5-Dimethyl-3-phenylhydantoin 9a. Yield: 69% (280 mg, 1.37 mmol). White solid. Solvent system for flash column chromatography: petroleum ether/EtOAc: 60/40. This compound has been previously reported.²⁰

3-(1,1'-Biphenyl-4-yl)-5,5-dimethylhydantoin 9b. Yield: 87% (404 mg, 1.44 mmol). White solid, Mp: 185 °C; ¹H NMR (600 MHz, acetone- d_6): δ 7.74 (d, J = 8.6 Hz, 2H), 7.72-7.68 (m, 2H), 7.55 (d, J = 8.6 Hz, 2H), 7.53-7.43 (m, 3H), 7.38 (t, J = 7.4 Hz, 1H), 1.52 (s, 6H); ¹³C{¹H} NMR (150 MHz, acetone- d_6): δ 177.1, 155.2, 141.1, 141.0, 133.0, 129.8, 128.4, 127.8, 127.8, 127.6, 58.9, 25.4; IR (neat): v_{max} 1713, 1428, 1303, 1144, 837, 768 cm⁻¹; ESIHRMS *m/z* calcd for C₁₇H₁₇N₂O₂ [M+H]⁺ 281.1285, found 281.1290.

5,5-Dimethyl-3-(3-methoxyphenyl)-hydantoin 9c. Yield: 73% (344 mg, 1.47 mmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 60/40; Beige solid, Mp: 106 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.36 (app. t, *J* = 8.2 Hz, 1H), 7.12-7.01 (m, 1H), 6.99 (d, *J* = 7.9 Hz,

1H), 6.96-6.90 (m, 2H), 3.81 (br. s, 3H), 1.49 (br. s, 6H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 176.4, 160.1, 155.8, 132.7, 129.8, 118.6, 114.2, 112.1, 58.7, 55.5, 25.1; IR (neat): v_{max} 2976, 1716, 1418, 1151, 1043, 782, 702 cm⁻¹; ESIHRMS *m/z* calcd for C₁₂H₁₅N₂O₃ [M+H]⁺ 235.1077, found 235.1080.

5,5-Dimethyl-3-(4-trifluoromethylphenyl)hydantoin 9d. Yield: 88% (479 mg, 1.76 mmol). Off white solid, Mp: 179 °C; ¹H NMR (300 MHz, acetone- d_6): δ 7.79 (dd, J = 21.3 and 8.6 Hz, 4H), 7.59 (br. s, 1H), 1.52 (s, 6H); ¹³C{¹H} NMR (100 MHz, acetone- d_6): δ 176.8, 154.6, 137.4, 129.4 (q, J_{C-F} = 32.5 Hz), 127.3, 126.4 (q, J_{C-F} = 3.9 Hz), 123.8, 59.0, 25.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -58.4 (s); IR (neat): v_{max} 2361, 1732, 1719, 1410, 1324, 1172, 1110, 1066, 836, 709 cm⁻¹; ESIHRMS *m/z* calcd for C₁₂H₁₂F₃N₂O₂ [M+H]⁺ 273.0845, found 273.0849.

5,5-Dimethyl-3-(4-nitrophenyl)hydantoin 9e. Yield: 80% (397 mg, 1.59 mmol). Beige solid, Mp: 168 °C; ¹H NMR (400 MHz, acetone- d_6): δ 8.35 (d, J = 9.2 Hz, 2H), 7.86 (d, J = 9.2 Hz, 2H), 7.68 (br. s, 1H), 1.54 (s, 6H); ¹³C{¹H} NMR (100 MHz, acetone- d_6): δ 176.7, 154.3, 147.0, 139.6, 127.1, 124.6, 59.0, 25.3; IR (neat): v_{max} 2360, 1721, 1522, 1401, 1342, 1135, 841, 726 cm⁻¹; ESIHRMS *m/z* calcd for C₁₁H₁₁N₃O₄ [M+H]⁺ 250.0822, found 250.0829.

5,5-Dimethyl-3-(3-trifluoromethyl-4-cyano-phenyl)hydantoin 9f. Yield: 82% (6.8 g, 22.9 mmol). White solid. Solvent system for flash column chromatography: cyclohexane/EtOAc: 90/10. This compound has been previously reported.²¹

1-Methyl-3-phenylhydantoin 9g. Yield: 54% (207 mg, 1.09 mmol). Off white solid. Solvent system for flash column chromatography: petroleum ether/EtOAc: 50/50. This compound has been previously reported.²²

1-Butyl-3-phenylhydantoin 9h. Yield: 58% (270 mg, 1.16 mmol). Solvent system for flash column chromatography: petroleum ether/EtOAc: 70/30; Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.33 (m, 5H), 4.02 (s, 2H), 3.48 (t, *J* = 7.3 Hz, 2H), 1.69-1.53 (m, 2H), 1.40 (sext., *J* = 7.4 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.1, 155.6, 132.0, 129.2, 128.2, 126.2, 49.7, 42.8, 29.9, 20.0, 13.8; IR (neat): v_{max} 2960, 1713, 1503, 1456, 1420, 1244, 1193, 1136, 760, 692 cm⁻¹; ESIHRMS *m/z* calcd for C₁₃H₁₆N₂O₂Na [M+Na]⁺ 255.1104, found 255.1109.

1-Benzyl-3-phenylhydantoin 9i. Yield: 56% (297 mg, 1.11 mmol). Pale yellow solid. Solvent system for flash column chromatography: petroleum ether/EtOAc: 70/30. This compound has been previously reported.²³

5-Ethyl-5-methyl-3-phenylhydantoin 9j. Yield: 68% (298 mg, 1.36 mmol). Solvent system for flash column chromatography: petroleum ether/EtOAc: 70/30; White solid, Mp: 114 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.44 (m, 2H), 7.42-7.34 (m, 3H), 6.97 (br. s, 1H), 1.93 (A of ABX₃ syst., *J* = 14.7 and 7.4 Hz, 1H), 1.71 (B of ABX₃ syst., *J* = 14.7 and 7.4 Hz, 1H), 1.47 (s, 3H), 0.94 (X of ABX₃ syst., *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 176.1, 156.4, 131.7, 129.2, 128.3, 126.3, 62.4, 31.2, 23.7, 7.9; IR (neat): *v*_{max} 2934, 2368, 1714, 1504, 1412, 1134, 846, 709 cm⁻¹; ESIHRMS *m/z* calcd for C₁₂H₁₅N₂O₂ [M+H]⁺ 219.1128, found 219.1143.

3,5-Diphenyl-5-methylhydantoin 9k. Yield: 89% (1.6 g, 5.86 mmol). White solid. This compound has been previously reported.²⁴

3,5,5-Triphenylhydantoin 9I. Yield: 98% (642 mg, 1.95 mmol). White solid. This compound has been previously reported.²⁵

5-Methyl-3-phenylhydantoin 9m. Yield: 24% (92 mg, 483 μmol). White solid. Solvent system for flash column chromatography: petroleum ether/EtOAc: 60/40. This compound has been previously reported.²⁶

5-Methyl-1-phenylhydantoin 9m'. Yield: 14% (53 mg, 279 μmol). White solid. Solvent system for flash column chromatography: petroleum ether/EtOAc: 60/40. This compound has been previously reported.²⁷

1-Phenylhydantoin 9n. Yield: 31% (110 mg, 625 μmol). White solid. Solvent system for flash column chromatography: petroleum ether/EtOAc: 60/40. This compound has been previously reported.²⁸

1,3-Diphenylhydantoin 9n''. Yield: 21% (52 mg, 206 µmol). Off white solid. Solvent system for flash column chromatography: petroleum ether/EtOAc: 60/40. This compound has been previously reported.²⁹

3-(4-*tert*-**Butylphenyl)-5,5-dimethylhydantoin 90.** Yield: 79% (412 mg, 1.58 mmol). White solid, Mp: 177 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 6.09 (br. s, 1H), 1.54 (s, 6H), 1.33 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 176.4, 155.7, 151.4, 129.0, 126.2 (br.), 125.8 (br.), 58.7, 34.8, 31.5 (br.), 25.4 (br.); IR (neat): ν_{max} 2970, 1715, 1520, 1422, 1145, 831 cm⁻¹; ESIHRMS *m/z* calcd for C₁₅H₂₁N₂O₂ [M+H]⁺ 261.1598, found 261.1594.

5,5-Dimethyl-3-(naphthalen-2-yl)hydantoin 9p. Yield: 91% (461 mg, 1.81 mmol). White solid, Mp: 212 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.96-7.92 (m, 2H), 7.90-7.85 (m, 2H), 7.55-7.49 (m, 3H), 6.26 (br. s, 1H), 1.57 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 176.4, 155.7, 133.3, 132.8, 129.1 (2C), 128.3, 127.9, 126.9, 126.7, 125.3, 123.9, 58.9, 25.5; IR (neat): *v*_{max} 1722, 1426, 1151, 811, 749 cm⁻¹; ESIHRMS *m/z* calcd for C₁₅H₁₅N₂O₂ [M+H]⁺ 255.1128, found 255.1138.

5,5-Dimethyl-3-(4-trifluoromethoxyphenyl)hydantoin 9q. Yield: 75% (431 mg, 1.50 mmol). Off white solid, Mp: 146 °C; ¹H NMR (600 MHz, acetone-*d*₆): δ 7.62 (d, *J* = 9.0 Hz, 2H), 7.52 (br. s, 1H), 7.44 (d, *J* = 8.5 Hz, 2H), 1.51 (s, 6H); ¹³C{¹H} NMR (100 MHz, acetone-*d*₆): δ 176.9, 154.9, 148.5, 132.7, 128.8, 122.1, 121.4 (q, *J*_{*C-F*} = 255.5 Hz), 59.0, 25.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -63.2 (s); IR (neat): v_{max} 2937, 2361, 1719, 1513, 1407, 1255, 1186, 1135, 839 cm⁻¹; ESIHRMS *m/z* calcd for C₁₂H₁₂F₃N₂O₃ [M+H]⁺ 289.0795, found 289.0799.

5,5-Dimethyl-3-(4-methoxycarbonylphenyl)hydantoin 9r. This compound was prepared according to the general procedure with an additional extraction (EtOAc) of the filtrate. Yield: 51% (267 mg, 1.02 mmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 60/40; White solid, Mp: 141 °C; ¹H NMR (300 MHz, acetone- d_6): δ 8.09 (d, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 8.7 Hz, 2H), 7.56 (br. s, 1H), 3.90 (s, 3H), 1.52 (s, 6H); ¹³C{¹H} NMR (100 MHz, acetone- d_6): δ 176.8, 166.6, 154.7, 137.9, 130.4, 129.7, 126.7, 58.9, 52.5, 25.3; IR (neat): v_{max} 1729, 1715, 1412, 1276, 1143, 773, 726, 697 cm⁻¹; ESIHRMS *m/z* calcd for C₁₃H₁₅N₂O₄ [M+H]⁺ 263.1026, found 263.1030.

N¹-Arylation of Hydantoins

General Procedure. A 15 mL pressure tube was charged with the arylated hydantoin (1.0 mmol), copper iodide (38 mg, 0.2 mmol) and potassium carbonate (276 mg, 2.0 mmol); the aryl halide (1.4 mmol) was added at this stage if solid. The tube was fitted with a rubber septum, evacuated under high vacuum and backfilled with argon (three times) before adding the aryl halide (added at this stage if liquid) (1.4 mmol), anhydrous toluene (1.5 mL) and *trans-N,N'*-dimethylcyclohexane-1,2-diamine (0.4 mmol). The rubber septum was then

replaced by a Teflon-coated screw cap before heating the reaction mixture at 110 °C for 48 hours. The suspension was cooled to room temperature, filtered over a plug of silica gel/Celite[®] (washed with EtOAc) and concentrated. The crude residue was finally purified by flash chromatography over silica gel.

5,5-Dimethyl-1-(4-methylcarbamoylphenyl)-3-(3-trifluoromethyl-4-cyano-

phenyl)hydantoin 11a. Yield: 70% (2.9 g, 6.38 mmol). White solid. Solvent system for flash column chromatography: cyclohexane/EtOAc: 50/50. This compound has been previously reported.³⁰

1-(4-*tert*-**Butylphenyl)-5,5-dimethyl-3-phenylhydantoin 11b.** Yield: 75% (251 mg, 746 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 90/10; Off white solid, Mp: 141 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.53-7.49 (m, 2H), 7.49-7.45 (m, 4H), 7.39-7.35 (app. tt, *J* = 7.3 and 1.4 Hz, 1H), 7.25-7.22 (d, *J* = 8.6 Hz, 2H), 1.55 (s, 6H), 1.35 (s, 9H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 175.4, 154.1, 151.7, 132.0, 131.2, 129.1, 128.6, 128.1, 126.6, 126.2, 63.5, 34.8, 31.4, 24.2; IR (neat): v_{max} 2968, 1715, 1396, 1204, 1138, 766 cm⁻¹; ESIHRMS *m/z* calcd for C₂₁H₂₅N₂O₂ [M+H]⁺ 337.1911, found 337.1913.

5,5-Dimethyl-1-(naphthalen-2-yl)-3-phenylhydantoin 11c. Yield: 91% (300 mg, 908 µmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 80/20; Beige solid, Mp: 163 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.95 (d, *J* = 8.7 Hz, 1 H), 7.92-7.85 (m, 2H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.58-7.54 (m, 4H), 7.52-7.48 (m, 2H), 7.43 (dd, *J* = 8.7 and 2.1 Hz, 1H), 7.39 (tt, *J* = 7.4 and 1.3 Hz, 1H), 1.62 (s, 6H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 175.3, 154.2, 133.6, 133.0, 131.9, 131.6, 129.6, 129.1, 128.2, 128.1, 127.9, 127.9, 127.0, 126.9, 126.6, 126.3, 63.8, 24.4; IR (neat): *v*_{max} 2981, 1716, 1504, 1401, 1201, 1143, 779 cm⁻¹; ESIHRMS *m/z* calcd for C₂₁H₁₉N₂O₂ [M+H]⁺ 331.1441, found 331.1440. **5**,**5**-Dimethyl-3-phenyl-1-(4-trifluoromethoxyphenyl)hydantoin 11d. Yield: 96% (349 mg, 958 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 95/5; Pale yellow solid, Mp: 96 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.44 (m, 4H), 7.40-7.34 (m, 3H), 7.32-7.27 (m, 2H), 1.53 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.8, 153.8, 148.8, 132.6, 131.7, 130.3, 129.0, 128.2, 126.1, 121.9, 120.4 (q, *J* = 258.0 Hz), 63.5, 24.0; ¹⁹F NMR (376 MHz, CDCl₃): δ -58.3 (s); IR (neat): *v*_{max} 1715, 1506, 1411, 1266, 1200, 1156, 770 cm⁻¹; ESIHRMS *m/z* calcd for C₁₈H₁₆F₃N₂O₃ [M+H]⁺ 365.1108, found 365.1109.

5,5-Dimethyl-1-(4-methoxycarbonylphenyl)-3-phenylhydantoin 11e. Yield: 68% (231 mg, 682 µmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 80/20; White solid, Mp: 101 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 8.6 Hz, 2H), 7.50-7.43 (m, 6H), 7.42-7.35 (m, 1H), 3.93 (s, 3H), 1.59 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.8, 166.3, 153.8, 138.9, 131.6, 130.9, 129.7, 129.1, 128.4, 127.8, 136.2, 63.9, 52.4, 24.4; IR (neat): v_{max} 2977, 1708, 1414, 1276, 1201, 1112, 769 cm⁻¹; ESIHRMS *m/z* calcd for C₁₉H₁₉N₂O₄ [M+H]⁺ 339.1339, found 339.1341.

1-(4-Acetylphenyl)-5,5-dimethyl-3-phenylhydantoin 11f. Yield: 95% (305 mg, 947 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 70/30; Yellow solid, Mp: 138 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.06-8.01 (d, *J* = 8.4 Hz, 2H), 7.51-7.44 (m, 6H), 7.41-7.35 (m, 1H), 2.61 (s, 3H), 1.60 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 197.0, 174.8, 153.7, 139.0, 136.4, 131.6, 129.6, 129.1, 128.4, 127.8, 126.2, 63.9, 26.7, 24.4; IR (neat): *v*_{max} 2969, 1710, 1675, 1405, 1363, 1202, 766 cm⁻¹; ESIHRMS *m/z* calcd for C₁₉H₁₉N₂O₃ [M+H]⁺ 323.1390, found 323.1399.

1-(3,5-Difluorophenyl)-5,5-dimethyl-3-phenylhydantoin 11g. Yield: 84% (267 mg, 847 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 95/5; Beige solid, Mp:

122 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.45 (m, 4H), 7.43-7.36 (m, 1H), 6.96 (app. dd, *J* = 7.7 and 2.2 Hz, 2H), 6.86 (app. tt, *J* = 8.8 and 2.3 Hz, 1H), 1.59 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.5, 163.3 (d, *J* = 249.6 Hz), 163.2 (d, *J* = 249.5 Hz), 153.6, 136.9 (app. t, *J* = 12.4 Hz), 131.5, 129.2, 128.5, 126.2, 111.4 (d, *J* = 27.1 Hz), 111.4 (d, *J* = 11.7 Hz), 104.0 (app. t, *J* = 25.2 Hz), 63.9, 24.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -106.1 (t, *J*_{C-F} = 8.1 Hz); IR (neat): *v*_{max} 1717, 1412, 1304, 1120, 990, 859, 731 cm⁻¹; ESIHRMS *m/z* calcd for C₁₇H₁₅F₂N₂O₂ [M+H]⁺ 317.1096, found 317.1107.

5,5-Dimethyl-1-(4-cyano-phenyl)-3-phenylhydantoin 11h. Yield: 83% (124 mg, 407 μmol). Solvent system for flash column chromatography: petroleum ether/EtOAc: 75/25; White solid, Mp: 169 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.52-7.45 (m, 4H), 7.43-7.38 (m, 1H), 1.63 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.5, 153.7, 139.2, 133.6, 131.4, 129.3, 128.6, 127.9, 126.2, 118.1, 111.7, 64.1, 24.6; IR (neat): *v*_{max} 2225, 1780, 1722, 1503, 1406, 1350, 1198, 838, 742 cm⁻¹; ESIHRMS *m/z* calcd for C₁₈H₁₅N₃O₂Na [M+Na]⁺ 328.1056, found 328.1056.

5,5-Dimethyl-3-phenyl-1-(thiophen-2-yl)hydantoin 11j. Yield: 96% (274 mg, 956 μmol). Solvent system for flash column chromatographyz: cyclohexane/EtOAc: 80/20; Beige solid, Mp: 99 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.44 (m, 4H), 7.41-7.35 (m, 2H), 7.34-7.30 (m, 1H), 7.20-7.15 (m, 1H), 1.60 (br. s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.0, 153.4, 132.3, 131.7, 129.1, 128.2, 126.2, 125.7, 125.4, 119.6, 63.3, 23.9; IR (neat): *v*_{max} 1711, 1412, 1338, 1200, 736, 690 cm⁻¹; ESIHRMS *m/z* calcd for C₁₅H₁₅N₂O₂S [M+H]⁺ 287.0849, found 287.0860.

5,5-Dimethyl-3-phenyl-1-(pyridin-2-yl)hydantoin 11k. Yield: 89% (250 mg, 887 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 90/10; White solid, Mp: 101 °C;

¹H NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 4.9 Hz, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 7.71 (t, *J* = 8.0 Hz, 1H), 7.53-7.45 (m, 4H), 7.43-7.38 (m, 1H), 7.10-7.05 (m, 1H), 1.93 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.5, 153.2, 150.7, 147.4, 138.0, 131.5, 129.2, 128.5, 126.5, 119.9, 116.2, 64.6, 23.9; IR (neat): *v*_{max} 1716, 1407, 1360, 1200, 1154, 884, 767 cm⁻¹; ESIHRMS *m/z* calcd for C₁₆H₁₆N₃O₂ [M+H]⁺ 282.1237, found 282.1249.

1-(Benzofuran-2-yl)-5,5-dimethyl-3-phenylhydantoin 11I. Yield: 68% (219 mg, 684 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 95/5; Off white solid, Mp: 99 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 7.2 Hz, 1H), 7.55-7.47 (m, 5H), 7.47-7.39 (m, 1H), 7.35-7.25 (m, 2H), 6.83 (s, 1H), 1.80 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.4, 152.0, 151.6, 145.0, 131.3, 129.2, 128.6, 128.2, 126.3, 124.1, 123.5, 121.0, 111.0, 97.8, 64.0, 24.0; IR (neat): v_{max} 2360, 1717, 1604, 1405, 1385, 1240, 1151, 740 cm⁻¹; ESIHRMS *m/z* calcd for C₁₉H₁₆N₂O₃Na [M+Na]⁺ 343.1053, found 343.1072.

5,5-Dimethyl-1,3-diphenylhydantoin 11m. Yield: 96% (1.3 g, 4.67 mmol). White solid. Solvent system for flash column chromatography: cyclohexane/EtOAc: 85/15. This compound has been previously reported.³¹

1-(1,1'-Biphenyl-4-yl)-5,5-dimethyl-3-phenylhydantoin 11n. Yield: 94% (333 mg, 935 μ mol). White solid. Solvent system for flash column chromatography: cyclohexane/EtOAc: 90/10. This compound has been previously reported.^{14a}

5,5-Dimethyl-1-(3-methoxyphenyl)-3-phenylhydantoin 11p. Yield: 94% (292 mg, 941 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 85/15; White solid, Mp: 95 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.44 (m, 4H), 7.40-7.33 (t, *J* = 8.2 Hz 2H), 6.98-6.89 (m, 2H), 6.87 (t, *J* = 2.2 Hz, 1H), 3.82 (s, 3H), 1.56 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.2, 160.5, 159.9, 135.2, 131.9, 130.2, 129.1, 128.2, 126.2, 121.0, 114.9, 114.2, 63.6, 55.6,

24.2; IR (neat): v_{max} 1715, 1599, 1400, 1248, 797, 693 cm⁻¹; ESIHRMS *m/z* calcd for C₁₈H₁₉N₂O₃ [M+H]⁺ 311.1390, found 311.1404.

5,5-Dimethyl-3-phenyl-1-(4-trifluoromethylphenyl)hydantoin 11q. Yield: 96% (336 mg, 964 µmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 90/10; Yellow solid, Mp: 100 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.75-7.70 (d, *J* = 8.1 Hz, 2H), 7.54-7.45 (m, 6H), 7.42-7.35 (m, 1H), 1.59 (br. s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.7, 153.8, 137.9, 131.6, 130.1 (q, *J* = 32.8 Hz), 129.1, 128.4, 128.3, 126.7 (q, *J* = 3.6 Hz), 126.1, 123.8 (q, *J* = 272.4 Hz), 63.8, 24.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -63.1 (s); IR (neat): *v*_{max} 1715, 1414, 1322, 1122, 1067, 753 cm⁻¹; ESIHRMS *m/z* calcd for C₁₈H₁₆F₃N₂O₂ [M+H]⁺ 349.1158, found 349.1167.

5,5-Dimethyl-1-(4-nitrophenyl)-3-phenylhydantoin 11r. Yield: 65% (213 mg, 654 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 70/30; Yellow solid, Mp: 131 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.30-8.23 (m, 2H), 7.62-7.57 (m, 2H), 7.50-7.44 (m, 4H), 7.42-7.35 (m, 1H), 1.63 (br. s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.3, 153.5, 146.3, 140.9, 131.3, 129.1, 128.5, 127.3, 126.1, 124.8, 64.0, 24.3; IR (neat): v_{max} 1716, 1515, 1407, 1334, 1198, 769, 751 cm⁻¹; ESIHRMS *m/z* calcd for C₁₇H₁₆N₃O₄ [M+H]⁺ 326.1135, found 326.1133.

5-Ethyl-5-methyl-1,3-diphenylhydantoin 11s. Yield: 73% (107 mg, 365 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 90/10; White solid, Mp: 129 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.43 (m, 6H), 7.42-7.33 (m, 4H), 2.02 (A of ABX₃ syst., J = 14.6 and 7.4 Hz, 1H), 1.76 (B of ABX₃ syst., J = 14.6 and 7.4 Hz, 1H), 1.55 (s, 3H), 1.05 (X of ABX₃ syst., J = 7.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.6, 154.7, 134.4, 131.8, 129.6, 129.1, 128.3, 128.2 (2C), 126.3, 67.6, 29.9, 23.7, 8.2; IR (neat): ν_{max} 2934, 1712,

1494, 1412, 1374, 1190, 762, 693 cm⁻¹; ESIHRMS *m*/*z* calcd for C₁₈H₁₈N₂O₂Na [M+Na]⁺ 317.1260, found 317.1275.

1,3,5,5-Tetraphenylhydantoin 11t. Yield: 66% (265 mg, 655 μ mol). White solid. Solvent system for flash column chromatography: cyclohexane/EtOAc: 80/20. This compound has been previously reported.³²

1,3-Diphenyl-5-methylhydantoin 11u. Yield: 91% (63 mg, 237 µmol). Off white Solid. Solvent system for flash column chromatography: cyclohexane/EtOAc: 85/15. This compound has been previously reported.^{14c}

3-(2-Ethoxy-2-oxoethyl)-1-phenylhydantoin 11v. Yield: 65% (456 mg, 1.74 mmol). Solvent system for flash column chromatography: petroleum ether/EtOAc: 80/20; Pale yellow solid, Mp: 155 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.5 Hz, 2H), 7.40 (t, *J* = 8.5 Hz, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 4.40 (s, 2H), 4.35 (s, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 168.0, 166.9, 153.5, 137.5, 129.5, 124.8, 118.6, 62.2, 50.2, 39.9, 14.3; IR (neat): *v*_{max} 2982, 1710, 1445, 1383, 1216, 1017, 747 cm⁻¹; ESIHRMS *m/z* calcd for C₁₃H₁₄N₂O₄Na [M+Na]⁺ 285.0846, found 285.0855.

3-(1,1'-Biphenyl-4-yl)-5,5-dimethyl-1-phenylhydantoin 11w. Yield: 78% (279 mg, 782 μ mol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 85/15; White solid, Mp: 115 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.68 (m, 2H), 7.64-7.59 (m, 4H), 7.52-7.41 (m, 5H), 7.40-7.33 (m, 3H), 1.58 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.3, 154.0, 141.2, 140.4, 134.2, 131.0, 129.7, 129.1, 128.9, 128.7, 127.8, 127.7, 127.3, 126.4, 63.6, 24.3; IR (neat): v_{max} 1715, 1488, 1407, 1379, 1200, 1151, 765, 695 cm⁻¹; ESIHRMS *m/z* calcd for C₂₃H₂₁N₂O₂ [M+H]⁺ 357.1598, found 357.1610.

Page 23 of 35

5,5-Dimethyl-3-(3-methoxyphenyl)-1-phenylhydantoin 11x. Yield: 97% (193 mg, 622 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 70/30; White solid, Mp: 58 °C; ¹H NMR (400 MHz, CDCl₃): δ7.49-7.43 (m, 2H), 7.43-7.36 (m, 2H), 7.35-7.31 (m, 2H), 7.13-7.09 (m, 1H), 7.08 (t, *J* = 2.2 Hz, 1H), 6.92 (ddd, *J* = 8.4, 2.5 and 0.7 Hz, 1H), 3.81 (s, 3H), 1.54 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.1, 159.9, 153.8, 134.0, 132.8, 129.6, 129.5, 129.0, 128.5, 118.3, 114.3, 111.7, 63.4, 55.4, 24.0; IR (neat): *v*_{max} 2935, 1721, 1495, 1401, 1200, 773 cm⁻¹; ESIHRMS *m/z* calcd for C₁₈H₁₉N₂O₃ [M+H]⁺ 311.1390, found 311.1404.

5,5-Dimethyl-3-(4-nitrophenyl)-1-phenylhydantoin 11y. Yield: 49% (158 mg, 487 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 80/20; Pale yellow solid, Mp: 213 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J* = 9.2 Hz, 2H), 7.85 (d, *J* = 9.2 Hz, 2H), 7.53-7.43 (m, 3H), 7.34-7.30 (m, 2H), 1.57 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.7, 153.0, 146.5, 137.8, 133.5, 129.9, 129.2 (2C), 126.0, 124.4, 63.7, 24.3; IR (neat): *v*_{max} 2936, 2362, 1716, 1517, 1411, 1342, 1201, 846, 763, 697 cm⁻¹; ESIHRMS *m/z* calcd for C₁₇H₁₆N₃O₄ [M+H]⁺ 326.1135, found 326.1148.

5,5-Dimethyl-1-phenyl-3-(4-trifluoromethylphenyl)hydantoin 11z. Yield: 97% (338 mg, 970 μ mol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 90/10; White solid, Mp: 135 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (app. s, 4H), 7.51-7.40 (m, 3H), 7.35-7.30 (m, 2H), 1.56 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.9, 153.3, 135.2, 133.7, 129.8 (q, J = 35.8 Hz), 129.7, 129.1, 128.9, 126.1 (q, J = 3.7 Hz), 126.0, 123.9 (q, J = 272.3 Hz), 63.6, 24.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -63.1 (s); IR (neat): v_{max} 2357, 1716, 1406, 1325, 1127, 1066, 843 cm⁻¹; ESIHRMS *m/z* calcd for C₁₈H₁₆F₃N₂O₂ [M+H]⁺ 349.1158, found 349.1169.

3-(4-Cyano-3-trifluoromethylphenyl)-5,5-dimethyl-1-phenylhydantoin 11aa. Yield: 88% (1.1 g, 2.97 mmol). Solvent system for flash column chromatography: petroleum ether/EtOAc:

80/20; White solid, Mp: 169 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 1.8 Hz, 1H), 8.06 (dd, J = 8.4 and 2.0 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.54-7.44 (m, 3H), 7.33-7.28 (m, 2H), 1.58 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.5, 152.6, 136.5, 135.5, 133.8 (q, J_{C-F} = 33.1 Hz), 133.2, 130.0, 129.4, 129.2, 128.3, 123.4 (q, J_{C-F} = 4.8 Hz), 120.7, 115.1, 108.6, 63.8, 24.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.5 (s); IR (neat): v_{max} 2986, 2232, 1719, 1404, 1313, 1131, 850, 691 cm⁻¹; ESIHRMS *m/z* calcd for C₁₉H₁₅F₃N₃O₂ [M+H]⁺ 374.1111, found 374.1127.

3-(4-*tert*-**Butylphenyl)-5,5-dimethyl-1-phenylhydantoin 11ab.** Yield: 65% (219 mg, 651 µmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 90/10; White solid, Mp: 166 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.39 (m, 7H), 7.36-7.31 (m, 2H), 1.55 (s, 6H), 1.34 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.4, 154.2, 151.2, 134.2, 129.6, 129.1, 129.0, 128.6, 126.1, 125.7, 63.5, 34.8, 31.4, 24.2; IR (neat): v_{max} 2966, 1714, 1400, 1199, 1142, 839, 763, 690 cm⁻¹; ESIHRMS *m/z* calcd for C₂₁H₂₅N₂O₂ [M+H]⁺ 337.1911, found 337.1925.

5,5-Dimethyl-1-phenyl-3-(4-trifluoromethoxyphenyl)hydantoin 11ac. Yield: 80% (292 mg, 802 μmol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 90/10; White solid, Mp: 125 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J* = 9.0 Hz, 2H), 7.52-7.41 (m, 3H), 7.35-7.29 (m, 4H), 1.55 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.1, 153.7, 148.4, 133.9, 130.4, 129.8, 129.1, 128.9, 127.5, 121.6, 120.6 (q, *J*_{C-F} = 257.7 Hz), 63.7, 24.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -58.3 (s); IR (neat): *v*_{max} 2935, 2363, 1714, 1514, 1403, 1254, 1199, 1164, 762 cm⁻¹; ESIHRMS *m/z* calcd for C₁₈H₁₆F₃N₂O₃ [M+H]⁺ 365.1108, found 365.1120.

5,5-Dimethyl-3-(4-methoxycarbonylphenyl)-1-phenylhydantoin 11ad. Yield: 92% (119 mg, 351 μ mol). Solvent system for flash column chromatography: cyclohexane/EtOAc: 80/20; White solid, Mp: 115 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 8.7 Hz, 2H),

7.67 (d, J = 8.7 Hz, 2H), 7.52-7.41 (m, 3H), 7.34-7.30 (m, 2H), 3.93 (s, 3H), 1.56 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 175.0, 166.5, 153.5, 136.0, 133.9, 130.4, 129.8, 129.4, 129.2, 128.9, 125.6, 63.6, 52.4, 24.3; IR (neat): v_{max} 2954, 2364, 1714, 1412, 1277, 1199, 1115, 767, 697 cm⁻¹; ESIHRMS *m/z* calcd for C₁₉H₁₉N₂O₄ [M+H]⁺ 339.1339, found 339.1352.

Multigram Scale Procedures

N³-Arylation of 4,4-dimethylhydantoin 8a. A 2 L four-necked round bottom flask equipped with a condenser, a mechanical stirrer and a temperature probe was charged with 4-iodo-2trifluoromethylbenzonitrile (90.0 g, 303 mmol), copper(I) oxide (97% grade, 44.7 g, 303 mmol) and N,N-dimethylformamide (873 mL). 5,5-Dimethylhydantoin 8a (58.2 g, 455 mmol) was added and the flask was fitted with a glass stopper. The reaction mixture was stirred at 150 °C for 16 hours. After cooling to room temperature, the red suspension was filtered through a cardboard filter and washed with N,N-dimethylformamide (58 mL). The filtrate was concentrated under reduced pressure, dissolved in N,N-dimethylformamide (58 mL) and the green suspension was transferred into an addition funnel. A 1 L four-necked round bottom flask equipped with a condenser, a mechanical stirrer, a temperature probe and the latter addition funnel was charged with 233 mL of demineralized water. The green suspension was added over 10 minutes and stirred for 30 minutes before adding a 28% aqueous ammonia solution (111 mL) over 5 minutes. The resulting mixture was stirred for 30 minutes. The precipitate was collected by filtration, washed with water (3x58 mL) and then dried under high vacuum at 40 °C for hours to yield 5,5-dimethyl-3-(3-trifluoromethyl-4cyanophenyl)hydantoin **9f** as a white solid (83.6 g, 281 mmol, 93%).

N¹-Arylation of 5,5-dimethyl-3-(3-trifluoromethyl-4-cyanophenyl)hydantoin 9f. A 1 L fournecked round bottom flask equipped with a condenser, a mechanical stirrer and a

temperature probe charged with 5,5-dimethyl-3-(3-trifluoromethyl-4was cyanophenyl)hydantoin 9f (50.0 g, 168 mmol), copper iodide (6.40 g, 33.6 mmol) potassium carbonate (46.5 g, 336 mmol) and toluene (240 mL). The flask was fitted with a glass stopper and was then flushed with nitrogen at 22 +/- 3 °C before trans-N,N'-dimethylcyclohexane-1,2diamine (9.60 g, 67.3 mmol) was added over ca. 2 minutes. The reaction mixture turned blue and a slight exotherm (up to 26 °C) was observed (Picture 1, Supporting Information). Iodobenzene (48.0 g, 235 mmol) was added over 5 minutes (Picture 2, Supporting Information) and the mixture was then heated to reflux (110 °C, Picture 3, Supporting Information) and stirred for 24 hours (the mixture turns green upon heating, Picture 4, Supporting Information). TLC (heptane/ethyl acetate: 60/40) showed complete consumption of the starting material (Picture 5, Supporting Information). The temperature was adjusted to 22 +/- 3 °C and ethyl acetate (340 mL) was added followed by silica (50.0 g) and Clarcel[®] (50.0 g). The mixture was stirred for 15 min and filtered through a Büchner (Picture 6, Supporting Information). The cake was copiously washed with ethyl acetate (1650 mL). The filtrate was concentrated to low volume at 40 °C under vacuum to yield a brown residue (117 g). Toluene (340 mL) and heptane (200 mL) were added and the resulting suspension was stirred for 1 h at 22 +/- 3 °C and then for 1 hour at 2 +/- 3 °C (Picture 7, Supporting Information). The cake was washed twice with a cold mixture of toluene (30 mL) and heptane (20 mL) (Picture 8, Supporting Information). The wet product (98.7 g) was dried under vacuum at 50 °C for 18 hours to yield 5,5-dimethyl-1-phenyl-3-(3-trifluoromethyl-4-cyanophenyl)hydantoin 11z as an off-white solid (51.3 g, 137 mmol, 82%).

Page 27 of 35

C4-Selective Thionation of 5,5-Dimethyl-1,3-diphenylhydantoin

5,5-Dimethyl-1,3-diphenyl-4-thiohydantoin 15. In a pressure tube, 5,5-dimethyl-1,3diphenylhydantoin 111 (140 mg, 0.50 mmol) was dissolved in toluene (2 mL) before adding phosphorus pentasulfide (111 mg, 0.50 mmol). The pressure tube was flushed with argon and closed with a Teflon-coated screw cap before heating the reaction mixture at 120 °C for 18 hours. The mixture was then cooled to room temperature, guenched with a 1M aqueous solution of hydrochloric acid and extracted with EtOAc. The combined organic layers were washed with brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified by flash column chromatography over silica gel (cyclohexane/EtOAc: gradient from 90/10 to 80/20) to give the desired 5,5-dimethyl-1,3-diphenyl-4-thiohydantoin, obtained as a white solid and as a single regioisomer (85 mg, 0.29 mmol, 57%). The regioselectivity of the thionation and the structure of this compound have been assigned on the basis of ¹³C NMR chemical shifts (C2, C4 and C5) as well as by comparison of the ¹³C NMR chemical shifts reported for enzalutamide.³³ The two regioisomers have been reported in 1983 but had been misassigned.¹⁹ Mp: 138 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.43 (m, 8H), 7.38-7.35 (m, 2H), 1.67 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 208.9, 154.2, 134.5, 134.3, 129.6, 129.2 (3C), 128.9, 127.7, 72.3, 28.1 IR (neat): v_{max} 1751, 1495, 1408, 1371, 1297, 1194, 1169, 1102, 753, 695, 664 cm⁻¹; ESIHRMS m/z calcd for C₁₇H₁₆N₂OSNa [M+Na]⁺ 319.0876, found 319.0884.

Author Contributions. [‡] These authors contributed equally.

Supporting Information Available. Pictures of the different stages of the multigram scale N¹arylation and copies of NMR spectra (PDF), Primary NMR data files (ZIP). This material is available free of charge on the ACS Publication Website. **Acknowledgement.** Our work was supported by the Université libre de Bruxelles (ULB) and Minakem. P.T., P.G. and C.D. acknowledge the Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (F.R.I.A.) for graduate fellowships.

References

¹ Baeyer, A. Vorläufige Notiz über das Hydantoïn. *Justus Liebigs Ann. Chem.* **1861**, *117*, 178.

² For recent reviews on the chemistry of hydantoins, see: (a) Konnert, L.; Lamaty, F.; Martinez, J.; Colacino, E. Recent advances in the synthesis of hydantoins: the state of the art of a valuable scaffold. *Chem. Rev.* **2017**, *117*, 13757. (b) Meusel, M.; Gütschow, M. Recent developments in hydantoin chemistry. A review. *Org. Prep. Proced. Int.* **2004**, *36*, 391.

³ For representative recent examples of hydantoin natural products, see: (a) Tian, X.; Peng, X.;
Yu, M.; Huang, Y.; Wang, X.; Zhou, L.; Qiu, M. Hydantoin and thioamide analogues from Lepidium meyenii. *Phytochem. Lett.* **2018**, *25*, 70. (b) Geng, H.-C.; Yang, D.-S.; Chen, X.-L.;
Wang, L.-X.; Zhou, M.; Mei, W.-Q. Meyeniihydantoins A–C, three novel hydantoin derivatives from the roots of Lepidium meyenii Walp. *Phytochem. Lett.* **2018**, *26*, 208. (c)
Wang, Q.; Tang, X.; Luo, X.; De Voogd, N. J.; Li, P.; Li, G. (+)- and (-)-Spiroreticulatine, A Pair of Unusual Spiro Bisheterocyclic Quinoline-imidazole Alkaloids from the South China Sea Sponge Fascaplysinopsis reticulata. *Org. Lett.* **2015**, *17*, 3458. (d) Yasuda, T.; Araki, A.;
Kubota, T.; Ito, J.; Mikami, Y.; Fromont, J.; Kobayashi, J.'i. Bromopyrrole Alkaloids from Marine Sponges of the Genus Agelas. *J. Nat. Prod.* **2009**, *72*, 488. (e) Cachet, N.; GentaJouve, G.; Regalado, E. L.; Mokrini, R.; Amade, P.; Culioli, G.; Thomas, O. P. Parazoanthines A–E, Hydantoin Alkaloids from the Mediterranean Sea Anemone Parazoanthus axinellae. *J. Nat. Prod.* **2009**, *72*, 1612.

Page 29 of 35

⁴ For representative examples, see: (a) Leitch, J. A.; Cook, H. P.; Bhonoah, Y.; Frost, C. G. Use of the Hydantoin Directing Group in Ruthenium (II)-Catalyzed C–H Functionalization. J. Org. Chem. 2016, 81, 10081. (b) Kondoh, A.; Ota, Y.; Komuro, T.; Egawa, F.; Kanomata, K.; Terada, M. Chiral Brønsted acid-catalyzed enantioselective Friedel–Crafts reaction of 2methoxyfuran with aliphatic ketimines generated in situ. Chem. Sci. 2016, 7, 1057. (c) Etxabe, J.; Izquierdo, J.; Landa, A.; Oiarbide, M.; Palomo, C. Catalytic Enantioselective Synthesis of N,C α ,C α -Trisubstituted α -Amino Acid Derivatives Using 1H-Imidazol-4(5H)ones as Key Templates. Angew. Chem. Int. Ed. 2015, 54, 6883. (d) Fernández-Nieto, F.; Mas Roselló, J.; Lenoir, S.; Hardy, S.; Clayden, J. Palladium Catalyzed C-Arylation of Amino Acid Derived Hydantoins. Org. Lett. 2015, 17, 3838. (e) Prashad, M.; Har, D.; Kim, H.-Y.; Repic, O. A new, economical, practical and racemization-free method for the reductive removal of 2-oxazolidinones from N-acyloxazolidinones with sodium borohydride. Tetrahedron Lett. 1998, 39, 7067. (f) Brown, J. A.; Cochrane, A. R.; Irvine, S.; Kerr, W. J.; Mondal, B.; Parkinson, J. A.; Paterson, L. C.; Reid, M.; Tuttle, T.; Andersson, S.; Nilsson, G. N. The synthesis of highly active iridium (I) complexes and their application in catalytic hydrogen isotope exchange. Adv. Synth. Catal. 2014, 356, 3551.

⁵ For a representative example, see: Oyaizu, K.; Ohtani, Y.; Shiozawa, A.; Sugawara, K.; Saito, T.; Yuasa, M. Highly stable gold (III) complex with a hydantoin ligand in alkaline media. *Inorg. Chem.* **2005**, *44*, 6915.

⁶ For a representative example, see: Raia, R. K.; Jayakrishnan, A. Synthesis and Polymerization of a New Hydantoin Monomer With Three Halogen Binding Sites for Developing Highly Antibacterial Surfaces. *New J. Chem.* **2018**, *42*, 12152.

- ⁷ Martínez-López, D.; Yu, M.-L.; García-Iriepa, C.; Campos, P. J.; Frutos, L. M.; Golen, J. A.; Rasapalli, S.; Sampedro, D. Hydantoin-Based Molecular Photoswitches. *J. Org. Chem.* **2015**, *80*, 3929.
- ⁸ (a) Sawyers, C. L.; Jung, M. E.; Chen, C. D.; Ouk, S.; Welsbie, D.; Tran, C.; Wongvipat, J.; Yoo, D. Diarylhydantoin compounds. US Pat. Appl. US7709517 B2, May 10, 2010. (b) Tran, C.; Ouk, S.; Clegg, N. J.; Chen, Y.; Watson, P. A.; Arora, V.; Wongvipat, J.; Smith-Jones, P. M.; Yoo, D.; Kwon, A.; Wasielewska, T.; Welsbie, D.; Chen, C. D.; Higano, C. S.; Beer, T. M.; Hung, D. T.; Scher, H. I.; Jung, M. E.; Sawyers, C. L. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. *Science* 2009, *324*, 787.
- ⁹ Read, W. T. Researches on hydantoins. Synthesis of the soporific, 4, 4-phenylethyl-hydantoin (nirvanol). *J. Am. Chem. Soc.* **1922**, *44*, 1746.
- ¹⁰ Bucherer, H. T.; Lieb,V. A. Über die Bildung substituierter Hydantoine aus Aldehyden und Ketonen. Synthese von Hydantoinen. J. Prakt. Chem. **1934**, 141, 5.
- ¹¹ Biltz, H. Über die Konstitution der Einwirkungsprodukte von substituierten Harnstoffen auf Benzil und über einige neue Methoden zur Darstellung der 5.5-Diphenyl-hydantoine. *Ber. Dtsch. Chem. Ges.* **1908**, *41*, 1379.
- ¹² For isolated examples of copper-mediated arylation at N³, see: (a) Vachal, P.; Miao, S.; Pierce, J. M.; Guiadeen, D.; Colandrea, V. J.; Wyvratt, M. J.; Salowe, S. P.; Sonatore, L. M.; Milligan, J. A.; Hajdu, R.; Gollapudi, A.; Keohane, C. A.; Lingham, R. B.; Mandala, S. M.; Demartino, J. A.; Tong, X.; Wolff, M.; Steinhuebel, D.; Kieczykowski, G. R.; Fleitz, F. J.; Chapman, K.; Athanasopoulos, J.; Adam, G.; Akyuz, C. D.; Jena, D. K.; Lusen, J. W.; Meng, J.; Stein, B. D.; Xia, L.; Sherer, E. C.; Hale, J. J. 1, 3, 8-Triazaspiro [4.5] decane-2,4-diones as efficacious pan-

inhibitors of hypoxia-inducible factor prolyl hydroxylase 1–3 (HIF PHD1–3) for the treatment of anemia. *J. Med. Chem.* **2012**, *55*, 2945. (b) Nique, F.; Hebbe, S.; Triballeau, N.; Peixoto, C.; Lefrançois, J.-M.; Jary, H.; Alvey, L.; Manioc, M.; Housseman, C.; Klaassen, H.; Van Beeck, K.; Guédin, D.; Namour, F.; Minet, D.; Van der Aar, E.; Feyen, J.; Fletcher, S.; Blanqué, R.; Robin-Jagerschmidt, C.; Deprez, P. Identification of a 4-(hydroxymethyl) diarylhydantoin as a selective androgen receptor modulator. *J. Med. Chem.* **2012**, *55*, 8236. (c) Auvin, S.; Lanco, C.; Chao, Q.; Gu, K. Novel Imidazolidine-2,4-dione Derivatives Int. Pat. Appl. WO 2015100613 A1, July 9, 2015. (d) Wang, C.; Zhao, Q.; Vargas, M.; Jones, J. O.; White, K. L.; Shackleford, D. M.; Gong, C.; Saunders, J.; Ng, A. C. F.; Chiu, F. C. K.; Dong, Y.; Charman, S. A.; Keiser, J.; Vennerstrom, J. L. Revisiting the SAR of the antischistosomal aryl hydantoin (Ro 13-3978). *J. Med. Chem.* **2016**, *59*, 10705.

¹³ For an isolated example of copper-mediated arylation at N³ with an aryllead, see: (a) Lopez-Alvarado, P.; Avendano, C.; Menendez, J. C. Amide N-arylation with p-tolyllead triacetate. *Tetrahedron Lett.* **1992**, *33*, 6875. For copper-mediated arylation at N³ with arylboronic acids, see: (b) Huegel, H. M.; Rix, C. J.; Fleck, K. Comparison of copper (II) acetate promoted N-arylation of 5,5-dimethyl hydantoin and other imides with triarylbismuthanes and aryl boronic acids. *Synlett* **2006**, 2290.

¹⁴ For isolated examples of copper-catalyzed/mediated arylation at N¹, see ref 17a and: (a) Maligres, P. E.; Krska, S. W.; Dormer, P. G. A soluble copper (I) source and stable salts of volatile ligands for copper-catalyzed C–X couplings. *J. Org. Chem.* **2012**, *77*, 7646. (b) Meyers, M. J.; Anderson, E. J.; McNitt, S. A.; Krenning, T. M.; Singh, M.; Xu, J.; Zeng, W.; Qin, L.; Xu, W.; Zhao, S.; Qin, L.; Eickhoff, C. S.; Oliva, J.; Campbell, M. A.; Arnett, S. D.; Prinsen, M. J.; Griggs, D. W.; Ruminski, P. G.; Goldberg, D. E.; Ding, K.; Liu, X.; Tu, Z.;

Tortorella, M. D.; Sverdrup, F. M.; Chen, X. Evaluation of spiropiperidine hydantoins as a novel class of antimalarial agents. *Bioorg. Med. Chem.* **2015**, *23*, 5144. (c) Bischoff, A. J.; Nelson, B. M.; Niemeyer, Z. L.; Sigman, M. S.; Movassaghi, M. Quantitative Modeling of Bis(pyridine)silver(I) Permanganate Oxidation of Hydantoin Derivatives: Guidelines for Predicting the Site of Oxidation in Complex Substrates. *J. Am. Chem. Soc.* **2017**, *139*, 15539. For an isolated example of a palladium-catalyzed arylation at N¹, see: (d) Old, D. W. US Pat. Appl. US 200858397 A1, August 30, 2007.

¹⁵ For a general reference on copper catalysis, see: *Copper-Mediated Cross-Coupling Reactions*; Evano, G., Blanchard, N., Eds.; Wiley: Hoboken, 2013.

¹⁶ For representative contributions, see: (a) Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Copper-Mediated Coupling of 1, 1-Dibromo-1-alkenes with Nitrogen Nucleophiles: A General Method for the Synthesis of Ynamides. *Angew. Chem. Int. Ed.* 2009, *48*, 4381. (b) Coste, A.; Couty, F.; Evano, G. Synthesis of Ketene N,N-Acetals by Copper-Catalyzed Double-Amidation of 1,1-Dibromo-1-alkenes. *Org. Lett.* 2009, *11*, 4454. (c) Jouvin, K.; Couty, F.; Evano, G. Copper-catalyzed alkynylation of amides with potassium alkynyltrifluoroborates: A room-temperature, base-free synthesis of ynamides. *Org. Lett.* 2010, *12*, 3272. (d) Evano, G.; Tadiparthi, K.; Couty, F. Copper-mediated cross-coupling of 1,1-dibromo-1-alkenes with dialkyl phosphites: a convenient synthesis of 1-alkenylphosphonates. *Chem. Comm.* 2011, *47*, 179. (e) Laouiti, A.; Rammah, M. B.; Marrot, J.; Couty, F.; Evano, G. Copper-catalyzed oxidative alkynylation of diaryl imines with terminal alkynes: A facile synthesis of ynimines. *Org. Lett.* 2012, *14*, 6. (f) Jouvin, K.; Bayle, A.; Legrand, F.; Evano, G. Copper-Catalyzed Coupling of 1,1-Dibromo-1-alkenes with Phenols: A General, Modular, and Efficient Synthesis of Ynol

Ethers, Bromo Enol Ethers, and Ketene Acetals. *Org. Lett.* **2012**, *14*, 1652. (g) Pradal, A.; Evano, G. A vinylic Rosenmund–von Braun reaction: practical synthesis of acrylonitriles . *Chem. Commun.* **2014**, *50*, 11907. (h) Nitelet, A.; Evano, G. A general copper-catalyzed vinylic halogen exchange reaction. *Org. Lett.* **2016**, *18*, 1904. (i) Theunissen, C.; Wang, J.; Evano, G. Copper-catalyzed direct alkylation of heteroarenes. *Chem. Sci.* **2017**, *8*, 3465.

- ¹⁷ For representative contributions, see: (a) Delsarte, C.; Etuin, G.; Petit, L. An improved synthesis of 1-methylcyclopropanol using the Kulinkovich reaction. *Bioorg. Med. Chem.* **2018**, *4*, 984. (b) Delsarte, C.; Santraine, R.; Fours, B.; Petit, L. Metal-Free Synthesis of the Methanol Solvate of (S)-Omeprazole Potassium Salt Using (1R)-(-)-10-Camphorsulfonyloxaziridine: Oxidation Process Development and Optical Purity Enhancement Strategy. *Org. Proc. Res. Dev.* **2018**, *22*, 321.
- ¹⁸ For a representative example, see: Aslanidis, P.; Kyritsis, S.; Lalia-Kantouri, M.; Wicher, B.; Gdaniec, M. Copper (I) halide complexes of 2-thiohydantoin and 5,5-diphenyl-2thiohydantoin. *Polyhedron* **2012**, *48*, 140.
- ¹⁹ The selectivity of the thionation to **15** was assigned on the basis of its ¹³C NMR spectra. The two regioisomers have been reported in 1983 (Yamamoto, I.; Abe, I.; Nozawa, M.; Kotani, M.; Blotoyoshiya, J.; Gotoh, H.; Matsuzaki, K. Synthesis and some reactions of 2-imino-2,5-dihydro-1,3,4-thiadiazoles. Formation of β-lactams. *J. Chem. Soc., Perkin Trans.* 1 **1983**, 2297) but had been misassigned.
- ²⁰ Hroch, L.; Hrušková, M.; Schmitz, J.; Schnakenburg, G.; Gütschow, M. 3,5,5-Trisubstituted hydantoins from activated (benzyloxycarbonylamino) malonic acids. *Synthesis* **2012**, *44*, 1907.

- ²¹ Leonard, J. M.; Lingham, A. R.; Niere, J. O.; Jackson, N. R. C.; McKay, P. G.; Hügel, H. M. Alternative synthesis of the anti-baldness compound RU58841. *RSC Adv.* **2014**, *4*, 14143.
- ²² Hoffman, R. V.; Reddy, M. M.; Cervantes-Lee, F. Improved Methodology for the Generation and Trapping of α-Lactams by Weak Nucleophiles. *J. Org. Chem.* **2000**, *65*, 2591.
- ²³ Bahy, A.; Kacem, Y.; Hassine, B. B. 1,3-Dipolar cycloaddition of nitrones with 5methylenehydantoins: synthesis and transformation of new spirohydantoin derivatives. *Synth. Commun.* , *40*, 1377.
- ²⁴ Sedlák, M.; Keder, R.; Hanusek, J.; Růzička, A. Synthesis of new substituted 5-methyl-3,5diphenylimidazolidine-2,4-diones from substituted 1-(1-cyanoethyl-1-phenyl)-3phenylureas. J. Heterocyclic Chem. 2005, 42, 899.
- ²⁵ Muccioli, G. G.; Fazio, N.; Scriba, G. K. E.; Poppitz, W.; Cannata, F.; Poupaert, J. H.; Wouters, J.; Lambert, D. M. Substituted 2-thioxoimidazolidin-4-ones and imidazolidine-2, 4-diones as fatty acid amide hydrolase inhibitors templates. *J. Med. Chem.* **2006**, *49*, 417.
- ²⁶ Cortes, S.; Kohn, H. Selective reductions of 3-substituted hydantoins to 4-hydroxy-2imidazolidinones and vicinal diamines. *J. Org. Chem.* **1983**, *48*, 2246.
- ²⁷ Kumar, V.; Rana, H.; Sankolli, R.; Kaushik, M. P. Highly efficient dialkylphosphate-mediated syntheses of hydantoins and a bicyclohydantoin under solvent-free conditions. *Tetrahedron Lett.* **2011**, *52*, 6148.
- ²⁸ Kumar, V.; Kaushik, M. P.; Mazumdar, A. An Efficient Approach for the Synthesis of N-1 Substituted Hydantoins. *Eur. J. Org. Chem.* **2008**, 2008, 1910.

3	
4	
5	
6	
7	
8	
0	
ש ש	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
ΔΔ	
- + //	
45	
46	
47	
48	
49	
50	
51	
52	
52	
23	
54	
55	
56	
57	
58	
59	

²⁹ Katritz	ky, A. R.; Cheng, D.; Leeming, P.; Ghiviriga, I.; Hartshorn, C. M.; Steel, P. J. Generation
and	reactivity of N,N-dimethylaminobenzotriazolylcarbene a new nucleophilic carbene. J.
Hete	rocycl. Chem. 1996 , 33, 1935.

- ³⁰ Zhou, A.-N.; Li, B.; Ruan, L.; Wang, Y.; Duan, G.; Li, J. An improved and practical route for the synthesis of enzalutamide and potential impurities study. *Chin. Chem. Lett.* **2017**, *28*, 426.
- ³¹ Olimpieri, F.; Bellucci, M. C.; Marcelli, T.; Volonterio, A. Regioselective multicomponent sequential synthesis of hydantoins. *Org. Biomol. Chem.* **2012**, *10*, 9538.
- ³² Klumpp, D. A.; Yeung, K. Y.; Surya Prakash, G. K.; Olah, G. A. Superacid activated condensation of parabanic acid and derivatives with arenes. A new synthesis of phenytoin and 5,5-diarylhydantoins. *Synlett* **1998**, 918.
- ³³ Jung, M. E.; Ouk, S.; Yoo, D.; Sawyers, C. L.; Chen, C.; Tran, C.; Wongvipat, J. Structure– activity relationship for thiohydantoin androgen receptor antagonists for castrationresistant prostate cancer (CRPC). J. Med. Chem. 2010, 53, 2779.