## Tai-Shan Hu, Yu-Lin Wu,\* and Yikang Wu

State Key Laboratory of Bio-organic & Natural Products Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

ylwu@pub.sioc.ac.cn

Received January 3, 2000

2000 Vol. 2, No. 7 887–889

ABSTRACT

D-glucono-1,5-lactone
L-ascorbic acid
Ethyl L-lactate

 $A = 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12} + 10^{-12$ 

Annonacin

The first total synthesis of annonacin (1) was achieved by a highly convergent synthetic strategy. All the stereogenic centers were derived from three natural hydroxy acids respectively, except that those at C19 and C20 were produced from a Sharpless AD reaction.

Annonacin (1), the first monotetrahydrofuran acetogenin discovered, was isolated by Cassady and co-workers from the stembark of *Annona densicoma* in 1987<sup>1</sup> and subsequently was also found in more than 10 other species of Annonaceae.<sup>2</sup> This compound demonstrated 9ASK (astrocytoma reversal) activity and high cytotoxicity against KB cells (human nasopharyngeal carcinoma) and P388 cells (mouse leukemia).<sup>1,2a</sup> Although to some extent the structure of annonacin seems to be simple, the construction of the seven chiral centers, especially the two isolated at C4 and C10, still presents a challenge. To date there is no report on the synthesis of annonacin, although the synthesis<sup>3</sup> of a diastereomer of annonacin A, the C-20 epimer of annonacin, has recently been achieved. In this Letter, we describe the first total synthesis of annonacin **1**.

Our retrosythetic analysis of 1 is illustrated in Figure 1. Thus, the key precursor 2 was dissected into two major

(1) McCloud, D. J.; Smith, D. L.; Chang, C.-J.; Cassady, J. M. *Experientia* **1987**, *59*, 947.

(2) For other isolations, see: (a) Alkofahi, A.; Rupprecht, J. K.; Smith, D. L.; Chang, C.-J.; Maclaughlin, J. L. *Experientia* **1988**, 44, 83. (b) Chen, W.-S.; Yao, Z.-J.; Wu, Y.-L. *Youji Huaxue* **1995**, *15*, 85. (c) Jossang, A.; Dubaele, A.; Cave, A.; Bartoli, M.-H.; Beriel, H. *Tetrahedron Lett.* **1990**, *31*, 1861. (d) Ye, Q.; Zeng, L.; Zhang, Y.; Zhao, G.-X.; Maclaughlin, J. L.; Woo, M. H. and Evert, D. R. J. Nat. Prod. **1995**, *58*, 1398. (e) Zhang, L.-L.; Yang, R.-Z..; Wu, S.-J. Acta Botanica Sinica (Zhiwu Xuebao) **1993**, *35*, 390.

(3) Hanessian, S.; Grillo, T. A. J. Org. Chem. 1998, 63, 1049.

10.1021/ol005504g CCC: \$19.00 © 2000 American Chemical Society Published on Web 03/08/2000



## Figure 1.

building blocks, the THF unit **3** and the epoxide **4**. The THF fragment **3** could be prepared from D-glucono- $\delta$ -lactone via





<sup>*a*</sup> Reagents and conditions: (a) PPh<sub>3</sub>, I<sub>2</sub>, imidazole, toluene, reflux, 69%; (b) LiHMDS, THF, -78 °C, 95%; (c) (i) H<sub>2</sub>/Pd-C, MeOH; (ii) acetone, p-TsOH (cat.) 86%; (d) ref 6.

a multiple-step sequence, while epoxide 4 could be synthesized from L-ascorbic acid via phosphonium salt 6 and aldehyde 5.

The THF fragment **3** was prepared as shown in Scheme 1. The D-glucono- $\delta$ -lactone-derived  $\alpha$ -hydroxyl ester<sup>4</sup> **7** was deoxygenated using the PPh<sub>3</sub>/I<sub>2</sub>/imidazole system<sup>5</sup> to give 2-deoxy ester **8**, which was treated with LiHMDS to produce  $\alpha$ , $\beta$ -unsaturated ester **9**. Catalytic hydrogenation followed

by an acid-catalyzed ring closure reaction gave lactone **10**. A subsequent multistep transformation with the Sharpless asymmetric dihydroxylation reaction as a key step to introduce the C19 and C20 chiral centers, reported by us earlier,<sup>6</sup> was adapted to furnish the THF acetylene **3**.

The synthesis of epoxide **4** is summarized in Scheme 2. The  $\alpha$ -hydroxy ester<sup>7</sup> **11** obtained from L-ascorbic acid was protected as the MOM ether before the chain was elongated by two carbons to give ester **15** using a four-step sequence. The reduction of **12** with LAH gave alcohol **13**. Swern oxidation of **13** followed by a Wittig reaction with carbethoxymethylenetriphenyphosphorane led to  $\alpha$ , $\beta$ -unsaturated ester **14**. Subsequent hydrogenation afforded the corresponding saturated ester **15**, which was then treated with H<sub>5</sub>IO<sub>6</sub><sup>8</sup> to give the chiral aldehyde **5**.

On the other hand, **11** was converted to 2-deoxy ester **16** according to a known procedure.<sup>9</sup> Reduction with LAH of **16** followed by Swern oxidation, a Wittig reaction, and hydrogenation gave ester **17** as mentioned above for the preparation of **15**. After reduction with LAH, the resultant alcohol **18** was converted to iodide **20** by tosylation, followed by substitution with iodide. The latter, upon reaction with PPh<sub>3</sub>, afforded phosphonium salt **6**. Treatment of **6** with NaHMDS generated the corresponding ylide, which reacted with aldehyde **5** to give olefin **21**. Hydrogenation and cleavage of the isopropylidene group in **22** with aqueous HOAc led to 1,2-diol **23**, which was transformed selectively to primary tosylate **24** by Bu<sub>2</sub>SnO-catalyzed tosylation.<sup>10</sup>



<sup>*a*</sup> Reagents and conditions: (a) MOMCl, <sup>1</sup>Pr<sub>2</sub>NEt, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C  $\rightarrow$  rt, 88%; (b) LAH, THF, 0 °C  $\rightarrow$  rt, 96%; (c) (i) oxalyl chloride, DMSO, <sup>1</sup>Pr<sub>2</sub>NEt; (ii) PPh<sub>3</sub>=CHCO<sub>2</sub>Et, CH<sub>2</sub>Cl<sub>2</sub>, reflux, 81%; (d) H<sub>2</sub>/Pd-C, EtOH, rt, 97%; (e) H<sub>5</sub>IO<sub>6</sub>, Et<sub>2</sub>O, rt, 71%; (f) ref 9; (g) (i) LAH, THF, 0 °C  $\rightarrow$  rt; (ii) oxalyl chloride, DMSO, Et<sub>3</sub>N; (iii) PPh<sub>3</sub>=CHCO<sub>2</sub>Et, CH<sub>2</sub>Cl<sub>2</sub>, reflux, 73% for three steps; (iv) H<sub>2</sub>/Pd-C, EtOH, rt, 95%; (h) (i) LAH, THF, 0 °C  $\rightarrow$  rt, 95%; (ii) p-TsCl, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C  $\rightarrow$  rt, 94%; (iii) NaI, acetone, rt, 98%; (i) PPh<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, CH<sub>3</sub>CN, quantitative; (j) NaHMDS, THF, 0  $\rightarrow$  -78 °C, then **5**, 81%; (k) H<sub>2</sub>/Pd-C, NaHCO<sub>3</sub>, EtOH, rt, 97%; (l) (i) 60% aqueous HOAc, 97%; (ii) p-TsCl, Et<sub>3</sub>N, Bu<sub>2</sub>SnO (cat.), CH<sub>2</sub>Cl<sub>2</sub>, 81%; (m) DBU, CH<sub>2</sub>Cl<sub>2</sub>, rt, 97%.



<sup>*a*</sup> Reagent and conditions: (a) BuLi, THF, -78 °C, 1 h, then BF<sub>3</sub>·Et<sub>2</sub>O, 30 min, then **4**, 77%; (b) (i) PtO<sub>2</sub>, EtOH, rt, 93%; (ii) MOMCl,  $Pr_2NEt$ , CH<sub>2</sub>Cl<sub>2</sub>, 0 °C  $\rightarrow$  rt, 95%; (c) (i) LDA, THF, -78 °C, then *O*-THP lactaldehyde; (ii) HOAc/THF/H<sub>2</sub>O (4:2:1); (iii) (CF<sub>3</sub>CO)<sub>2</sub>O, Et<sub>3</sub>N, 0 °C  $\rightarrow$  rt, 41% for three steps; (d) BF<sub>3</sub>·Et<sub>2</sub>O, Me<sub>2</sub>S, 0 °C  $\rightarrow$  rt, 85%.

Then the momotosylate was treated with DBU to afford the epoxide **4** in excellent yield.

With the two major fragments 4 and 3 in hand, we proceeded to complete the carbon skeleton of 1 (Scheme 3).

(4) Regeling, H.; Rouville, E.; Chittenden, G. J. F. Recl. Trav. Chim. Pays-Bas 1987, 106, 461.

Thus, the lithiated derivative of THF alkyne 3 was reacted with epoxide 4 in the presence of BF<sub>3</sub>·Et<sub>2</sub>O to afford alkynol 25. Catalytic hydrogenation of 25 with PtO<sub>2</sub> in ethanol gave the corresponding alcohol, which was then protected as the MOM ether 2. It is noteworthy that hydrogenation of 25 over Pd/C led to ca. a 1:1 ratio of the desired alcohol and the 10-deoxygenated byproduct. Subsequent construction of the butenolide segment of 1 was furnished using the method developed by us.<sup>11</sup> Accordingly, the enolate derived from 2 was condensed with (S)-O-THP lactal prepared from (+)ethyl lactate to give the aldol product, which was subjected to acidic cleavage of the THP group and dehydration with trifluoroacetic anhydride and triethylamine<sup>12</sup> to give the  $\alpha,\beta$ unsaturated lactone 26. The final removal of all of the MOM protecting groups with boron trifloride etherate in the presence of dimethyl sulfide afforded annonacin 1,<sup>13</sup> whose  $R_f$  value and spectroscopic data are identical to those reported for the natural product.

Acknowledgment. This research was supported by the State Ministry of Science and Technology of China (970211006-6), the Chinese Academy of Sciences (KJ-951-A1-504-04, KJ-952-S1-503), and the National Natural Science Foundation of China (29472070, 29790126).

## OL005504G

- (7) (a) Wei, C. C.; De Bernardo, S.; Tengi, J. P.; Borgese, J.; Weigele, M. J. Org. Chem. **1985**, 50, 3462. (b) Jung, M. E.; Shaw, T. J. J. Am. Chem. Soc. **1980**, 102, 6304.
  - (8) Wu, W.-L.; Wu, Y.-L. J. Org. Chem. **1993**, 58, 3586.
  - (9) Tanaka, A.; Yamashida, K. *Synthesis* **1987**, 570.

- Pawlak, J. M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447.
- (11) (a) Yao, Z.-J.; Wu, Y.-L. *Tetrahedron Lett.* **1994**, *35*, 157. (b) Yao, Z. J.; Wu, Y. L. J. Org. Chem. **1995**, *60*, 1170.
  - (12) Marshall, J. A.; Jiang, H. J. Org. Chem. 1999, 64, 971.

(13) Physical data for synthetic annonacin: white solid; mp 69–71 °C;  $[\alpha]_D = +21 (c 0.51, CHCl_3) \{Iit.^{2e} [\alpha]_D = 20.78 (c 5.05 CHCl_3)\}; [\alpha]_D = +19 (c 0.40, CH_3OH) \{Iit.^{2b} [\alpha]_D = 11.4 (c 0.04 CH_3OH)\}; <sup>1</sup>H NMR (600 MHz CDCl_3) \delta 7.18 (s, 1H), 5.06 (q,$ *J*= 6.6 Hz 1H), 3.85 (m, 1H), 3.81 (dt,*J*= 11.7, 6.6 Hz, 2H), 3.59 (m, 1H), 3.41 (dt,*J*= 11.7, 6.0 Hz, 2H), 2.52 (d,*J*= 14.7 Hz, 1H), 2.40 (dd,*J*= 14.7, 7.8 Hz, 1H), 2.04 (br. 4 OH), 1.99 (m, 2H), 1.68 (m, 2H), 1.60–1.20 (m, 40H), 1.43 (d,*J* $= 7.2 Hz, 3H), 0.88 (t, 6.8 Hz, 3H); <sup>13</sup>C NMR (150 MHz, CDCl_3) \delta 174.58, 151.80, 131.18, 82.67, 82.60, 77.95, 74.05, 73.95, 71.74, 69.90, 37.36, 37.27, 33.48, 33.37, 29.70–29.57 signal overlap, 29.47, 29.32, 28.72, 25.64, 25.58, 25.48, 22.66, 19.09, 14.08.$ 

<sup>(5)</sup> Rauter, A. P.; Fernandes, A. C.; Figueiredo, J. A. J. Carbohydr. Chem. **1998**, *17*, 1037.

<sup>(6) (</sup>a) Yu, Q.; Wu, Y.-K.; Ding, H.; Wu, Y.-L. J. Chem. Soc., Perkin Trans. 1 1999, 1183. (b) Hu, T.-S.; Yu, Q.; Lin, Q.; Wu, Y.-L.; Wu, Y. Org. Lett. 1999, 1, 399.

<sup>(10)</sup> Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.;