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Abstract. Herein, we have explored the enantioselective Michael addition of various malonate esters to
benzalacetophenone by successful utilization of chiral phase transfer catalysts derived from proline, mandelic
acid and tartaric acid under mild phase transfer conditions. The obtained results signify that these chiral phase
transfer catalysts are efficacious towards enantioselective Michael addition as the use of it resulted in good
enantioselectivity and appreciable chemical yields.
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1. Introduction

The formation of a carbon-carbon bond by using cat-
alytical methodology is an attractive and demanding
process in the chemical synthesis. Among all well-
established catalytical carbon-carbon bond formation
reactions, the Michael addition is one of the most effec-
tive carbon-carbon bond forming reaction.1 The asym-
metric Michael addition reaction can provide several
enantiomerically pure Michael adducts from respec-
tive Michal acceptors and donors.2 Amidst all these
Michael additions, the enantioselective addition of mal-
onic esters to α, β- unsaturated carbonyls provides an
atom-economical chemical transformation to produce
an optically active tricarbonyl Michael adducts.3 Asym-
metric Michael addition furnishes a useful tool for the
asymmetric synthesis of various valuable enantiomer-
ically pure or enantio-enriched chemical compounds
through the combination of different electrophiles and
nucleophiles. Asymmetric Michael addition reaction
of malonate esters to enones by using catalysts is
a foremost transformation in organic chemistry as it
involves asymmetric induction at the β-position to the
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enone. Asymmetric Michael addition reaction is use-
ful in the synthesis of various drugs molecules and
some natural products.1 There are a number of cat-
alytic methodologies reported in the literature for the
asymmetric conjugate addition of malonate esters to
benzalacetophenones, such as organocatalysts,4 chi-
ral ionic liquids,5 chiral metal complexes,6 and chiral
phase-transfer catalysts.7 However, among all these
methodologies, asymmetric phase-transfer catalysis has
been found to be a simple, ecologically innocuous and
most effective methodology for the enantioselective
Michael addition of malonate esters to benzalacetophe-
none. High enantioselectivity is reported by Maruoka
group by using N -spiro quaternary ammonium salt as
a phase-transfer catalyst.7a Chiral phase-transfer catal-
ysis (PTC) demonstrates in the way weak interactions
arising from ion pairing can be applied to the enantiose-
lectivity in conjugate addition reactions. The formation
of chiral ion pair can be due to deprotonation with a
chiral base, or by employing a chiral phase-transfer
catalyst, and this chiral ion pair is responsible for the
induction of asymmetry during the product formation.
The phase transfer reactions are mostly carried out in
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Figure 1. Chiral cyclic phase transfer catalysts (I–VI).

two or three-phase systems in which generally aque-
ous and nonpolar solvent mixtures are used. Initially,
the PTC reactions were carried out by using Cinchona
alkaloids derivatives. However, recently better results
for enantioselectivities have been reported in conjugate
addition reaction by modifying the structures of phase
transfer catalysts. The design and development of chiral
phase-transfer catalysts are based on the use of chiral
moiety. These PTCs are structurally well-defined by
various effective substitutions on quaternary nitrogen.
Enantiomerically pure catalysts have provided notable
achievements in various bond formation reactions under
mild phase-transfer-catalyzed conditions.8

1.1 Chiral phase transfer catalysts

By referring to this rational molecular design of chiral
phase-transfer catalysts reported in literature,7,8 we have
recently reported the designing and synthesis of the chi-
ral cyclic phase transfer catalysts derived from proline,
mandelic acid and tartaric acid (I–VI, Figure 1) along
with their successful evaluation for the effectiveness
in enantioselective epoxidation and Darzens condensa-
tion.9 To explore the further scope in enantioselective
synthesis, we have utilized these PTCs for enantioselec-
tive Michael addition.

1.2 Enantioselective Michael addition of dialkyl
malonates to benzalacetophenone by using chiral
phase transfer catalysts

It is reported that for enantioselective Michael additions,
chiral quaternary ammonium salts (PTCs) have excel-
lent results.7 So, to check the effectiveness of these
chiral PTCs (I–VI), these catalysts have been applied
for the enantioselective Michael additions of malonate
esters (2a–2e) to benzalacetophenone (1) (Figure 2).
In this chiral phase transfer catalyzed enantioselective
addition reaction, the conjugate addition of malonic
esters (2a–2e) to benzalacetophenone (1) were carried
out in a solid-liquid bi-phasic system to get the chi-
ral Michael adducts (3a–3e). The artless and amiable
conditions have been used for these Michael addition

reactions by loading 5 mol% as well as 10 mol% of the
catalysts (I–VI). The nonpolar aprotic toluene was used
as a solvent (the liquid phase), powdered potassium car-
bonate (solid phase) was used as a base and the reaction
temperature was 20–30 ◦C.

2. Experimental

2.1 Materials and physical measurements

Benzalacetophenone was purchased from Sisco research
laboratories Pvt. Ltd. (SRL) India. Dimethyl malonate, di-
isopropyl malonate and dibenzyl malonate were purchased
from Sigma Aldrich. Diethyl malonate and di-tertiary butyl
malonate were purchased from Spectrochem (India). All these
raw materials were used directly without additional treat-
ment. Commercial grade solvents were used for reaction and
purification. 1H NMR (500 MHz) and 13C NMR (125 MHz)
were obtained as solutions in deuterium substituted reagent
on Bruker 500 MHz AVANCE III HD, Software- Topspin
3.5. Chemical shifts were reported in parts per million (ppm,
δ). Melting points were recorded on Mettler Toledo MP-03
melting point apparatus. IR spectra (FTIR) were recorded
on a Perkin spectrum 400 FTIR spectrometer using the ATR
method. The C, H and N elemental analyses were performed
on a Yanaco CHN FOER MT-3 element analyzer. The HPLC
analysis were carried out by using Chiralpak AS-H Column
and HPLC grade solvents (n-Hexane-Isopropanol).

2.2 General procedure for the synthesis of
enantioselective Michael adduct (3a-3e)

In a round bottom flask, to a solution of benzalacetophenone
(1) (25 g, 120 mmol, 1.0 eq) in toluene (150 mL), dialkyl
malonate (2a–2e) (360 mmol, 3.0 eq), potassium carbonate
(47.58 g, 360 mmol, 3.0 eq) and chiral PTC (5 mol% or 10
mol%) (I–VI) was charged and stirred. After the completion
of reaction, the reaction mixture was filtered. Filtrate was
concentrated under vacuum to get crude product as a residue,
which was purified by recrystallization from methanol to get
pure respective Michael adducts.

2.2a dimethyl (S)-2-(3-oxo-1,3-diphenylpropyl)malo-
nate (3a) (Table 1): The title compound (3a) was prepared
according to the general procedure described for the synthesis
of enantioselective Michael adduct by using dimethyl mal-
onate (2a) (47.58 g, 360 mmol, 3.0 eq).
(3a) -White solid, Yield 39.7 g (97.0%), Melting range 83–
85 ◦C. (Lit. Melting range 82–83 ◦C).10 [α]26.9

D 18.50◦ (c 1.0
in CHCl3). (Lit. [α]26.9

D = +21.0◦ for 99% ee (c 1.0 in
CHCl3).11 Optical purity (% ee) 87.2%12 (Entry 8, Table 1);
1H NMR (500 MHz, CDCl3) δ 3.47–3.59 (m, 2H), 3.52 (s,
3H), 3.75 (s, 3H), 3.87 (d, J = 9.5 Hz, 1H), 4.19–4.24 (m,
1H), 7.18–7.21 (m, 1H), 7.25–7.29 (m, 4H), 7.43–7.46 (m,
2H), 7.53–7.57 (m, 1H), 7.90–7.93 (m, 2H); 13C NMR (125
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Figure 2. Michael addition of malonates (2a–2e) to benzalacetophenone (1) to get Michael adduct (3a–3e).

Table 1. Michael addition of dimethyl malonate (2a) to benzalacetophenone by using chiral cyclic PTCs to
get the Michael adduct, dimethyl (S)-2-(3-oxo-1,3-diphenylpropyl) malonate (3a).

Entry Chiral PTC Chiral PTC (mol %) Time (h) Yielda (%) SOR[α]b (◦) Cal. Opt. Purityc (% ee)

1 I 5 3 96 18.12 85.4%
2 I 10 2 94 18.18 85.7%
3 II 5 3 95 18.26 86.0%
4 II 10 2 95 18.29 86.2%
5 III 5 3 96 18.39 86.7%
6 III 10 2 95 18.41 86.8%
7 IV 5 3 96 18.49 87.1%
8 IV 10 2 97 18.50 87.2%
9 V 5 3 95 17.72 83.5%
10 V 10 2 94 17.71 83.4%
11 VI 5 3 95 17.82 84.0%
12 VI 10 2 95 17.88 84.3%

aIsolated yield after purification. bSOR- (c 1.0 in CHCl3 at 26.9 ◦C).11 cOptical purity (% ee) has been calculated
based on reported data in literature.12

MHz, CDCl3) δ 197.5, 168.7, 168.1, 140.4, 136.7, 133.0,
128.5, 128.4, 128.0, 127.2, 57.3, 52.6, 52.4, 42.3, 40.7; IR
(neat), ν/cm−1 1727, 1698, 1680, 1595, 1579, 1498, 1449,
1433, 1414, 1370, 1343, 1307, 1233, 1210, 1198, 1184,
1159, 1117, 1095, 1080, 1064, 1024, 1001, 981,960, 929,
911, 872, 850, 793, 767, 746, 699, 686, 660. Anal. calcu-
lated for C20H20O5: C, 70.58; H, 5.92. Found; C, 70.63; H,
5.93. Chiral HPLC analysis: n-Hexane-Isopropanol (90:10),
1 mL/min, Chiralpak AS-H Column, major enantiomer (S)

tr = 12.13 min, minor enantiomer (R) tr = 15.52 min. ee
87% (Table 6, entry 1).

2.2b diethyl (S)-2-(3-oxo-1,3-diphenylpropyl) malon-
ate (3b) (Table 2): The title compound (3b) was prepared
according to the general procedure described for the synthesis
of enantioselective Michael adduct by using diethyl malonate
(2b) (57.6 g, 360 mmol, 3.0 eq).
(3b) - White solid, Yield 42.0 g (95.0%), Melting range 64–
66 ◦C. (Lit. Melting range 65–68 ◦C).11 [α]28

D 16.65◦ (c 1.0 in
CHCl3). (Lit. [α]28

D = 18.5◦ for 99% ee (c 1.0 in CHCl3). 11

Optical purity (% ee) 89.1%13 (Entry 8, Table 2); 1H NMR
(500 MHz, CDCl3) δ 1.02 (t, J = 7.0, 7.5 Hz, 3H), 1.26 (t,
J = 7.0, 7.5 Hz, 3H), 3.48–3.57 (m, 2H), 3.83 (dd, J = 4.0,

6.0 Hz, 1H), 3.95 (q, J = 14.5, 7.5 Hz, 2H), 4.18–4.23 (m,
3H), 7.16–7.20 (m, 1H), 7.24–7.29 (m, 4H), 7.42–7.45 (m,
2H), 7.52–7.56(m, 1H), 7.90–7.92 (m, 2H); 13C NMR (125
MHz, CDCl3) δ 197.5, 168.3, 167.7, 140.4, 136.8, 133.0,
128.5, 128.4, 128.2, 128.1, 127.1, 61.6, 61.3, 57.5, 42.6, 40.8,
14.0, 13.7; IR (neat), ν/cm−1 1745, 1721, 1680, 1598, 1581,
1496, 1476, 1449, 1416, 1392, 1367, 1354, 1332, 1293, 1237,
1211, 1192, 1182, 1166, 1117, 1090, 1062, 1031, 1004, 973,
952, 915, 860, 830, 815, 764, 745, 701, 686, 659. Anal. cal-
culated for C22H24O5: C, 71.72; H, 6.57. Found; C, 71.66; H,
6.56. Chiral HPLC analysis: n-Hexane-Isopropanol (90:10),
1 mL/min, Chiralpak AS-H Column, major enantiomer (S)

tr = 20.35 min, minor enantiomer (R) tr = 24.59 min. ee
90% (Table 6, entry 2).

2.2c diisopropyl (S)-2-(3-oxo-1,3-diphenylpropyl)
malonate (3c) (Table 3): The title compound (3c) was
prepared according to the general procedure described for the
synthesis of enantioselective Michael adduct by using diiso-
propyl malonate (2c) (67.75 g, 360 mmol, 3.0 eq).
(3c) - White solid, Yield 45.3 g (95.0%), Melting range 67–
68 ◦C. (Lit. Melting range 69–71 ◦C).14 [α]28

D 19.32◦ (c 0.925
in CHCl3). (Lit. [α]28

D = +18.9◦ for 90% ee (c 0.925 in
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Table 2. Michael addition of diethyl malonate (2b) to benzalacetophenone by using chiral cyclic PTCs
to get the Michael adduct, diethyl (S)-2-(3-oxo-1,3-diphenylpropyl) malonate (3b).

Entry Chiral PTC Chiral PTC (mol %) Time (h) Yieldd (%) SOR[α]e (◦) Cal. Opt. Purityf (% ee)

1 I 5 5 92 16.17 86.5%
2 I 10 3 92 16.15 86.4%
3 II 5 5 93 16.20 86.7%
4 II 10 3 92 16.22 86.8%
5 III 5 5 94 16.32 87.3%
6 III 10 3 95 16.36 87.5%
7 IV 5 5 95 16.56 88.6%
8 IV 10 3 95 16.65 89.1%
9 V 5 5 93 15.84 84.7%
10 V 10 3 93 15.82 84.6%
11 VI 5 5 94 15.93 85.2%
12 VI 10 3 93 15.94 85.3%

dIsolated yield after purification. eSOR- (c 1.0 in CHCl3 at 28 ◦C).11 f Optical purity (% ee) has been
calculated based on reported data in literature.13

Table 3. Michael addition of disopropyl malonate (2c) to benzalacetophenone by using chiral cyclic
PTCs to get the Michael adduct, disopropyl (S)-2-(3-oxo-1,3-diphenylpropyl) malonate (3c).

Entry Chiral PTC Chiral PTC (mol %) Time (h) Yieldg (%) SOR[α]h (◦) Cal. Opt. Purityi (% ee)

1 I 5 11 91 18.82 89.6%
2 I 10 8 91 18.80 89.5%
3 II 5 11 92 18.86 89.8%
4 II 10 8 91 18.89 89.9%
5 III 5 11 93 19.13 91.1%
6 III 10 8 93 19.11 91.0%
7 IV 5 11 94 19.30 91.9%
8 IV 10 8 95 19.32 92.0%
9 V 5 11 89 18.01 85.7%
10 V 10 8 90 18.04 85.9%
11 VI 5 11 90 18.12 86.2%
12 VI 10 8 89 18.16 86.4%

gIsolated yield after purification. hSOR-(c 0.925 in CHCl3 at 28 ◦C).15 iOptical purity (% ee) has been
calculated based on reported data in literature.16

CHCl3).14 Optical purity (% ee) 92.0%16 (Entry 8, Table 3);
1H NMR (500 MHz, CDCl3) δ 0.98 (d, J = 6.0 Hz, 3H),
1.05 (d, J = 6.5 Hz, 3H), 1.25 (d, J = 6.0 Hz, 6H), 3.44
(q, J = 7.0 Hz, 1H), 3.53 (dd, J = 16.5, 4.0 Hz, 1H),
3.78 (d, J = 10.0 Hz, 1H), 4.17–4.19 (m, 1H), 4.79–4.82
(m, 1H), 5.06–5.11 (m, 1H), 7.15–7.92 (m, 10H); 13C NMR
(125 MHz, CDCl3) δ: 197.6, 167.9, 167.2, 140.4, 136.8,
132.9, 128.5, 128.4, 128.3 128.1, 127.0, 69.2, 68.8, 57.8,
42.9, 40.7, 21.6, 21.5, 21.3, 21.2; IR (neat), ν/cm−1 1727,
1698, 1680, 1595, 1579, 1498, 1449, 1433, 1414, 1370, 1343,
1307, 1233, 1210, 1198, 1184, 1159, 1117, 1095, 1080, 1064,
1024, 1001, 981, 960, 929, 911, 872, 850, 793, 767, 746, 699,
686, 660. Anal. calculated for C24H28O5: C, 72.71; H, 7.12.
Found; C, 72.75; H, 7.11. Chiral HPLC analysis: n-Hexane-
Isopropanol (90:10), 1 mL/min, Chiralpak AS-H Column,
major enantiomer (S) tr = 24.24 min, minor enantiomer
(R) tr = 32.03 min. ee 91% (Table 6, entry 3).

2.2d di-tert-butyl (S)-2-(3-oxo-1,3-diphenylpropyl)
malonate (3d) (Table 4): The title compound (3d) was
prepared according to the general procedure described for the
synthesis of enantioselective Michael adduct by using di-tert-
butyl malonate (2d) (77.86 g, 360 mmol, 3.0 eq).
(3d) - White solid, Yield 46.0 g (90.0%), Melting range 97–
99 ◦C (Lit. Melting point 102 ◦C).17 [α]20

D 22.52◦ (c 0.24 in
CHCl3). (Lit. [α]20

D = 23.4◦ for 98% ee (c 0.24 in CHCl3).17

Optical purity (% ee) 94.3%18 (Entry 8, Table 4); 1H NMR
(500 MHz, CDCl3) δ 1.21 (s, 9H), 1.48 (s, 9H), 3.39–3.44 (m,
1H), 3.51 (dd, J = 16.0, 3.5 Hz, 1H), 3.64 (d, J = 10.5 Hz,
1H), 4.06–4.11 (m, 1H), 7.15–7.92 (m, 10H); 13C NMR (125
MHz, CDCl3) δ 197.8, 167.7, 167.0, 140.7, 136.9, 132.9,
128.6, 128.5, 128.2, 128.1, 126.9, 82.0, 81.4, 59.3, 59.1, 43.3,
40.8, 27.9, 27.5; IR (neat), ν/cm−11732, 1720, 1681, 1596,
1580, 1539, 1495, 1477, 1449, 1402, 1394, 1367, 1337, 1300,
1272, 1224, 1204, 1189, 1152, 1136, 1098, 1070, 1062, 1029,
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Table 4. Michael addition of di-tert-butyl malonate (2d) to benzalacetophenone by using chiral cyclic
PTCs to get the Michael adduct, di-tert-butyl (S)-2-(3-oxo-1,3-diphenylpropyl) malonate (3d).

Entry Chiral PTC Chiral PTC (mol %) Time (h) Yieldj (%) SOR[α]k (◦) Cal. Opt. Purityl (% ee)

1 I 5 36 87 21.80 91.3%
2 I 10 28 85 21.84 91.4%
3 II 5 32 85 21.92 91.8%
4 II 10 25 85 21.89 91.7%
5 III 5 30 86 22.00 92.2%
6 III 10 23 85 22.08 92.4%
7 IV 5 30 89 22.48 94.2%
8 IV 10 24 90 22.52 94.3%
9 V 5 38 85 20.92 87.6%
10 V 10 31 84 20.98 87.8%
11 VI 5 38 85 21.30 89.2%
12 VI 10 30 85 21.26 89.0%

jIsolated yield after purification. kSOR- (c 0.24 in CHCl3 at 20 ◦C).17 lOptical purity (% ee) has been
calculated based on reported data in literature.18

Table 5. Michael addition of dibenzyl malonate (2d) to benzalacetophenone by using chiral cyclic
PTCs to get the Michael adduct, dibenzyl (S)-2-(3-oxo-1,3-diphenylpropyl)malonate (3e).

Entry Chiral PTC Chiral PTC (mol %) Time (h) Yieldm (%) SOR[α]n (◦) Cal. Opt. Purityo (% ee)

1 I 3 4 93 11.36 90.0%
2 I 10 3 93 11.38 90.1%
3 II 5 4 94 11.43 90.5%
4 II 10 3 93 11.41 90.4%
5 III 5 4 95 11.48 90.9%
6 III 10 3 96 11.50 91.1%
7 IV 5 4 96 11.74 93.0%
8 IV 10 3 96 11.81 93.5%
9 V 5 4 94 10.90 86.3%
10 V 10 3 93 10.92 86.5%
11 VI 5 4 93 11.11 88.0%
12 VI 10 3 94 11.10 87.9%

mIsolated yield after purification.nSOR- (c 0.97 in CHCl3 at 27.9 ◦C).11 oOptical purity (% ee) has been
calculated based on reported data in literature.19

1003, 970, 956, 920, 912, 851, 838, 801, 780, 763, 740, 701,
687, 658. Anal. calculated for C26H32O5: C, 73.56; H, 7.60.
Found; C, 73.51; H, 7.62. Chiral HPLC analysis: n-Hexane-
Isopropanol (90:10), 1 mL/min, Chiralpak AS-H Column,
major enantiomer (S) tr = 25.94 min, minor enantiomer
(R) tr = 30.30 min. ee 95% (Table 6, entry 4).

2.2e dibenzyl (S)-2-(3-oxo-1,3-diphenylpropyl)malo-
nate (3e) (Table 5): The title compound (3e) was pre-
pared according to the general procedure described for the
synthesis of enantioselective Michael adduct by using diben-
zyl malonate (2e) (102.35g, 360 mmol, 3.0 eq).
(3e)- White solid, Yield 55.0 g (93.0%), Melting range 88.1–
89.9 ◦C (Lit. M.p. 90 ◦C).11 [α]27.9

D 12.02◦ (c 0.97 in CHCl3).
(Lit. [α]27.9

D = 12.5◦ for 99% ee (c 0.97 in CHCl3).11 Optical
purity (% ee) 93.50%19 (Entry 8, Table 5); 1H NMR (500

MHz, CDCl3 + D2O) δ 3.47 (d, J = 6.5 Hz, 2H), 3.98 (d,
J = 9.5 Hz, 1H), 4.24–4.27 (m, 1H), 4.94 (s, 2H), 5.14 (d,
J = 12.5 Hz, 1H), 5.19 (d, J = 12.5 Hz, 1H), 7.83 (d,
J = 7.0 Hz, 2H), 7.53–7.56 (m, 1H), 7.40–7.43 (m, 2H),
7.19–7.33 (m, 13H), 7.09–7.11 (m, 2H); 13C NMR (125 MHz,
CDCl3) δ 197.3, 168.0, 167.5, 140.3, 136.7, 135.1, 135.0,
133.0, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.2,
67.3, 67.1, 57.5, 42.2, 40.7; IR (neat), ν/cm−1 1750, 1723,
1688, 1596, 1580, 1496, 1455, 1408, 1373, 1312, 1264,1248,
1222, 1203, 1165, 1134, 1093, 1067, 1022, 1008, 990, 954,
912, 825, 811, 747, 696. Anal. calculated for C32H28O5:
C, 78.03; H, 5.73. Found; C, 78.09; H, 5.72. Chiral HPLC
analysis: n-Hexane-Isopropanol (90:10), 1 mL/min, Chiral-
pak AS-H Column, major enantiomer (S) tr = 13.98 min,
minor enantiomer (R) tr = 17.08 min. ee 93% (Table 6,
entry 5).
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3. Results and Discussion

Quaternary ammonium salts of Proline, Mandelic acid
and tartaric acid (I–VI) are ideal because one of the
tetrahedra faces about the charged quaternary nitrogen
is blocked by the cyclic ring system itself. The second
tetrahedral face about quaternary nitrogen is blocked
by the aromatic ring, whose position is fixed for steric
reasons. Further, it is noticeable that a third tetrahedral
face of charged quaternary nitrogen is attached to an
alkyl or benzyl or another cyclic group. So, only one
side of charged quaternary nitrogen is available to form
ion pairing with the anion of the reactant. These PTCs
have -OH or -OR group at β position to the quaternary
nitrogen which can help to form hydrogen bonding or
attractive van der Waals interaction to get an advantage
for enhancing the enantioselectivity.

It is reported that for enantioselective Michael addi-
tions, chiral quaternary ammonium salts (PTCs) have
excellent results.7a So, to check the effectiveness of
these chiral PTCs (I–VI), these catalysts have been
applied for the enantioselective Michael additions of
malonate esters (2a–2e) to benzalacetophenone (1)
(Figure 2) to get enantioselective Michael adduct (3a–
3e). In this application, it has been observed that all the
PTCs are producing good enantioselectivity. Mandelic
acid derivatives (III and IV) (ee 87–95%) are produc-
ing more enantioselectivity as compared to proline (I
and II) (ee 85–90%) and tartaric acid derivatives (V
and VI) (ee 83–89%). Whereas, the proline derivatives
(I and II) (ee 85–90%) are producing better enantios-
electivity than the tartaric acid derivatives (V and VI)
(ee 83–89%). In addition to this, among the same cate-
gory of catalysts, the catalysts which have larger cyclic
rings (II, IV and VI) are producing more enantioselec-
tivity than the smaller cyclic rings (I, III and V) due to
bulkiness or steric hindrance generated on quaternary
nitrogen by the larger cyclic groups (Tables 1–5). The
obtained enantioselectivity may be due to more steric
hindrance at the quaternary nitrogen of mandelic acid
derivatives as compared to the steric hindrance at qua-
ternary nitrogen of proline and tartaric acid derivatives.
Along with this, there was a huge difference observed
in the rate of reaction. The observed sequence of the
rate of reaction for the addition of malonic esters with
benzalacetophenone was Di tert. Butyl malonate < Di
isopropyl malonate < Diethyl malonate < Dibenzyl
malonate < Dimethyl malonate (Tables 1–6). This may
be also due to steric hindrance and electron realizing
(positive) Inductive effect provided by the alkoxy group
of respective malonic esters.

Moreover, in all applications of chiral PTCs, the
Michael adducts having tertiary butyl ester (Table 4),
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Figure 3. Plausible ion pair formation of PTC
with the nucleophiles (malonic esters).

Figure 4. Plausible mechanism for the enantioselective
Michael by using PTC (IV).

benzyl ester (Table 5) and isopropyl ester (Table 3)
have slightly high enantiomeric excess than the Michael
adducts having ethyl ester (Table 1) and methyl esters
(Table 2). The enantioselectivity trend was also con-
firmed by the chiral HPLC data of different Michael
adduct synthesized by using chiral PTC (IV) (Table 6).
The trend of getting enantioselectivity was Di tert. Butyl
malonate > Di benzyl malonate > Di isopropyl mal-
onate > Di ethyl malonate > Di methyl malonate. This
may be also due to steric hindrance provided by the
respective alkoxy group of Malonic esters.

The reason for obtaining good enantioselectivity in all
the cases may be due to effective ion pairing formation
of PTC with the Michael donor/nucleophile (Figure 3
and 4) followed by the interaction of this ion paired
Michael donor with the β carbon of the substrate from
the unique direction (Re-face attack) to produce S con-
figuration of addition product (Figure 3).

The scope of the reaction by variation in enone
substrate was not studied because as reported in the liter-
ature, the nature of electronic properties of substituents
in both the aromatic systems as well as a substitution
at β carbon has very little or insignificant effect on the
enantioselectivity of Michael adduct.20,21

4. Conclusions

After the successful evaluation of these catalysts in
enantioselective epoxidation and Darzen reactions, these
catalysts have been examined for enantioselective
Michael additions of malonate esters to benzalace-
tophenone. It has been observed that all the PTCs
are producing good enantioselectivity. Among all these
three derivatives, mandelic acid derivatives are produc-
ing more enantioselectivity as compared to proline and
tartaric acid derivatives. In addition to this, among the
same category of catalysts, the catalysts which have
large cyclic ring has more enantioselectivity than the
small cyclic ring PTCs. This may be because the qua-
ternary nitrogen of mandelic acid derivatives has more
steric hindrance as compared to the quaternary nitrogen
of proline derivatives and tartaric acid derivatives. Along
with this, the ring size of cyclic substituents among the
same class of derivatives is also helpful to enhance the
enantioselectivity.

So, based on these results, we can conclude that
the designed derivatives of proline, mandelic acid and
tartaric acid are effectual as chiral phase transfer cata-
lysts for enantioselective Michael additions. Moreover,
it can be concluded that the bulkier malonic ester
has less reactivity and slightly more selectivity during
Michael addition. Further applications for enantiose-
lective synthesis by using these chiral PTCs are in
progress.

Supplementary Information (SI)
1H, 13C NMR spectra and chiral HPLC Chromatograms for
chiral Michael adducts (Figures S1–S20) are available in
Supplementary Information. Supplementary Information is
available at www.ias.ac.in/chemsci.
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