

Communication

Ir-Catalyzed Intramolecular Transannulation/C(sp2)– H Amination of 1,2,3,4-Tetrazoles by Electrocyclization

Sandip Kumar Das, Satyajit Roy, Hillol Khatua, and Buddhadeb Chattopadhyay

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b05343 • Publication Date (Web): 28 Jun 2018

Downloaded from http://pubs.acs.org on June 28, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Ir-Catalyzed Intramolecular Transannulation/C(sp²)–H Amination of 1,2,3,4-Tetrazoles by Electrocyclization

Sandip Kumar Das,[†] Satyajit Roy,[†] Hillol Khatua,[†] and Buddhadeb Chattopadhyay^{†,*}

[†]Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India

Supporting Information Placeholder

ABSTRACT: An efficient strategy for the intramolecular denitrogenative transannulation/ $C(sp^2)$ –H amination of 1,2,3,4-tetrazoles bearing C8-substituted arenes, heteroarenes and alkenes is described. The process involves the generation of the metal-nitrene intermediate from tetrazole by the combination of [Cp*IrCl₂]₂ and AgSbF₆. It has been shown that the reaction proceeds via an unprecedented electrocyclization process. The method has been successfully applied for the synthesis of a diverse array of α -carbolines and 7-azaindoles.

Transition metal-catalyzed denitrogenative transannulation¹ is one of the most efficient methods to construct nitrogencontaining heterocycles. It has been reported that while 1,2,3triazoles readily undergo denitrogenative transannulation with transition metal catalysts via either an ionic^{1,2} or a radical activation mechanism,³ 1,2,3,4-tetrazoles remain completely inactive for the transannulation.⁴ In this context, Wentrup's pioneering denitrogenative thermal and photochemical nitrenenitrene rearrangement of tetrazoles is remarkable, which provide various nitrogen heterocycles.⁵ Usually, 1,2,3,4-tetrazoles exist in equilibrium between closed and open form, the position of this equilibrium depends on (Chart 1, A) several parameters⁶ (e.g. temperature, solvents and substituents). Although, Driver group⁷ has studied well on metal-nitrene complexes derived from ortho-substituted arvl azides, however, the denitrogenative transannulation of 1,2,3,4-tetrazole via metal-nitrene is entirely underdeveloped to date. Thus, it would be highly intriguing to develop this transannulation/C-H amination⁸ chemistry via metal-nitrene formation.

Chart 1. Concept for the Transannulation/C-H Amination

On the other hand, owing to the presence in molecules with a wide range of biological activity, α -carboline ring system has been branded as one of the privileged frameworks⁹ for drug discovery (**Chart 1, C**). Numerous methods¹⁰ exist for the assembly of various α -carboline, however, every method is associated with their own restrictions (e.g. selectivity issues, poor yield, requirement of particular classes of substrate etc.). Thus, it is highly desirable to develop new methods to overcome the existing shortcomings. Herein, we report a new concept¹¹ for the intramolecular denitrogenative transannulation/C(sp²)–H amination of 1,2,3,4-tetrazoles by iridium catalysis, which undergo likely via the **TS-IV (Chart 1, B)** for the synthesis of diverse α -carbolines, 7-azaindoles and other important classes of heterocycles.

Table 1. Evaluation and Reaction Optimizations^a

N N=N 1a	2-20 mol% [M]- <u>0-20 mol% AgS</u> 130 °C, 24 h – N ₂ gas	cat. bF ₆ , solvent	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	NH ₂ 2a'
#	cat.	additive	solvent	2a/2a'
1	Cu-cat.	-	PhMe	0
2	Zn-cat.	-	DCE	0
3	Co-cat.	-	PhH	0
4	Fe-cat.	-	PhH	0
5	Mn-cat.	-	PhH	0
6	Ru-cat.	-	dioxane	0
7	Rh-cat.	-	DCE	0
8	[lr(cod)(Cl)] ₂	AgSbF ₆	PhH	0/40
9	[Cp*IrCl ₂] ₂	AgSbF ₆	PhH	100 (96)
10	[Cp*IrCl ₂] ₂	-	PhH	0
$ \begin{array}{l} \textbf{Cu-cat.} = Cu(MeCN)_4 \textbf{\cdot} PF_6, Cul, CuBr, CuBr \textbf{\cdot} Me_2S, Cu(acac)_2, Cu(OTf) \textbf{\cdot} C_6H_6; \\ \textbf{Zn-cat.} = Znl_2; \textbf{Co-cat.} = Co(TPP), \textbf{Fe-cat.} = FeBr_2, Fe(TPP)Cl; \textbf{Mn-cat.} = Mn(TPP)Cl, \textbf{Ru-cat.} = [Ru(\textit{p-cymene})Cl]_2; \textbf{Rh-cat.} = Rh_2(OAc)_4, Rh_2(oct)_4, Rh_2(O_2CC_3F_7)_4, Rh_2(esp)_4, Rh_2(s-dosp)_4 \end{array} $				

^aReactions were conducted with 0.25 mmol scale and NMR conversions were determined using 1,3,5-trimethoxybenzene as internal standard; in parenthesis, isolated yield is given.

Thus, we started our initial investigations with substrate **1a** using a variety of transition metal catalysts (**Table 1**, entries 1-7, see: SI, for detail optimization) based on the proposed hypothesis that in presence of metal catalysts tetrazole would first generate the metal-nitrene intermediate and subsequently undergo intramolecular transannulation/C(sp²)–H amination.¹² To our surprise, none of the metal catalysts afforded desired product and the tetrazole remain completely unreacted under the employed reaction conditions. For this extreme inertness¹³ of the tetrazole, we reasoned that metal catalysts such as Cu, Zn, Co, Fe, Mn, Ru and Rh might be strongly coordinating

HL-60 cell line ACS Paragon Plus Environment with both the nitrogen atoms of the tetrazole (i.e. pyridine and azide nitrogen) and inhibiting the catalytic process for the generation of the metal-nitrene intermediate.¹⁴ Next, considering the unique reactivity of Chang's amidation,¹⁵ we turned our attention towards iridium-based catalytic systems. Thus, transannulation was carried out by the combination of [Ir(cod)Cl]₂ and AgSbF₆, which gave 40% reduced product (2a', entry 8). Remarkably, when the same reaction was performed in presence of [Cp*IrCl₂]₂ and AgSbF₆ in benzene solution, we observed quantitative conversion of the starting tetrazole into the desired transannulation product (2a) in 96% isolated yield (entry 9). In order to verify the role of the AgSbF₆ same reaction was carried out without AgSbF₆, which resulted in no reaction (entry 10). Moreover, conducting the reaction with only AgSbF₆, no product formation observed. With these encouraging results, transannulations/ $C(sp^2)$ -H aminations were performed for a series of 1,2,3,4-tetrazoles (Table 2). Irrespective of the substituents present in the C8 arene, for example, alkyl, alkoxy, phenyl, vinyl, ester, trifluoromethyl, and ketone were well tolerated under the reaction conditions (Table 2, A). Remarkably, in case of the metasubstituted C8-arene, the reaction produced exclusively one regioisomer out of the possible two regioisomers (entries 2h-21, 2v). Moreover, various disubstituted arenes at C8 position (2q-2t) including a bulky naphthyl group (2u) led to the α carbolines in good yield. For further elaboration, we examined various substitutions at the pyridine moiety of the 1,2,3,4tetrazoles (Table 2, B). Thus, 1,2,3,4-tetrazoles with different substituents at pyridine such as, 5-methyl (2w), 6-phenyl-7methyl (2x), 6-methyl (2y) and 6-phenyl (2z) were found to be compatible. Moreover, 5-hexenyl (2ab) and 5-pentenyl (2ac) also tolerated in the reaction conditions delivering α carbolines in excellent yield.¹⁶

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

58

59

60

30 Next, we explored the substrate scope with respect to the 31 different types of heteroaromatic systems for C8 substituted 32 1,2,3,4-tetrazoles (Table 2, C). A range of heterocyclic 33 systems smoothly underwent transannulation/amination to 34 afford the desired multiple-nitrogen-containing molecules in 35 excellent yields. For example, variously substituted pyridines (2ad-2ag), quinoline (2ah) and N-methylindole (2ai) gave the 36 corresponding products in excellent yields. In this context, it 37 deserves mentioning that in case of C8-substituted heterocycle 38 (2ae), out of two possible regioisomers, we observed only the 39 aforementioned isomer as the sole products. For further appli-40 cation of this newly developed strategy, we have demonstrated 41 that the alkaloid Neocryptolepin (4) and an important mole-42 cule, which exhibits cytotoxicity against HL-60 cell line (5) 43 can be synthesized efficiently with excellent yields from the 44 corresponding tetrazoles (Chart 2).

Towards this end, we were interested in the further develop-45 ment of this method with respect to the C8-substituted alkenes. 46 Pleasingly, the developed method was found to be equally 47 efficient with numerous alkenes and the results are summa-48 rized in Table 3. Performing the reactions with electronically 49 neutral alkene (6a), electron-deficient alkenes (6b-c) and 50 electron-rich alkenes (6d-e) provided the corresponding 7-51 azaindoles (7a-e) with excellent yields. Moreover, transannu-52 lations of cyclic alkenes-bearing 1,2,3,4-tetrazoles were also 53 found to be compatible delivering consistently in good yields 54 (7f-g). Furthermore, substitution at the pyridine ring of the 55 tetrazole-bearing styrene type of alkenes smoothly underwent denitrogenative transannulation/C(sp²)-H amination to give 56 the substituted 7-azaindole derivatives. 57

Table 2. Scope of Reaction with Diverse Substrates

^aReactions were conducted with 0.5 mmol scale; isolated yields were reported after purification. ^bReaction completed within 12 h.

Chart 2. Short Synthesis of Important Molecules

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59

60

^aReactions were conducted with 0.5 mmol scale; isolated yields were reported after purification.

Next, we studied the mechanism and the product formation might be explained by the following four mechanisms, which are depicted in **Chart 3**, such as: i) C–H activation¹⁵ via **TS-I**, ii) C–H insertion via **TS-II**, iii) electrophilic aromatic substitution (EAS) via **TS-III** and iv) electrocyclization via **TS-IV**.¹⁷

Chart 3. Possible Four Mechanistic Pathways

Thus, to shed light on the mechanistic aspects of the proposed pathways, we executed several control experiments (Chart 4). According to the literature report, since the $[Cp*IrCl_2]_2$ is known¹⁵ to catalyze the reaction via direct C-H activation mechanism, we thus decided to verify whether our transannulation/C(sp²)–H amination would follow the same C-H activation or π -electron participation. For that reason, we conducted a control experiment with substrate 8, where conjugation was disturbed by one methylene group. We observed that substrate 8 does not give even a trace amount of the desired product, which indicates that the present transannulation/amination strategy might not follow neither C-H activation mechanism (TS-I) nor C-H insertion mechanism (TS-II). For further studies, we performed another control experiment with substrate 10 (Z-isomer),¹⁸ where C-H bond is away from the reaction center. We anticipated that due to the geometric constrain, transannulation should not occur with the Z-isomer (10). But, to our surprise, substrate 10 smoothly underwent the transannulation affording 69% product conversion, which also oppose the C-H activation and C-H insertion mechanism (TS-I & TS-II). Finally, determining the KIE value (intermolecular and intramolecular), we observed a secondary kinetic isotope effect (~1.0), which is again ruling out the possibility of TS-I and TS-II.

Next, we hypothesized that if the reaction goes via electrophilic aromatic substitution (EAS, **TS-III**), then substrate **11** should furnish the corresponding transannulation product **12**, because continuous conjugation is not essential for the EAS process. Following this hypothesis, reaction was performed with substrate **11** and observed no reaction, which clearly indicates that conjugation is essential for the reaction.

Chart 4. Mechanistic Studies/Control Experiments

Chart 5. Proposed Electrocyclization Mechanism

To gain more insight, we conducted another competitive experiment using a 1/1 mixture of 3-OMe and 4-OMesubstituted substrates (1i/1c), hypothesizing that the EAS (TS-III) and electrocyclization process (TS-IV) would be more favored with 1i and 1c respectively, producing more product conversion due to the electronic effects (Chart 4, D).¹⁹ However, we virtually observed that whereas, substrate 1i gave only 6% conversion, substrate 1c afforded 38% conversion, which is evidencing the proof-of-concept for the electrocyclization process (TS-IV).

Thus, based on the experimental evidences, we proposed the following electrocyclization mechanism (**Chart 5**). Treating with AgSbF₆, dimeric [Cp*IrCl₂]₂ generates the active catalytic species (**AC-1**),^{15a,20} which coordinates with the N1 atom of the tetrazole (**1a**) to form the species (**A**). Then, the species (**A**), might produce the sterically favored (**B**)²¹ by the loss of dinitrogen. Next, the metal-nitrene (**B**) upon rearrangement of its π -electron generates the **TS-IV**, which undergoes 4-electron-5-atom electrocyclization to form the C–N bond in species (**C**). Subsequently, by a routine 1,5-H shift from the

resonating structure (**D**) of (**C**) led to the product formation with the regeneration of the active catalytic species (**AC-1**).

In conclusion, we have developed an efficient intramolecular denitrogenative transannulation/ $C(sp^2)$ —H amination method for the synthesis of a wide number of carbolines and 7-azaindoles by Ir(III)-catalyzed electrocyclization process. The essential requirement of this approach is the employment of $[Cp*IrCl_2]_2$ and AgSbF₆ to generate the active catalytic species that help to form the metal-nitrene intermediate for the transannulation/amination. This is the first report for the denitrogenative transannulation/amination via metal-nitrene formation, which undergoes via an unprecedented electrocyclization process. The developed method shows very broad substrate scope and functional group tolerance. The synthetic benefits of the developed approach are showcased with a short synthesis of important bioactive molecules. More efforts are underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information Available: Full characterization, copies of all spectral data, experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

buddhadeb.c@cbmr.res.in, buddhachem12@gmail.com

Author Contributions

SKD and SR contributed equally.

Notes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by CSIR-EMR-II grant (Sanction No. 02(0259)/16/EMR-II), Ramanujan grant and DST-Young Scientist Grant. SKD thanks CSIR for JRF, SR and HK thanks CSIR for SRF and JRF. We thank the NMR and mass spectrometry facility at CBMR, and the Director, for the research facilities.

REFERENCES

(1) For leading reviews on transannulations of 1,2,3-triazoles, see: (a) Chattopadhyay, B.; Gevorgyan, V. *Angew. Chem. Int. Ed.* **2012**, *51*, 862. (b) Gulevich, A. V.; Gevorgyan, V. *Angew. Chem. Int. Ed.* **2013**, *52*, 1371. (c) Davies, H. M. L.; Alford, J. S. *Chem. Soc. Rev.* **2014**, *43*, 5151.

(2) For the first report of denitrogenative transannulation via ionic mechanism, see: (a) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. *Angew. Chem. Int. Ed.* **2007**, *46*, 4757. (b) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. **2008**, *130*, 14972.

(3) For the first report of denitrogenative transannulation by radical activation mechanism, see: Roy, S.; Das, S. K.; Chattopadhyay, B. *Angew. Chem. Int. Ed.* **2018**, *57*, 2238.

(4) During preparation of our manuscript, one report appeared for the denitrogenative transannulation with monocyclic 1,2,3,4tetrazoles via metal-carbene intermediate, Nakamuro, T.; Hagiwara, K.; Miura, T.; Murakami, M. *Angew. Chem. Int. Ed.* **2018**, *57*, 5497.

(5) For selected pioneering examples, see: (a) Harder, R.; Wentrup, C. J. Am. Chem. Soc. 1976, 98, 1259. (b) Wentrup, C.; Winter, H.-W. J. Am. Chem. Soc. 1980, 102, 6159. (c) Evans, R. A.; Wong, M. W.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 4009. (d) Wentrup, C.; Kuzaj, M.; Lüerssen, H. Angew. Chem. Int. Ed. Engl. 1986, 25, 480. (e) Evans, R. A.; Wentrup, C. J. Chem. Soc. Chem. Commun. 1992, 1062. (f) Addicott, C.; Reisinger, A.; Wentrup, C. J. Org. Chem. 2003, 68, 1470. (g) Reisinger, A.; Koch, R.; Bernhardt, P. V.; Wentrup, C. Org. Biomol. Chem. 2004, 2, 1227. (h) Reisinger, A.; Koch, R.; Wentrup, C. J. Chem. Soc., Perkin Trans. I 1998, 2247. (i) Reisinger, A.; Wentrup, C. Chem. Commun. 1976, 813. (j) Wentrup, C. Tetrahedron 1970, 27, 367. (k) Kvaskoff, D.; Vosswinkel, M.;

Wentrup, C. J. Am. Chem. Soc. **2011**, *133*, 5413 (l) Messmer, A.; Hajos, G.; Juhasz-Riedl, Z.; Sohar, P. J. Org. Chem. **1988**, *53*, 973. (m) For click reaction, see: Chattopadhyay, B.; Rivera Vera, C. I.; Chuprakov, S.; Gevorgyan, V. Org. Lett. **2010**, *12*, 2166.

(6) For representative examples, see: (a) Boyer, J. H.; Miller, E. J. J. Am. Chem. Soc. **1959**, 81, 4671. (b) Lowe-Ma, Ch. K.; Nissan, R. A.; Wilson, W. S. J. Org. Chem. **1990**, 55, 3755. (c) Evans, R. A.; Wentrup, C. J. Chem. Soc., Chem. Commun. **1992**, 1062. (d) Sasaki, T.; Kanematsu, K.; Murata, M. J. Org. Chem. **1971**, 36, 446. (e) Pochinok, V. V.; Avramenko, L. F.; Grigorenko, P. S.; Skopenko, V. N. Russ. Chem. Rev. **1975**, 44, 481.

(7) Sun, K.; Sachwani, R.; Richert, K. J.; Driver, T. G. Org. Lett. 2009, 11, 3598.

(8) For a leading review of C-H aminations by metal-nitrene formation, see: Davies, H. M. L.; Manning, J. R. *Nature* **2008**, *451*, 417.

(9) For selected examples, see: (a) Helbecque, N.; Moquin, C.; Bernier, J. L.; Morel, E.; Guyot, M.; Henichart, J. P. *Cancer Biochem. Biophys.* **1987**, *9*, 271. (b) Yeung, B. K. S.; Nakao, Y.; Kinnel, R. B.; Carney, J. R.; Yoshida, W. Y.; Scheuer, P. J. *J. Org. Chem.* **1996**, *61*, 7168. (c) Aza, H.; King, R. S.; Squires, R. B.; Guengerich, F. P.; Miller, D. W.; Freeman, J. P.; Lang, N. P.; Kadlubar, F. F. *Drug Metab. Dispos.* **1996**, *24*, 395.

(10) For selected examples, see: (a) He, L.; Allwein, S. P.; Dugan,
B.; Knouse, K. W.; Ott, G. R.; Zificsak, C. A. Org. Synth. 2016, 93,
271. (b) Wadsworth, A. D.; Naysmith, B. J.; Brimble, M. A. Eur. J. Med. Chem. 2015, 97, 816.

(11) This is the first report for the intramolecular denitrogenative transannulation/C(sp^2)–H amination of fused 1,2,3,4-tetrazoles via metal-nitrene. Attempted transannulation of 1,2,3,4-tetrazoles with alkynes and nitriles failed under the developed reaction conditions.

(12) Extensive screenings were carried out by the different combinations of solvents, catalysts and additives, for details, see: SI.

(13) Based on the NMR studies at room temperature, we observed that 1,2,3,4-tetrazole always exits in closed form, there is no effect of substituent at C8 position. However, halogen substituent at C5 position gives appreciable amount of open form. For details, see ref. 6.

(14) For lower reactivity of 2-pyridyl diazo-compounds in Rhcatalyzed reactions, see: Davies, H. M. L.; Townsend, R. J. J. Org. Chem. 2001, 66, 6595.

(15) For selected examples, see: (a) Ryu, J.; Kwak, J.; Shin, K.;
Lee, D.; Chang, S. J. Am. Chem. Soc. 2013, 135, 12861. (b) Park, Y.;
Heo, J.; Baik, M.-H.; Chang, S. J. Am. Chem. Soc. 2016, 138, 14020.
(c) Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M.-H.;
Chang, S. Science 2018, 359, 1016. (d) Shin, K.; Park, Y.; Baik, M.
H.; Chang, S. Nat. Chem. 2018, 10, 218. (e) Park, Y.; Kim, Y.;
Chang, S. Chem. Rev. 2017, 117, 9247.

(16) Notably, for C5-substituted pyridine, reaction completed within short period of time, which might be due to more open azide form of the tetrazole.

(17) Selected examples of electrocyclization of other types of azides: (a) Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem. Int. Ed. 2008, 47, 5056. (b) Stokes, B. J.; Jovanovic, B.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G. J. Org. Chem. 2009, 74, 3225. (c) Stokes, B. J.; Richert, K. J.; Driver, T. G. J. Org. Chem. 2009, 74, 6442. (d) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831. (e) Pumphrey, A. L.; Dong, H.; Driver, T. G. Angew. Chem. Int. Ed. 2012, 51, 5920. (f) Nguyen, Q.; Nguyen, T.; Driver, T. G. J. Am. Chem. Soc. 2013, 135, 620. (g) Harrison, J. G.; Gutierrez, O.; Jana, N.; Driver, T. G.; Tantillo, D. J. Am. Chem. Soc. 2016, 138, 487. (h) Mazumdar, W.; Jana, N.; Thurman, B. T.; Wink, D. J.; Driver, T. G. J. Am. Chem. Soc. 2017, 139, 5031. (i) Alford, J. S.; Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 11712.

(18) To verify the isomerization during the reaction, Z-isomer (10) was heated at $130 \text{ }^{\circ}\text{C}$ for several hours and found no interconversion.

(19) For detailed mechanistic studies via electrocyclization pathway of nonpyridyl azide substrates, see: ref. 17c.

(20) Wang, L.; Yang, Z.; Yang, M.; Zhang, R.; Kuaia, C.; Cui, X. Org. Biomol. Chem. 2017, 15, 8302.

(21) (a) Figg, T. M.; Park, S.; Park, J.; Chang, S.; Musaev, D. G. *Organometallics* **2014**, *33*, 4076. (b) Liu, J.-B.; Sheng, X.-H.; Sun, C.-Z.; Huang, F.; Chen, D.-Z. *ACS Catal.* **2016**, *6*, 2452.

Intramolecular Transannulation/C(sp²)-H Amination of 1,2,3,4-Tetrazoles

