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ABSTRACT: The phosphoinositide 3-kinase (PI3K) inhibitors potently inhibit the signaling pathway of PI3K/AKT/mTOR, 

which provides a promising new approach for the molecularly targeted cancer therapy. In this work, a novel series of 7-azaindole 

scaffold derivatives was discovered by the fragment-based growing strategy. The structure-activity relationship (SAR) profiles 

identified that the 7-azaindole scaffold derivatives exhibit potent activity against PI3K at molecular and cellular levels as well as 

cell proliferation in a panel of human tumor cells. 

The phosphatidylinositide 3-kinase (PI3K)–AKT–mammalian 

target of rapamycin (mTOR) pathway is an important intracel-

lular signaling pathway in regulating multiple cellular pro-

cesses including metabolism, survival and proliferation.
1
 This 

pathway is frequently deregulated by various genetic and epi-

genetic mechanisms in a wide range of tumors.
1-3

 Guided by 

the strategy of “drugging the cancer kinome”, design and syn-

thesis of small molecules that are able to target the key com-

ponents within this pathway may result in tumor suppression.
4
 

The PI3K is a family of lipid and protein kinases, which can 

be categorized into three classes (I, II, and III). Class I PI3Ks 

contain four catalytic isoforms (p110 alpha, p110 beta, p110 

gamma and p110 delta),
5
 converting phosphatidylinositol-4,5-

bisphosphate (PtdIns (4, 5) P2) to PtdIns (3,4,5) P3. Deregula-

tion of PI3K will lead to elevated PtdIns (3,4,5) P3 levels and 

activation of downstream AKT, which are often found in can-

cer cells favoring cell survival and spreading.
6
 In this context, 

the PI3K activity contributes significantly to cellular transfor-

mation and the development of cancer. Small molecules tar-

geting one particular PI3K isoform or multiple isoforms have 

been emerged as promising anti-cancer drug candidates for 

targeted therapy.
7-11

 

A number of inhibitors have been reported so far (Figure 

1),
12-20

 which can be classified into two categories,
21

 pan-PI3K 

inhibitors targeting all p110 isoforms,
22-23

 and isoform-specific 

PI3K inhibitors targeting a specific p110 isoform.
22, 24

 Some of 

them have entered clinical trials as targeted anticancer drugs, 

in which GSK2126458 (GlaxoSmithKline) has attracted con-

siderable interest.
12

 X-ray co-crystal structure with PI3Kγ and 

GSK2126458 revealed that it fits well at the active site of 

PI3K and forms key hydrogen bonds using its quinoline, sul-

fonamide, and methoxylpyridine moieties with Val882, 

Lys833, and an active water molecule respectively (Figure 2). 

Although it possesses a high ligand efficiency and exhibits 

remarkable potency in vitro and in vivo, GSK2126458 itself 

exhibits a low water-solubility and unfavorable safety profile. 

Owing to these issues, N-(2,5-disubstituted-pyridin-3-

yl)phenylsulfonamides (Amgen, Figure 1) have been devel-

oped.
13

 The quinoline core was  
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Figure 1. Chemical structures of representative PI3K inhibitors in clinical trials.  

 

Figure 2. A view of our design strategy derives from the X-ray crystallographic results of GSK2126458 with p110γ protein (PDB Code: 

3L08). 

retained to form hydrogen bond with Val822 hinge region and 

to project other moieties appropriately thereby accessing addi-

tional interactions. To optimize the ligand efficiency as well as 

other drug-like properties, structure−activity relationship 

(SAR) investigation was carried out with the interest on the 

quinoline region, leading to the generation of a structurally 

novel thienopyrimidine series as potent PI3K inhibitors.
25

 

Taking the above achievements in consideration, in this pa-

per, we describe our research progress on optimizing the po-

tency by replacement of quinoline fragment with a series of 

heterocycles. Started from 2-aminopyridine, structurally novel 

7-azaindole series compounds were revealed as potent PI3K 

inhibitors, in which B13, B14, C1 and C2 inhibit PI3K kinase 

activity at subnanomolar concentration and display potent 

anti-proliferative activity in a panel of human tumor cells.  

Table 1. SAR studies of the substitution of pyridine at 2-

position. 

 
Compound R1 PI3Kγ IC50 (nΜ) 

A1 H 1593 

A2  2966 

A3 
 

2062 

A4  381 

A5  375 

Our SAR investigations were started from N-(5-(6-

aminopyridin-3-yl)pyridin-3-yl)benzenesulfonamide (A1), 

which was synthesized in our lab (Section 3 synthesis, SI). 

Introduction of small molecular substituents in pyridine ring at 

2-position was firstly evaluated (Table 1). When pyridine H 

was replaced by amino and methoxyl group, it gave compound 

A2 and A3, respectively, which displayed a slight drop of po-

tency against PI3Kγ (2 and 1.3 fold decrease relative to A1 

respectively). In contrast, introduction of methyl group (A4) 

significantly enhanced the inhibitory activity (5-fold increase). 

Meanwhile, it is also noted that introduction of chloro group 

(A5) led a similar potency improvement as A4. These results 

suggested that a small and greasy moiety would be more fa-

vorable in pyridine group at this site. Considering that the 

chloro group was more preferred at this site,
26

 we carried out 

our next stage of structural optimization on scaffold A5.  

Previous studies suggested that the inhibitory activity would 

be associated with hydrogen bonding interaction in the hinge 

region.
12,13,25

 2-aminopyridine motif is possible to form two 

kinds of hydrogen bonds. One is pyridine N as the proton ac-

ceptor that interacts with NH group, the other one is NH2 as 

proton donor that interacts with C=O of Val 882 (Figure 2). 

Therefore, we focused the SAR studies on the optimization of 

2-aminopyridine at this stage. As shown in Table 2, compound 

B1 displayed a significant drop of potency (~ 4-fold decrease 

vs A5) after the introduction of ethyl onto amino group. How-

ever, in case of carbonyl derivatives, B2 and B3 remained the 

PI3Kγ inhibitive activity similar as that of A5. Compound B4 

exhibited a prominent improvement (~ 6-fold increase vs A5). 

In contrast, in case of sulphonyl group, B5 displayed a signifi-

cant drop in potency (~ 13-fold decrease). If hydrogen bond-

ing interaction plays a key role to the potency in this hinge 

region, the introduction of electron-withdrawing group should 

contribute to the enhancement of N-H···O in principle. While, 

the negative result of B5 indicates that there are other factors 

affecting the hydrogen bond. Besides the electronegativity of 

proton donor, the spatial direction could also greatly affect the 

interaction, which is subject to the structural flexibility. In this 

consideration, we carried out conformational calculation. The 

results revealed that carbonyl group forms intramolecular hy-

drogen bond with pyridine H at 3-position, generating a six-

membered ring coplanar with the pyridine, thus restraining the 

direction of proton donor NH (Fig. S1, SI). In contrast, B5 

displayed the structural flexibility with at least four potential 

conformers, which could influence the spatial direction. All 

the above results suggested that a rigid ligand efficiency with 

proper hydrogen bond donor would be more beneficial for the 

hydrogen bonding interaction in this hinge region.  

7-azaindole, which is a kind of widely studied pharmaco-

phore,
27-29

 seems to meet the aforementioned requirements. 

Therefore, it was chosen for the following SAR studies. Com-

pound B6 exhibited an increase of potent activity against 

PI3Kγ (~4 fold increase vs. A5). In comparison, compound B7 

displayed a further moderate increase in potency after pyrrollic 

CH at 2-position replaced by nitrogen based on the bioisostere. 
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Then, the effect of substitute group (methyl, ethyl, and aro-

matic group) at the 2-position of 7-azaindole was assessed  

Table 2. SAR studies of pyridine at 5-position.  

 
Compound R2 PI3Kγ IC50 (nΜ) 

A5 
 

375 

B1 

 

1491 

B2 

 

420 

B3 

 

445 

B4 

 

68 

B5 

 

4752 

B6 

 

97 

B7 
 

37 

B8 
 

63 

B9 
 

155 

B10 
 

268 

B11 

 

15 

B12 

 

17 

B13 

 

0.5 

B14 

 

7 

respectively, which shows a gradual decrease in potency from 

B8 to B10, indicating that this position is not well tolerated 

with bulk group. Interestingly, when the aromatic  

Table 3. SAR studies of compound B13 and C1, C2. 

 

Compound R3 PI3Kγ IC50 (nΜ) 

B13 
 

0.5 

C1 
 

0.7 

C2 
 

0.7 

group was moved from 2- to 3-position, the resulting compound 

B11 displayed a prominent increase in potency (~ 18 fold increase 

vs B10, ~ 6 fold increase vs B6). Similarly, compound B12 is also 

more potent than B7. These results suggested that the aromatic 

substitution of 7-azaindole core at 3-position was well tolerated. 

Of particular note, further replacement of phenyl group of 7-

azaindole at the 3-position with pyridine group led to the isola-

tion of compound B13 and B14. These two compounds dis-

played a pronounced increase in potency especially compound 

B13, which is an exceptionally potent PI3Kγ inhibitor with an 

IC50 of 0.5 nM. The potency enhances almost ~30 compared 

with B11. We ascribed the enhancement to the replacement of 

phenyl group with pyridine group at the 3-position of 7-

azaindole, which contributed to the optimization of pharmaco-

logical parameters.
30

 Furthermore, optimization of the ben-

zenesulfonamide segment was then explored by introduction 

of fluorine at 2- and 4-position, respectively (Table 3). The 

resulting compound C1 and C2 displayed similar inhibitory 

activity as that of B13, indicating that scanning the position of 

fluorine on benzenesulfonamide failed to effectively modulate 

the inhibitory potency significantly. 

Table 4 The inhibitory activity of compounds on isoforms 

of class I PI3K  

Compound 
IC50 (nΜ) 

PI3Kα PI3Kβ PI3Kγ PI3Kδ 

B6 35 35 97 1 

B7 51 29 37 1 

B11 2 39 15 1 

B12 2 6 17 1 

B13 1 2 0.5 0.6 

B14 1 4 7 0.7 

C1 1 3 0.7 0.5 

C2 1 2 0.7 0.4 

Amgen
13 

4.6±3 13±10 4.3±2 8.1±3 
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Table 5. Anti-proliferative effect of compounds against a panel of human cancer cell 
a
. 

Compound 
GI50 (µM)

b
 

NCI-H460 MCF7 T47D U87MG KARPAS-422 Pfeiffer 

NVP-BEZ235 0.61±0.15 0.06±0.03 0.30±0.01 0.28±0.02 ND ND 

CAL-101 ND ND ND ND 0.68±0.29 0.74±0.26 

B6 ＞10 ＞10 ＞10 ＞10 6.71±1.32 5.50±1.58 

B7 7.61±0.30 7.40±0.62 4.40±0.41 8.94±1.86 1.09±0.19 1.16±0.43 

B11 ＞10 ＞10 7.72±1.56 ＞10 1.83±0.59 1.52±0.44 

B12 8.65±0.79 7.37±0.51 4.19±0.29 ＞10 1.23±0.31 1.30±0.58 

B13 3.90±0.25 2.14±0.75 1.50±0.41 8.95±1.28 0.12±0.03 0.10±0.03 

B14 2.50±0.29 0.69±0.16 0.52±0.09 3.12±0.48 0.17±0.05 0.15±0.06 

C1 ＞10 2.50±0.06 1.79±0.18 7.13±1.55 0.35±0.10 0.29±0.15 

C2 6.19±0.49 2.91±0.05 1.30±0.04 ＞10 0.37±0.09 0.41±0.21 

a: Cell proliferation was detected by SRB or CCK-8 Assay as described in supporting information. 
b: GI50 values are average ± SD of at least three independent experiments in triplicate. 

ND: Not detected. 

 

Figure 3. Predicted binding mode for C2 (shown in stick rep-

resentation with carbon atoms colored gray) with PI3Kγ (PDB 

ID: 3L08). Hydrogen bonds are shown in green dashed lines to 

the hinge region (Val882), Lys833, and the conserved water 

molecule bridge. Images generated using PyMol. 

With these achieved subnanomolar IC50, PI3Kγ potency 

level based on the novel 7-azaindole scaffold was optimized 

similarly to those of quinolone series, which exhibits more 

potency than some PI3K inhibitors in clinical trials, such as 

XL147, GDC-0980, BEZ235, BKM120 and GDC-0941, as 

well as Amgen (Table S1, SI). To understand the mechanism 

at molecular level, the binding mode between the 7-azaindole 

scaffold and PI3Kγ was then proposed by molecular simula-

tion (Section 4 docking, SI). C2 was explored as an example. 

As shown in Figure 3, the pyridyl N forms a hydrogen bond 

with the lattice water molecule, similar to the bonding model 

observed in the co-crystal structure of GSK2126458 with 

p110γ.
12

 There is only one sulfonamide oxygen interacts with 

Lys833, which is different from the chelate binding mode 

formed by the sulfonamide nitrogen and oxygen with Lys833 

in GSK2126458. Importantly, the 7-azaindole forms two hy-

drogen bonds with Val882, which is greatly different from that 

of GSK2126458, where it has only one quinolone nitrogen 

interacting with this hinge region.  

Through the SAR investigation, compounds B6-B7, B11-

B14 and C1-C2 were identified to bear decent potency against 

PI3Kγ and were selected for further profiling. The inhibitory 

activities to the four isoforms (α, β, γ, and δ) of class I PI3Ks 

were evaluated (Table 4, Figure S2-5, SI). According to the 

potency and selectivity, the tested compounds can be classi-

fied into three categories: i) isoform-specific PI3K inhibitors, 

including B6 and B7, they display more potent activity against 

PI3Kδ than the rest of three isoforms; ii) pan-PI3K inhibitors, 

including B13, B14, C1, and C2, which similarly inhibit the 

four isoforms without significant selectivity; and iii) transi-

tional ones including B11 and B12, which exhibit undistin-

guished potency. We believed that the overall profiles ob-

tained from the enzyme assays would contribute greatly for 

the further design and synthesis of more potent inhibitors. 

Consistent with the potency against the PI3K, compounds 

B13-B14 and C1-C2 displayed activity against cell prolifera-

tion in a panel of human tumor cells originated from different 

tissues (Table 5). In addition, it is notable that compound B14 

potently inhibited the proliferation of both PI3Kδ-activated 

lymphoma cells (GI50 = 0.17 ± 0.05 µM, 0.15±0.06 µM, for 

KARPASS-422, Pfeiffer, respectively) and PI3Kα-activated 

solid tumor cells (GI50 = 0.69±0.16 µM, 0.52±0.09 µM, for 

MCF7, T47D, respectively), which might be due to its signifi-

cant activity against both PI3Kδ and PI3Kα (Table 4). 

In summary, based on the lead compound N-(2-chloro-5-

(1H-pyrrolo(2,3)pyridin-5-yl)pyridin-3-

yl)benzenesulfonamide (B6), a structurally novel series of 

PI3K inhibitors with 7-azaindole scaffold was discovered by 

fragment-based searching strategy. Different from previously 

reported series of quinolone scaffold, this 7-azaindole scaffold 

forms two hydrogen bonds with the Val882. Furthermore, our 

SAR investigations revealed that both pan-PI3K and isoform-

specific PI3K inhibitors would be possibly developed based on 

this novel scaffold, demonstrating its promising prospect as a 

lead compound for further optimization. In addition, the se-

lected compounds demonstrated subnanomolar activities 

against the kinase activity of PI3K and potent anti-

proliferative activities against a panel of human cancer cell 

lines, supporting our next phase of in-vivo evaluation. 
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