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Abstract: Electron-donating dihydro-
benzindolocarbazoles (BICs) 1la-c,
which adopt planar disk-shaped geome-
tries, were prepared by gold(I)-cata-
lyzed cyclization as a key step. Due to
the presence of a 1,4-phenylenediamine

the case of the N,N'-dimethyl deriva-
tive, cation radical 1le* is stable
enough to be isolated as a salt and X-
ray analysis indicated paraquinoid-type
bond alternation in the WB core unit,
whereas the bond lengths in the pe-
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ripheral benzene rings are identical to
those in the neutral donor. Upon elec-
trochemical interconversion, the redox
pairs of 1a-¢ and 1a-¢** exhibited an
electrochromic response in the UV/Vis/
NIR region, which was accompanied

(PD) moiety in the framework, they
undergo reversible one-electron oxida-
tion to the corresponding Wurster’s
Blue (WB)-type species that exhibits
NIR absorptions up to A=1200 nm. In

heterocycles -

Introduction

Waurster’s Blue and its derivatives (WBs) are robust cation
radicals.!!! They can be easily generated upon one-electron
oxidation of 1,4-phenylenediamines (PDs) and isolated as
stable salts (Scheme 1). Based on their reversible redox in-
terconversion, PD/WB pairs can serve as promising electro-
chromic materials,” by which electrochemical input can be
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Scheme 1. Redox scheme for N,N,N',N'-tetramethyl-1,4-phenylenedia-
mine (TMPD) and Wurster’s Blue (WB).
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by a drastic change in the fluorescence
spectrum because only neutral donors

gold . .
la—c are highly emissive (@g: 0.7-0.8).

transduced into UV/Vis spectral output.”! During the course
of our study® of advanced molecular response systems,>®
we became interested in dual electrochromic systems, in
which an electrochemical input causes two kinds of spectral
changes, for example, UV/Vis and fluorescence (FL).** In
general, cation radicals, including WB, show redshifted UV/
Vis absorption and their excited states undergo nonradiative
decay more easily than the corresponding neutral electron
donors. Thus, highly emissive PDs could be promising candi-
dates for realizing the on/off switching of FL. accompanied
by a color change. Although PDs do not exhibit high emis-
sion efficiency,””! proper structural modification, such as ben-
zannulation, should increase the FL quantum yield (@5) due
to the presence of a carbazole skeleton.”

These are the central points for our design of 5,10-
dihydrobenzo[a]indolo[2,3-c]carbazole (BIC)!'! as a mnovel
polycyclic PD derivative with a disk-shaped geometry, in
which three benzene nuclei are attached to the PD core, as
shown in Scheme 2. The method for annulation was de-
signed so that the newly attached Clar’s sextets would
remain intact even when a WB-type unit was generated in
the center of the framework.
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Scheme 2. Molecular design of benzindolocarbazole (BIC).
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In this way, the loss of resonance energy upon oxidation
could be minimized, whereas the charge and spin of BIC**
are allowed to delocalize over the peripheral benzene rings.
Herein, we report the preparation, X-ray structure, and
spectral and redox properties of the parent BIC (1a)™ and
its N-methyl (1b) and N,N'-dimethyl derivatives (1¢). We
achieved dual electrochromic behavior including FL, and
changes in absorption occurred not only in the UV/Vis
region but also in the NIR region up to 4=1200 nm. Fur-
thermore, X-ray analysis of the isolated 1e¢** salt revealed
paraquinoid-type bond alternation characteristic of WB.

Results and Discussion

Synthetic Strategy for the Parent BIC (1a) and its V-
Methylated Derivatives (1b,c)

BIC 1a was first prepared by a combination of two reliable
strategies for carbazole synthesis (Scheme 3): 1) reaction in-
tegration!™ of the gold-catalyzed hydroamination of diyny-
lanilines and subsequent hydroarylation developed by our
group,'® and 2) intramolecular nitrene insertion by the ther-
mal decomposition of 2-azido-1,1"-biphenyls developed by
Sapi et al.l'!

Thus, the introduction of an azidobenzene moiety to
known diynylaniline 2I'®! was carried out by a Sonogashira
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Scheme 3. Synthesis of BIC 1a—c through a gold-catalyzed cascade cycli-
zation.
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coupling with 2-iodophenylazide to give cyclization precur-
sor 3, which was subjected to the gold-catalyzed integrated
reaction. As expected, treatment of 3 with JohnPhosAuNTf,
(5§ mol %) in 1,2-dichloroethane (DCE) gave benzocarbazole
5 bearing an azido group in 71 % yield. Finally, exposure of
5 to the nitrene insertion conditions at 160°C in 1,2-dichlor-
obenzene (DCB) provided parent BIC 1a in 79% yield.[']
Azide § is also a useful synthon for N-alkylated BICs. Thus,
treatment of 5 with NaH/Mel in DMF followed by heating
exclusively gave monomethylated derivative 1b in 88%
yield, which was then effectively converted to dimethylated
derivative 1¢ (66 % over three steps from 5).

Because we assumed that the cascade cyclization of 3 to §
proceeded via indole intermediate 4, another route was ex-
amined as shown in Scheme 4. Thus, 2-(2'-ethynylphenyl)in-
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Scheme 4. Alternative route to azide intermediate 5.

dole 7 was prepared in 69 % yield by a Sonogashira coupling
of 2-(2-bromophenyl)indole 6 and ethynyltrimethylsilane,
followed by desilylation. The second Sonogashira coupling
of 7 with 2-iodophenylazide gave 4 in 53 % yield. Hydroary-
lation of 4 proceeded smoothly upon treatment with John-
PhosAuNTf, (2.5mol%) in DCB to give 5 in 94% yield.
This route is advantageous in terms of easier access to start-
ing material 6, which was obtained by the reaction of phe-
nylhydrazine and 2-bromoacetophenone.!"®!

Redox Properties of BICs and Isolation of Cation Radical
of N,N'-Dimethyl Derivative 1c¢

According to the results of voltammetric analyses in MeCN,
parent BIC 1a undergoes a two-stage one-electron oxidation
(E™ 40.63V, E,* +0.98V vs. SCE),l as in the case of
PDs. The slightly higher donating properties of N-methylat-
ed derivatives 1b and 1c are indicated by the less positive
E,* values (4+0.60 V for 1b and +0.59 V for 1c¢, respective-
ly).'”! The electron-donating abilities of 1a—¢ are weaker
than those of N,N,N,N'-tetramethyl-PD (TMPD) (E*
+010WV)™  and  N,N,N,N-tetramethylbenzidine (4
0.41 V),™ but much stronger than that of N-methylcarba-
zole (4+1.12 'V, irreversible).!"
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Figure 1. Cyclic voltammograms of a) 1a and b) 1¢ measured in MeCN
(0.1m Et,NCIO,, Pt electrode, scan rate 0.1 Vs ! see also Figure S4 in
the Supporting Information). The dotted line in a) shows the voltammo-
gram returned at +0.8 V
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Scheme 5. Redox scheme of BICs 1a—c.

Comparisons of the peak heights suggested that the
second oxidation of 1a involving the dication is quasi-rever-
sible, whereas the first oxidation is completely reversible
(Figure 1a). Quite similar behavior was observed for mono-
methylated 1b. Such behavior can be best accounted for by
partial deprotonation from dications 1a,b** (Scheme 5). In
contrast, N,N-dimethylated 1c¢ exhibited a perfectly reversi-
ble voltammogram (Figure 1b), which shows that the oxi-
dized states could be made infinitely stable by double N-al-
kylation of the BIC framework. In fact, upon treatment of
1c¢ with one equivalent of (4-BrC¢H,);N*X~ (X=BF, or
SbCly), cation radical salts 1¢*X~ were isolated as stable
blue-green solids. The ESR spectrum of 1¢*BF,” in de-
gassed MeCN showed multiple well-resolved lines (g=
2.0030) (Figure 2). The hyperfine coupling constants were
deduced by using the Winsim program,® as follows: ay=
391G (2N); ay=3.27 (6H), 1.27 (2H), 127 (2H), 1.07
(2H), 0.62 (2H), 0.29 (2H), 028 G (2H). Comparisons of
these values with those of WB (g=2.0031, ax=6.99 G (2N);
ay=6.76 (12H), 1.97 G (4H))!'¥ clearly show that 1c* is
basically a WB-type species. The smaller ay value in 1¢** in-
dicates that the unpaired electron is partially delocalized
over the fused benzene rings in BIC*. The calculated spin
density distribution (UB3LYP/6-31G*) also supports the
above explanation (Figure 3).
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Figure 2. a) The X-band ESR spectrum of 1¢**BF,” in degassed MeCN
at 298 K and b) its simulated spectrum.
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Figure 3. a) Spin density and b) SOMO of 1¢*
a DFT method (UB3LYP/6-31G*).

J

calculated by using

X-ray Analyses of BICs and the Cation Radical of N,N'-
Dimethyl Derivative 1c

X-ray analyses of BICs 1a—c were conducted to reveal the
structural features of the benzo[a]indolo[2,3-c]carbazole
skeleton, which is a less-explored heterocyclic system.!""! As
shown in Figure S1 in the Supporting Information, 1a!
adopts a planar geometry despite closer contact (1.96 A) be-
tween the two hydrogen atoms at C1 and C14 than the sum
of the van der Waals (vdW) radii for H-H (2.4 A)® in the
bay region of the BIC framework. This planar disk-shaped
molecule has an approximate atom-to-atom diameter of
105 A

Similar planar disk-shaped geometries were observed in
N-methylated derivatives 1b,c (Figure 4a and Figure S1 in
the Supporting Information).?!! Although there are short in-
teratomic contacts between the methyl group on N and the
sp2 carbon (C6 or C9) on the fused benzene ring (3.08-
3.11 A; sum of vdW radii for Cy,—Ch,: 3.70 A),? these mol-
ecules partly relieve the steric repulsion by in-plane defor-
mation of the N-methylpyrrole unit. Thus, the methyl
groups are relocated in the direction opposite C6 (or C9).
As a result, one of the two external bond angles around the
nitrogen (< Cy-N-C,) is much larger (129.4(1)-128.8(1)°)
than the other (122.4(1)-121.9(1)°; see Figure S2 in the Sup-
porting Information). A similar in-plane deformation was
previously observed in structurally related N-methylben-
zo[a]carbazoles that also adopt planar geometries despite
the short Cy,.—C,, contacts (3.14, 3.17 A).!

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4. ORTEP drawings of a) 1¢ and b) 1¢** in 1¢*BF,” salt as deter-
mined from X-ray structural analyses at 123 K. The thermal ellipsoids are
shown at the 50 % probability level.

After many attempts, we succeeded in growing a single-
crystal sample of 1¢™BF,” from DMSO/benzene, which
contains an equivalent of benzene molecules in the crystal
lattice.”) The disk-shaped open-shell species also adopts
a planar geometry?! with pseudo-C2 symmetry within the
experimental error (Figure 4b). Comparisons of the bond
lengths in 1¢ and 1¢™ clearly show that a considerable bond
alternation is induced upon one-electron oxidation of 1¢ to
form a paraquinoid-type conjugation in the central hexagon
in 1¢** (Table 1). Thus, bonds a and ¢ (¢') are shortened
whereas bonds b (b') and d (d') are elongated. In contrast,
the bond lengths in the peripheral benzene rings remain un-
altered (Figure S2 in the Sup-
porting Information). This ob-
servation is consistent with our

www.chemasianj.org
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Table 1. Comparisons of bond lengths in 1¢ and 1¢** in 1¢*'BF,” salt de-
termined by X-ray structural analyses at 123 K.

bond 1c[A] 1ct [A] Ad [A]
a 1.429(2) 1.358(7) —0.071
b, b 1.404(2), 1.398(2) 1.450(4), 1.441(4) +0.045
o 1.391(2), 1.395(2) 1.356(6), 1.354(6) ~0.038
dd 1.370(2), 1.379(2) 1.412(5), 1.396(4) +0.030

Table 2. UV/Vis and FL spectral data of 1a—c along with UV/Vis/NIR
spectral data of 1¢™"BF,” measured in MeCN at 298 K.

Aabs [nm] e[mem™] Aen™ [nm] D
1a 3930 9900 403 0.73
1b 4011 9900 412 0.78
1c 408 9600 420 0.71
1c¢+BF,” 435,702 6800, 6300

[a] The wavelengths for the longest absorption peaks are given. [b] Exci-
tation wavelength was 4=360 nm. [c] Fluorescence quantum yields were
determined by using 9,10-diphenylanthracene as an external standard.

rescence quantum yields (®g: 0.7-0.8)? and our molecular
design achieved the desired emission efficiency.

In contrast, cation radical salt 1¢** is not fluorescent at
all.””! Instead, it exhibits a broad absorption band in the
NIR region (A,,,=702 nm; loge=3.80) with an absorption
tail that extends to A=1200 nm (Figure 5c), which is assigna-

(42

molecular design for novel WB-
type species with an extended =
system.

Spectral Properties of BICs and
the Cation Radical of N,N'-
Dimethyl Derivative 1¢

BICs 1a—c show strong absorp-
tion bands only in the UV

b)

Normalized Intensity

region (Figure 5a). The vibra-
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with the expected planarity and 6
rigidity of the disk-shaped BIC <)
skeleton in solution. The slight 5
redshift for N-methylated deriv-

atives 1b,c can be rationalized %4
by their higher HOMOs com- s,
pared with that in 1a (Table 2). ©
The fluorescence spectra of 1a— PP
¢ resemble mirror images of the

absorption of the first bands H
(Figure 5b), which indicates

that the vibrational energy level 9

spacing is similar for the
ground and excited states in

1la—c. They show very high fluo- 1¢*BF,” in MeCN.
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Figure 5. a) UV/Vis and b) FL spectra of 1a—¢ measured in MeCN at 298 K. ¢) UV/Vis/NIR spectrum of
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ble to the HOMO-SOMO transition. This band is redshifted
by Ax150 nm compared with that in WB (1=566 nm;
loge=4.11),”! which can be rationalized by the narrower
HOMO-HOMO-1 gap due to tribenzannulation in BIC 1¢
than in TMPD. The lack of decay of absorptions of 1¢** in-
dicates that this WB-type cation radical is infinitely stable
even in an aerated solution.

Dual Electrochromism of BICs and their Cation Radicals
that Exhibit a UV/Vis/NIR and FL Response

The sharp contrast in the spectral properties of redox pair
1c¢/1ct* prompted us to examine its electrochromic behavior
by following the redox reactions in situ. Upon electrochemi-
cal oxidation in MeCN, the clean conversion of 1¢ was re-
flected by the UV/Vis/NIR spectrum, which showed several
isosbestic points (Figure 6a). Thus, the intensity of the UV
bands decreased with a concomitant appearance of new
broad signals in the Vis/NIR region up to 41=1200 nm. The
final spectrum was identical to that of the isolated salt of
1c*". When the same electrolysis was followed by monitor-
ing the fluorescence spectrum, a continuous decrease in
emission intensity was observed (Figure 6b), which demon-
strated dual electrochromic behavior.

The reversibility of chromism was confirmed by electro-
chemical reduction of as-prepared 1¢* by switching the po-

www.chemasianj.org
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larity of the electrodes (Figure 6¢, d). A similar two-way-
output response was observed with electrolysis of parent
BIC 1a (Figure S3 in the Supporting Information).! How-
ever, due to the insufficient stability of oxidized states with
acidic N—H groups, prolonged electrolysis of 1a caused in-
complete reversibility of the spectral changes.

Conclusion

The present work demonstrates that the newly designed mo-
lecular framework of BIC 1 is the m-extended analogue of
PD, but exhibits high FL efficiencies (®g: 0.7-0.8) regardless
of the presence/absence of an alkyl group on the nitrogen
atoms. Thus, this could be used as a unique platform for
constructing new molecular response systems that exhibit
changes in both absorption and FL spectra. The electrochro-
mic behavior in the NIR region is particularly worthy of
note and should attract much attention for potential use in
optical electrocommunication networks.”” Hitherto, hetero-
cycle-based polymers®” or metal complexes®!! have been
considered to be promising candidates for NIR chromism
and only a limited number of purely organic monomeric ma-
terials have been reported.’” Studies of BIC and related
systems!!!! are now in progress to better understand their po-
tential for use as novel chromic materials.

CCDC-982170 (1e), -982171
(1¢*t*BF, ‘benzene), and

b)

Intensity

-982172 (1b'AcOEt) contain
the supplementary crystallo-
graphic data for this paper.
These data can be obtained free
of charge from The Cambridge
Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_-
request/cif.
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FULL PAPER

Potential for change: Both UV/Vis/
NIR and fluorescence can be reversi-
bly modified by application of electric
potential to the highly fluorescent -
extended p-phenylenediamines with
disk-shaped geometries to form stable
cation radical species (see figure).
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