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Introduction

Wurster�s Blue and its derivatives (WBs) are robust cation
radicals.[1] They can be easily generated upon one-electron
oxidation of 1,4-phenylenediamines (PDs) and isolated as
stable salts (Scheme 1). Based on their reversible redox in-
terconversion, PD/WB pairs can serve as promising electro-
chromic materials,[2] by which electrochemical input can be

transduced into UV/Vis spectral output.[3] During the course
of our study[4] of advanced molecular response systems,[5,6]

we became interested in dual electrochromic systems, in
which an electrochemical input causes two kinds of spectral
changes, for example, UV/Vis and fluorescence (FL).[6–8] In
general, cation radicals, including WB, show redshifted UV/
Vis absorption and their excited states undergo nonradiative
decay more easily than the corresponding neutral electron
donors. Thus, highly emissive PDs could be promising candi-
dates for realizing the on/off switching of FL accompanied
by a color change. Although PDs do not exhibit high emis-
sion efficiency,[9] proper structural modification, such as ben-
zannulation, should increase the FL quantum yield (FF) due
to the presence of a carbazole skeleton.[10]

These are the central points for our design of 5,10-
dihydrobenzo[a]indoloACHTUNGTRENNUNG[2,3-c]carbazole (BIC)[11] as a novel
polycyclic PD derivative with a disk-shaped geometry, in
which three benzene nuclei are attached to the PD core, as
shown in Scheme 2. The method for annulation was de-
signed so that the newly attached Clar�s sextets would
remain intact even when a WB-type unit was generated in
the center of the framework.
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Scheme 1. Redox scheme for N,N,N’,N’-tetramethyl-1,4-phenylenedia-
mine (TMPD) and Wurster�s Blue (WB).

Scheme 2. Molecular design of benzindolocarbazole (BIC).
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In this way, the loss of resonance energy upon oxidation
could be minimized, whereas the charge and spin of BIC+ C

are allowed to delocalize over the peripheral benzene rings.
Herein, we report the preparation, X-ray structure, and
spectral and redox properties of the parent BIC (1 a)[13] and
its N-methyl (1 b) and N,N’-dimethyl derivatives (1 c). We
achieved dual electrochromic behavior including FL, and
changes in absorption occurred not only in the UV/Vis
region but also in the NIR region up to l=1200 nm. Fur-
thermore, X-ray analysis of the isolated 1 c+ C salt revealed
paraquinoid-type bond alternation characteristic of WB.

Results and Discussion

Synthetic Strategy for the Parent BIC (1a) and its N-
Methylated Derivatives (1 b,c)

BIC 1 a was first prepared by a combination of two reliable
strategies for carbazole synthesis (Scheme 3): 1) reaction in-
tegration[15] of the gold-catalyzed hydroamination of diyny-
lanilines and subsequent hydroarylation developed by our
group,[16] and 2) intramolecular nitrene insertion by the ther-
mal decomposition of 2-azido-1,1’-biphenyls developed by
Sapi et al.[17]

Thus, the introduction of an azidobenzene moiety to
known diynylaniline 2[16b] was carried out by a Sonogashira

coupling with 2-iodophenylazide to give cyclization precur-
sor 3, which was subjected to the gold-catalyzed integrated
reaction. As expected, treatment of 3 with JohnPhosAuNTf2

(5 mol%) in 1,2-dichloroethane (DCE) gave benzocarbazole
5 bearing an azido group in 71 % yield. Finally, exposure of
5 to the nitrene insertion conditions at 160 8C in 1,2-dichlor-
obenzene (DCB) provided parent BIC 1 a in 79 % yield.[14]

Azide 5 is also a useful synthon for N-alkylated BICs. Thus,
treatment of 5 with NaH/MeI in DMF followed by heating
exclusively gave monomethylated derivative 1 b in 88 %
yield, which was then effectively converted to dimethylated
derivative 1 c (66 % over three steps from 5).

Because we assumed that the cascade cyclization of 3 to 5
proceeded via indole intermediate 4, another route was ex-
amined as shown in Scheme 4. Thus, 2-(2’-ethynylphenyl)in-

dole 7 was prepared in 69 % yield by a Sonogashira coupling
of 2-(2’-bromophenyl)indole 6 and ethynyltrimethylsilane,
followed by desilylation. The second Sonogashira coupling
of 7 with 2-iodophenylazide gave 4 in 53 % yield. Hydroary-
lation of 4 proceeded smoothly upon treatment with John-
PhosAuNTf2 (2.5 mol %) in DCB to give 5 in 94 % yield.
This route is advantageous in terms of easier access to start-
ing material 6, which was obtained by the reaction of phe-
nylhydrazine and 2-bromoacetophenone.[18]

Redox Properties of BICs and Isolation of Cation Radical
of N,N’-Dimethyl Derivative 1 c

According to the results of voltammetric analyses in MeCN,
parent BIC 1 a undergoes a two-stage one-electron oxidation
(E1

ox + 0.63 V, E2
ox +0.98 V vs. SCE),[19] as in the case of

PDs. The slightly higher donating properties of N-methylat-
ed derivatives 1 b and 1 c are indicated by the less positive
E1

ox values (+0.60 V for 1 b and +0.59 V for 1 c, respective-
ly).[19] The electron-donating abilities of 1 a–c are weaker
than those of N,N,N’,N’-tetramethyl-PD (TMPD) (E1

ox

+0.10 V)[19] and N,N,N’,N’-tetramethylbenzidine (+
0.41 V),[19] but much stronger than that of N-methylcarba-
zole (+1.12 V, irreversible).[19]

Scheme 3. Synthesis of BIC 1a–c through a gold-catalyzed cascade cycli-
zation.

Scheme 4. Alternative route to azide intermediate 5.
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Comparisons of the peak heights suggested that the
second oxidation of 1 a involving the dication is quasi-rever-
sible, whereas the first oxidation is completely reversible
(Figure 1a). Quite similar behavior was observed for mono-
methylated 1 b. Such behavior can be best accounted for by
partial deprotonation from dications 1 a,b2+ (Scheme 5). In
contrast, N,N-dimethylated 1 c exhibited a perfectly reversi-
ble voltammogram (Figure 1b), which shows that the oxi-
dized states could be made infinitely stable by double N-al-
kylation of the BIC framework. In fact, upon treatment of
1 c with one equivalent of (4-BrC6H4)3N

+ CX� (X=BF4 or
SbCl6), cation radical salts 1 c+ CX� were isolated as stable
blue-green solids. The ESR spectrum of 1 c+ CBF4

� in de-
gassed MeCN showed multiple well-resolved lines (g=

2.0030) (Figure 2). The hyperfine coupling constants were
deduced by using the Winsim program,[20] as follows: aN =

3.91 G (2 N); aH =3.27 (6 H), 1.27 (2H), 1.27 (2 H), 1.07
(2 H), 0.62 (2H), 0.29 (2 H), 0.28 G (2 H). Comparisons of
these values with those of WB (g=2.0031, aN =6.99 G (2N);
aH =6.76 (12H), 1.97 G (4 H))[1d] clearly show that 1 c+ C is
basically a WB-type species. The smaller aN value in 1 c+ C in-
dicates that the unpaired electron is partially delocalized
over the fused benzene rings in BIC+ C. The calculated spin
density distribution (UB3LYP/6-31G*) also supports the
above explanation (Figure 3).

X-ray Analyses of BICs and the Cation Radical of N,N’-
Dimethyl Derivative 1 c

X-ray analyses of BICs 1 a–c were conducted to reveal the
structural features of the benzo[a]indoloACHTUNGTRENNUNG[2,3-c]carbazole
skeleton, which is a less-explored heterocyclic system.[11] As
shown in Figure S1 in the Supporting Information, 1 a[21]

adopts a planar geometry despite closer contact (1.96 �) be-
tween the two hydrogen atoms at C1 and C14 than the sum
of the van der Waals (vdW) radii for H�H (2.4 �)[22] in the
bay region of the BIC framework. This planar disk-shaped
molecule has an approximate atom-to-atom diameter of
10.5 �.

Similar planar disk-shaped geometries were observed in
N-methylated derivatives 1 b,c (Figure 4a and Figure S1 in
the Supporting Information).[21] Although there are short in-
teratomic contacts between the methyl group on N and the
sp2 carbon (C6 or C9) on the fused benzene ring (3.08–
3.11 �; sum of vdW radii for CMe�CAr: 3.70 �),[22] these mol-
ecules partly relieve the steric repulsion by in-plane defor-
mation of the N-methylpyrrole unit. Thus, the methyl
groups are relocated in the direction opposite C6 (or C9).
As a result, one of the two external bond angles around the
nitrogen (<CMe-N-Ca) is much larger (129.4(1)–128.8(1)8)
than the other (122.4(1)–121.9(1)8 ; see Figure S2 in the Sup-
porting Information). A similar in-plane deformation was
previously observed in structurally related N-methylben-
zo[a]carbazoles that also adopt planar geometries despite
the short CMe�CAr contacts (3.14, 3.17 �).[23]

Figure 1. Cyclic voltammograms of a) 1 a and b) 1 c measured in MeCN
(0.1 m Et4NClO4, Pt electrode, scan rate 0.1 Vs�1; see also Figure S4 in
the Supporting Information). The dotted line in a) shows the voltammo-
gram returned at +0.8 V

Scheme 5. Redox scheme of BICs 1a–c.

Figure 2. a) The X-band ESR spectrum of 1c+ CBF4
� in degassed MeCN

at 298 K and b) its simulated spectrum.

Figure 3. a) Spin density and b) SOMO of 1 c+ C calculated by using
a DFT method (UB3LYP/6-31G*).
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After many attempts, we succeeded in growing a single-
crystal sample of 1 c+ CBF4

� from DMSO/benzene, which
contains an equivalent of benzene molecules in the crystal
lattice.[21] The disk-shaped open-shell species also adopts
a planar geometry[24] with pseudo-C2 symmetry within the
experimental error (Figure 4b). Comparisons of the bond
lengths in 1 c and 1 c+ C clearly show that a considerable bond
alternation is induced upon one-electron oxidation of 1 c to
form a paraquinoid-type conjugation in the central hexagon
in 1 c+ C (Table 1). Thus, bonds a and c (c’) are shortened
whereas bonds b (b’) and d (d’) are elongated. In contrast,
the bond lengths in the peripheral benzene rings remain un-
altered (Figure S2 in the Sup-
porting Information). This ob-
servation is consistent with our
molecular design for novel WB-
type species with an extended p

system.

Spectral Properties of BICs and
the Cation Radical of N,N’-

Dimethyl Derivative 1 c

BICs 1 a–c show strong absorp-
tion bands only in the UV
region (Figure 5a). The vibra-
tional structures are consistent
with the expected planarity and
rigidity of the disk-shaped BIC
skeleton in solution. The slight
redshift for N-methylated deriv-
atives 1 b,c can be rationalized
by their higher HOMOs com-
pared with that in 1 a (Table 2).
The fluorescence spectra of 1 a–
c resemble mirror images of the
absorption of the first bands
(Figure 5b), which indicates
that the vibrational energy level
spacing is similar for the
ground and excited states in
1 a–c. They show very high fluo-

rescence quantum yields (FF: 0.7–0.8)[26] and our molecular
design achieved the desired emission efficiency.

In contrast, cation radical salt 1 c+ C is not fluorescent at
all.[27] Instead, it exhibits a broad absorption band in the
NIR region (lmax =702 nm; loge=3.80) with an absorption
tail that extends to l=1200 nm (Figure 5c), which is assigna-

Table 1. Comparisons of bond lengths in 1c and 1c+ C in 1c+ CBF4
� salt de-

termined by X-ray structural analyses at 123 K.

bond 1 c [�] 1c+ C [�] Dd [�]

a 1.429(2) 1.358(7) �0.071
b, b’ 1.404(2), 1.398(2) 1.450(4), 1.441(4) +0.045
c, c’ 1.391(2), 1.395(2) 1.356(6), 1.354(6) �0.038
d, d’ 1.370(2), 1.379(2) 1.412(5), 1.396(4) +0.030

Figure 5. a) UV/Vis and b) FL spectra of 1a–c measured in MeCN at 298 K. c) UV/Vis/NIR spectrum of
1c+ CBF4

� in MeCN.

Figure 4. ORTEP drawings of a) 1c and b) 1 c+ C in 1 c+ CBF4
� salt as deter-

mined from X-ray structural analyses at 123 K. The thermal ellipsoids are
shown at the 50 % probability level.

Table 2. UV/Vis and FL spectral data of 1a–c along with UV/Vis/NIR
spectral data of 1c+ CBF4

� measured in MeCN at 298 K.

labs [nm] e [m�1 cm�1] lem
[b] [nm] FF

[c]

1a 393[a] 9900 403 0.73
1b 401[a] 9900 412 0.78
1c 408[a] 9600 420 0.71
1c+ CBF4

� 435, 702 6800, 6300

[a] The wavelengths for the longest absorption peaks are given. [b] Exci-
tation wavelength was l=360 nm. [c] Fluorescence quantum yields were
determined by using 9,10-diphenylanthracene as an external standard.
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ble to the HOMO–SOMO transition. This band is redshifted
by l�150 nm compared with that in WB (l= 566 nm;
loge=4.11),[28] which can be rationalized by the narrower
HOMO–HOMO�1 gap due to tribenzannulation in BIC 1 c
than in TMPD. The lack of decay of absorptions of 1 c+ C in-
dicates that this WB-type cation radical is infinitely stable
even in an aerated solution.

Dual Electrochromism of BICs and their Cation Radicals
that Exhibit a UV/Vis/NIR and FL Response

The sharp contrast in the spectral properties of redox pair
1 c/1 c+ C prompted us to examine its electrochromic behavior
by following the redox reactions in situ. Upon electrochemi-
cal oxidation in MeCN, the clean conversion of 1 c was re-
flected by the UV/Vis/NIR spectrum, which showed several
isosbestic points (Figure 6a). Thus, the intensity of the UV
bands decreased with a concomitant appearance of new
broad signals in the Vis/NIR region up to l=1200 nm. The
final spectrum was identical to that of the isolated salt of
1 c+ C. When the same electrolysis was followed by monitor-
ing the fluorescence spectrum, a continuous decrease in
emission intensity was observed (Figure 6b), which demon-
strated dual electrochromic behavior.

The reversibility of chromism was confirmed by electro-
chemical reduction of as-prepared 1 c+ C by switching the po-

larity of the electrodes (Figure 6c, d). A similar two-way-
output response was observed with electrolysis of parent
BIC 1 a (Figure S3 in the Supporting Information).[14] How-
ever, due to the insufficient stability of oxidized states with
acidic N�H groups, prolonged electrolysis of 1 a caused in-
complete reversibility of the spectral changes.

Conclusion

The present work demonstrates that the newly designed mo-
lecular framework of BIC 1 is the p-extended analogue of
PD, but exhibits high FL efficiencies (FF: 0.7–0.8) regardless
of the presence/absence of an alkyl group on the nitrogen
atoms. Thus, this could be used as a unique platform for
constructing new molecular response systems that exhibit
changes in both absorption and FL spectra. The electrochro-
mic behavior in the NIR region is particularly worthy of
note and should attract much attention for potential use in
optical electrocommunication networks.[29] Hitherto, hetero-
cycle-based polymers[30] or metal complexes[31] have been
considered to be promising candidates for NIR chromism
and only a limited number of purely organic monomeric ma-
terials have been reported.[32] Studies of BIC and related
systems[11] are now in progress to better understand their po-
tential for use as novel chromic materials.

CCDC-982170 (1 c), -982171
(1 c+ CBF4

�Cbenzene), and
-982172 (1 bCAcOEt) contain
the supplementary crystallo-
graphic data for this paper.
These data can be obtained free
of charge from The Cambridge
Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_-
request/cif.
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Electrochromism
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Wurster�s Blue-type Cation Radicals
Framed in a 5,10-
Dihydrobenzo[a]indolo ACHTUNGTRENNUNG[2,3-c]carba-
zole (BIC) Skeleton: Dual Electro-
chromism with Drastic Changes in
UV/Vis/NIR and Fluorescence

Potential for change : Both UV/Vis/
NIR and fluorescence can be reversi-
bly modified by application of electric
potential to the highly fluorescent p-
extended p-phenylenediamines with
disk-shaped geometries to form stable
cation radical species (see figure).
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