
Synthesis and biological evaluation of novel antipsychotic *trans*-4-(2-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)ethyl)cyclohexan-1-amine derivatives targeting dopamine/serotonin receptor subtypes

Jun-Wei Xu, Yang-Li Qi, Jian-Wei Wu, Rui-Xiang Yuan, Xiao-Wen Chen, Jian-Qi Li

PII:	S0960-894X(20)30792-7
DOI:	https://doi.org/10.1016/j.bmcl.2020.127681
Reference:	BMCL 127681
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	25 August 2020
Revised Date:	2 November 2020
Accepted Date:	6 November 2020

Please cite this article as: Xu, J-W., Qi, Y-L., Wu, J-W., Yuan, R-X., Chen, X-W., Li, J-Q., Synthesis and biological evaluation of novel antipsychotic *trans*-4-(2-(1,2,4,5-tetrahydro-3*H*-benzo[*d*]azepin-3-yl)ethyl)cyclohexan-1-amine derivatives targeting dopamine/serotonin receptor subtypes, *Bioorganic & Medicinal Chemistry Letters* (2020), doi: https://doi.org/10.1016/j.bmcl.2020.127681

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis and biological evaluation of novel antipsychotic *trans*-4-(2-(1,2,4,5-tetrahydro-3*H*-benzo[*d*]azepin-3-yl)ethyl)cyclohexan-1-amine derivatives targeting dopamine/serotonin receptor subtypes

Jun-Wei Xu¹, Yang-Li Qi¹, Jian-Wei Wu, Rui-Xiang Yuan, Xiao-Wen Chen*, Jian-Qi Li*

Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P.R. China

*Corresponding author: Tel.: +86-021-20572000. E-mail: cxwvio423@163.com; lijiangb@126.com

¹These authors contributed equally to this work.

Abstract

In this study, a series of *trans*-4-(2-(1,2,4,5-tetrahydro-3*H*-benzo[*d*]azepin-3-yl)ethyl)cyclohexan-1-amine derivatives as potential antipsychotics were synthesized and biologically evaluated to discover potential antipsychotics with good drug target selectivity. The preliminary structure-activity relationship was discussed, and optimal compound **12a** showed both nanomolar affinity for $D_2/D_3/5$ -HT_{1A}/5-HT_{2A} receptors and weak α_1 and H₁ receptor binding affinity. In addition, **12a** was metabolically stable *in vitro*, displayed micromolar affinity for the hERG channel, and exhibited antipsychotic efficacy in the animal model of locomotor-stimulating effects of phencyclidine.

Keywords

Antipsychotic; DA receptor; 5-HT receptor; α_1 receptor; H₁ receptor

Schizophrenia is one of the most complex and debilitating mental disorders characterized by positive, negative, and cognitive symptoms.¹ About 0.5-1.0% of the population worldwide is diagnosed with this condition,² about 20% of which has chronic symptoms and disability, and more than 50% has intermittent but long-term psychiatric problems.³ The unemployment rate in individuals with schizophrenia is very high at 80-90%,⁴ and life expectancy is reduced by 10-20 years.⁵

Since the 1950s approval of chlorpromazine, several typical antipsychotics (TAs) and atypical antipsychotics (ATs) have been developed. TAs, referred to as dopamine (DA) D_2 receptor (D_2R) antagonists, are effective in treating positive symptoms but are ineffective in alleviating negative symptoms or improving cognitive impairment. TAs can also cause serious side effects such as extrapyramidal symptoms (EPSs) due to their antagonistic effects on DA receptors in the nigrostriatal dopaminergic pathway.⁶ ATs, (e.g., lurasidone, risperidone, aripiprazole and cariprazine, Fig. 1) are characterized by multi-receptor affinity and offer a number of therapeutic advantages, such as decreasing the incidence of EPSs. However, the treatment can be impaired by metabolic, cardiovascular and anticholinergic side effects, which are likely related to binding to other receptors.^{7,8} These include weight gain (histamine H_1 receptor $[H_1R]$ and serotonin $(5-HT)_{2C}$ receptor [5-HT_{2C}R] antagonism), orthostatic hypotension (adrenergic α_1 receptor $[\alpha_1 R]$ antagonism⁹), and sedation (H_1R antagonism). Therefore, interdisciplinary collaborations and concerted research efforts are in active progress for the development of multiple-targets antipsychotics with high efficiency and good drug target selectivity.

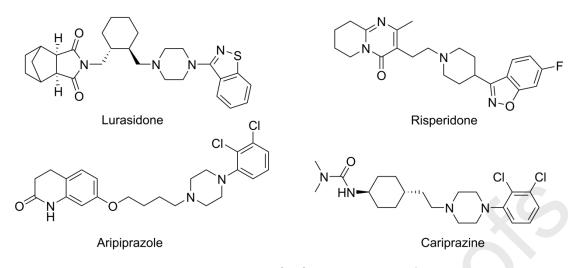
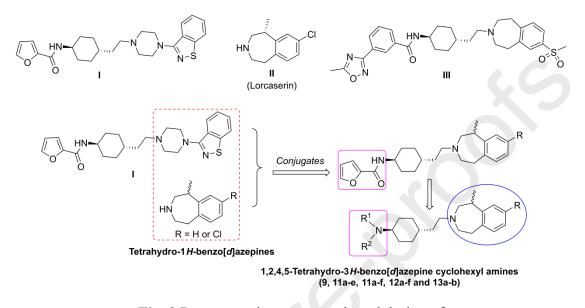


Fig. 1. Structures of reference compounds

is effective in treating the positive symptoms^{1,10} of schizophrenia. D_2R D₃R belongs to the subfamily of D₂-like receptors and is localized in the limbic system. antagonists have cognition-enhancing activity which may be of benefit D₃R for the treatment of cognitive dysfunction.¹¹ Moreover, higher binding affinity for D₃R compared with D_2R offers regionally selective antidopaminergic activity^{10,12}, resulting in heightened effect on positive symptoms along with a decrease in EPSs. Antagonists of 5-HT_{2A}R increase the release of DA into the prefrontal cortex, which is correlated with effects on cognitive and negative symptoms. Partial agonists help stabilize the frontal cortex function¹. of the $5-HT_{1A}R$ The 5- $HT_{1A}R$ has recently garnered increasing attention because of its potential to enhance cognition based on preclinical and clinical evidence.¹³ A combination of the therapeutic effects of these receptors, such as via cariprazine, a D₂/D₃/5-HT_{1A} partial agonist and 5-HT_{2A} antagonist with 8-fold selectivity for D_3R/D_2R subtypes, may reduce positive symptoms¹⁴, alleviate negative symptoms, and improve the cognitive impairments¹⁵ associated with schizophrenia.

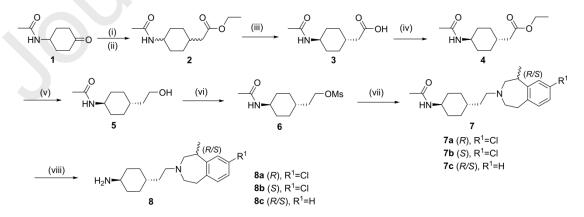
Blockade of the $\alpha_1 R$ can result in orthostatic hypotension⁹, which is an adverse effect caused by many antipsychotic drugs. Clinical first-line antipsychotics all have effects on the H₁R, which produces strong to moderate intensity of sedation and are involved in weight gain. **Table 1** displays the affinity of some market antipsychotics for $\alpha_1 R$ and H₁R.

Table 1


	K _i /nn	nol·L ⁻¹
Drug —	α_1	H_1
Risperidone	0.7	20
Olanzapine	19	7
Quetiapine	7	11
Ziprasidone	11	50
Aripiprazole	57	61
Asenapine	1.2	1.0

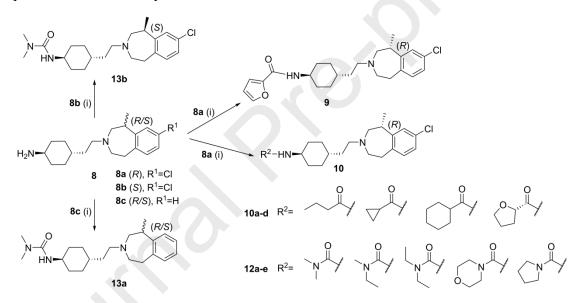
Affinity for $\alpha_1 R$ and $H_1 R$ of some market antipsychotics.

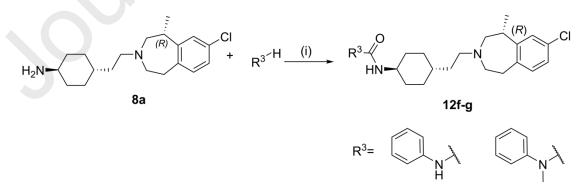
In our previous study on potential multi-target antipsychotics, a series of novel benzisothiazolylpiperazine cyclohexylamides¹⁶ targeting $D_2/D_3/5$ -HT_{1A}/5-HT_{2A} receptors were discovered. Among these derivatives, compound I (Fig. 2) showed $D_2/D_3/5-HT_{1A}/5-HT_{2A}$ unique affinities for the receptors. Substituted 2,3,4,5-tetrahydro-1*H*-benzo[*d*]azepines^{17,18} reportedly have 5-HTR subtype binding affinities without targeting $\alpha_1 R$ and $H_1 R$, as represented by the US Food and Drug Administration-approved antiobesity agent lorcaserin (compound II, Fig. 2). By linking this 2,3,4,5-tetrahydro-1*H*-benzo[*d*]azepine core with (*trans*)-ethyl cyclohexyl linker, a series of potent DA antagonists, such as D₃ antagonists were identified, as represented by compound III (Fig. 2)¹⁹. In our continuous effort to develop selective antipsychotics targeting D₂/D₃/5-HT_{1A}/5-HT_{2A} receptors based upon these findings, designed of we and evaluated series а trans-4-(2-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)ethyl)cyclohexan-1-amine derivatives 9, 11a-e, 11a-f, 12a-f and 13a-b (Fig. 2). The target compounds were evaluated for binding affinity to $\alpha_1/H_1/D_2/D_3/5$ -HT_{1A}/5-HT_{2A} receptors . The preliminary structure-activity relationships (SARs) of target compounds for these receptors were investigated as the function of various substituents in the amide moiety and 1,2,4,5-tetrahydro-3*H*-benzo[*d*]azepin-3-yl fragment. By systematically varying


the substituents valuated, we identified the *trans*-tetrahydro-3*H*-benzo[*d*]azepin-3-yl ethyl cyclohexan amine scaffold with weak $\alpha_1 R$ and $H_1 R$ binding affinity, and

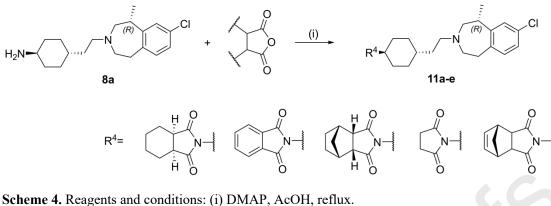
discovered that optimal compound **12a** had expected receptor binding profile and target selectivity. Further pharmacological evaluation was conducted of **12a** including metabolic stability *in vitro*, hERG channel inhibition and antipsychotic efficacy in animal behavior models.

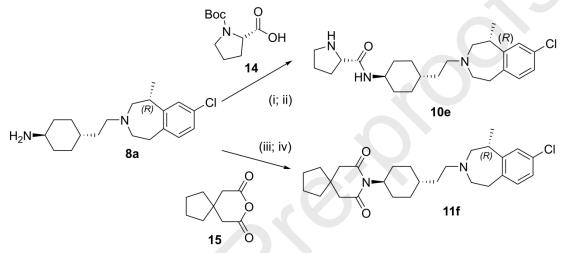
Fig. 2 Representative compounds and design of 1,2,4,5-tetrahydro-3*H*-benzo[*d*]azepine cyclohexyl amines


The synthesis of all of the intermediates and target compounds was depicted in Schemes 1-5. Scheme 1 outlines the synthesis of key intermediates 8a-c. Intermediate 6 was prepared according to our previous method¹⁶, which was coupled with 1-methyl-2,3,4,5-tetrahydro-1*H*-benzo[*d*]azepine fragments to yield intermediates 7a-c. Then, 7a-c were refluxed under 3% aqueous hydrochloric acid conditions to yield the key intermediates 8a-c.


Scheme 1. Reagents and conditions: (i) Triethyl phosphonoacetate, *t*-BuOK, THF, 0-5°C; (ii) H_2 , 5%Pd/C, EA, rt; (iii) LiOH· H_2O , THF, 10%HCl; EtOH, recrystallization; (iv) EtOH, EDCI,

DMAP, rt; (v) NaBH₄, MeOH, THF, reflux; (vi) Et₃N, MsCl, DMF; (vii) Na₂CO₃, KI, ACN, reflux; (viii) 3%HCl, reflux.


Scheme 2 shows the preparation of compounds 9, 10a-d, 12a-e and 13a-b through acylation. In scheme 3, intermediate 8a along with triethylamine in CH_2Cl_2 was added to a solution of triphosgene at 0-5°C. Then the substituted amines were added to the solution yielding 12f-g. Scheme 4 shows the preparation of 11a-e through the reaction of intermediate 8a with different dicarboxylic anhydrides under acetic acid conditions. Scheme 5 shows the preparation of compounds 10e and 11f. Compound 10e was obtained via acylation. Intermediate 8a refluxed with 8-oxaspiro[4.5]decane-7,9-dione (15), generating compound 11f in the presence of *p*-toluenesulfonic anhydride.



Scheme 2. Reagents and conditions: (i) R²Cl, TEA, DMAP, CH₂Cl₂, rt.

Scheme 3. Reagents and conditions: (i) triphosgene, TEA, CH₂Cl₂, 0-5°C.

Scheme 5. Reagents and conditions: (i) EDCI, DMAP, CH₂Cl₂; HCl in EA; (ii) TsOH·H₂O, reflux; (iii) Ac₂O, NaOAc, reflux.

The compounds tested for binding affinities of target were $\alpha_1/H_1/D_{2L}/D_3/5$ -HT_{1A}/5-HT_{2A} receptors. The detailed results are summarized in **Table 2.** The K_i values were determined when the inhibition ratios were over 90% measured at a concentration of 10 µM. The following specific radioligands and tissue sources were used: (a) $\alpha_1 Rs$, [³H]prazosin, rat cerebral cortex; (b) H₁Rs, [³H]pyrilamine, human recombinant (HEK-293 cells); (c) D_{2L}Rs, [³H]spiperone, human recombinant (CHO cells); (d) D₃Rs, [³H]methyl-spiperone, human recombinant (CHO cells); (e) 5-HT_{1A}Rs, [³H]8-OH-DPAT, human recombinant (HEK-293 cells); (f) 5-HT_{2A}Rs, [³H]ketanserin, human recombinant (HEK-293 cells). The biological studies were conducted by Eurofins Cerep SA, Celle l'Evescault, France. The recently launched atypical antipsychotic agent cariprazine was used as a reference.

The metabolic stability of the optimal compound was measured using rat and human liver microsomes *in vitro*. The ability to block hERG potassium channels was determined by electrophysiology using cloned hERG potassium channels expressed in CHO-K1 cells. The animal behavior model of locomotor-stimulating effects of phencyclidine was used to evaluate antipsychotic efficacy *in vivo*.

Table 2

The binding affinities of target compounds for $\alpha_1/H_1/D_{2L}/D_3/5$ -HT_{1A}/5-HT_{2A} receptors.

	Stanatura	Receptor affinity K_i (nM)					
Compound	Structure	$\alpha_1{}^a$	H_1^a	D_{2L}^{b}	$D_3{}^b$	5- $\mathrm{HT}_{1\mathrm{A}}^{b}$	5-HT _{2A} ^{<i>a</i>}
9		51.3	82.1	93.9	101.4	96.9	77.3
10a		18.7%	27.0%	84.0	8.1	81.3% ^{<i>a</i>}	52.7%
10b		57.6%	33.2%	9.8	8.2	191.4	56.6%
10c		35.3%	36.8%	99.3	17.5	69.9% ^a	38.2%
10d		36.4%	32.2%	20.6	19.1	98.3	69.6%
10e		75.8%	60.1%	25.3	9.5	74.7	89.0%
11a		63.2%	86.1%	14.1	9.3	6.6	76.9%
11b		37.2%	40.8%	5.8	82.0% ^a	82.6% ^a	36.3%
11c		79.2%	194.6 ^b	31.6	3.3	24.9	80.8%

11d		62.1%	62.4%	79.8% ^a	190.7	93.4	47.4%
11e		74.4%	312.3 ^b	43.7	6.9	22.8	82.8%
11f		60.9%	293.2 ^b	12.1	1.2	4.3	16.2
12a		44.1%	59.6%	5.9	0.5	14.5	25.6
12b		43.5%	49.7%	23.9	7.2	36.0	85.9%
12c		29.1%	69.2%	91.1	15.0	75.2% ^a	73.6%
12d		48.0%	33.3%	2.9	1.8	86.1% ^a	50.6%
12e		60.3%	56.8%	6.3	1.1	5.3	87.4%
12f		53.8%	88.2%	2.8	1.5	87.4% ^a	67.0%
12g		38.6%	75.0%	188.7	17.2	82.3% ^a	58.8%
13a		38.0%	25.8%	54.5% ^a	68.0% ^a	26.9% ^a	19.6%
13b		48.3%	46.5%	290.5	194.8	83.9% ^a	72.2%
Cariprazine	/	155.0 ^c	23.2 ^c	0.49 ^c	0.085 ^c	2.6 ^c	18.8 ^c

^{*a*} Mean inhibitory rates from two independent experiments done in duplicate with 10 μ mol/L concentration.

^{*b*} Mean K_i values from two independent experiments with eight concentrations in duplicate.

^c Data for cariprazine reported by Citrome.²⁰

Initially, we investigated the effects of aryl and alkyl amide moieties. The affinity profile of compound 9 bearing furan-2-carboxamide moiety at the cyclohexyl

side of the molecule was investigated (**Table 2**). Nanomolar affinities for D₂, D₃, and 5-HT_{1A}Rs ($K_i = 19.3$ nM, 1.8 nM, and 10.6 nM, respectively), and yet low potential affinity for 5-HT_{2A}R (87.3%, inhibition ratio) were observed. Moreover, compound **9** had low potential affinity for H₁R (82.1%, inhibition ratio) and very weak affinity for α_1 R (51.3%, inhibition ratio). Other alkyl amide substituted derivatives (**10a-e**) also displayed nanomolar affinities for D₂, D₃, and 5-HT_{1A}Rs, except for **10c** (69.9% inhibition ratio for 5-HT_{1A}R), but still exhibited moderate to low 5-HT_{2A}R inhibition ratio (< 90%). The affinities for both α_1 R and H₁R were kept at a low level (inhibition ratio < 80%). Among these derivatives, compound **9** had both high affinities for D₂, D₃, and 5-HT_{1A}Rs with low α_1 R and H₁R affinity.

The effect of replacing the amide moiety at the cyclohexyl side of the molecule with imide moiety was investigated (compounds **11a-f**; **Table 2**). Compounds **11a**, **11c** and **11e-f** with 1,2-cyclohexanedicarboximide, methanoisoindole-1,3(2*H*)-dione and tetramethyleneglutarimide substituents showed nanomolar affinities for D₂, D₃ and 5-HT_{1A} receptors and low potential affinity for $\alpha_1 R$ (inhibition ratio < 80%). Nanomolar affinity for the 5-HT_{2A}R was observed for **11f** (16.2 nM, *K*_i). However, **11f** showed moderate affinity for the H₁R (293.2 nM, *K*_i), as well as **11c** and **11e** (194.6 nM and 312.3 nM, *K*_i), which was not expected.

The effect of urea moiety at the cyclohexyl side of the molecule was explored (**Table 2**, compounds **12a-g**). The dimethyl urea **12a** showed high affinities for D₂, D₃, 5-HT_{1A} and 5-HT_{2A} receptors ($K_i < 30$ nM, respectively) along with very low affinities for both α_1 R and H₁R (inhibition ratio < 60%, respectively). Unexpectedly, other alkyl urea, such as ethyl substituted urea (**12b-c**) and cyclic urea (**12d-e**) exhibited low potential 5-HT_{2A}R affinity (inhabitation ratio < 89%) albeit with nanomolar receptor affinity for D₂ and D₃, and low α_1 R and H₁R inhibition (< 70%). Analogues with aryl substituents (**12f-g**) also showed nanomolar receptor affinity for D₂ and D₃, but the potential affinities for 5-HT_{1A}R and 5-HT_{2A}R were low (inhibition ratio < 90%). Based on these results, structural modification with methyl urea moiety (**12a**) yielded ideal ligand that possessed both high affinity for D₂R, D₃R, 5-HT_{1A}R, 5-HT_{2A}R and very low affinities for α_1 R and H₁R.

Compounds **13a-b** (**Table 2**) were prepared to investigate the effect of substitution on the phenyl moiety and chirality of the methyl on the azepine ring. Compound **13a** bearing unsubstituted phenyl ring and racemic methyl on the azepine ring lost binding affinities for both D₂, D₃, 5-HT_{1A}, 5-HT_{2A} receptors and α_1 R and H₁R (inhabitation ratio < 70%). **13b**, enantiomer of compound **12a** with expected binding character, had no affinity for α_1 R and H₁R. The D₂R and D₃R affinities of **13b** were decreased to moderate degrees (290.5 nM and 194.8 nM, *K*_i) as well as low potential affinity for 5-HT_{1A}/5-HT_{2A} receptors (inhibition ratio < 85%).

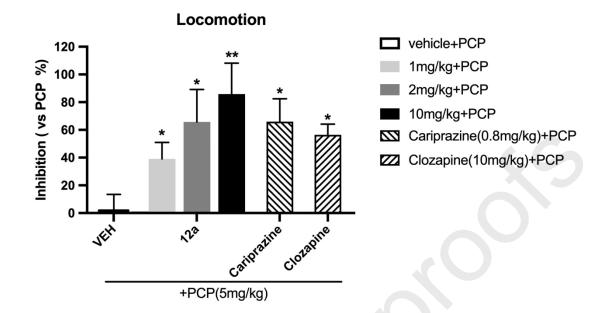

Through investigation of substituents in amide moiety, modifications in substituted 1,2,4,5-tetrahydro-3*H*-benzo[*d*]azepine core and preliminary SAR analysis, the optimal receptor affinity balance was obtained for compound **12a** displaying nanomolar range affinities for the D₂, D₃, 5-HT_{1A} and 5-HT_{2A} receptors, and low affinities for α_1 and H₁ receptors. **12a** was selected for further metabolic stability evaluation *in vitro* (**Table 3**) and hERG channel binding assay. The data indicated that **12a** displayed a suitable half-life (t_{1/2} values were 32.7 min in human liver microsomes and 23.2 min in rat liver microsomes). **12a** was tested in the hERG functional patch clamp inhibition assay (Qpatch) and micromolar affinity with IC₅₀ = 1.23 µM was observed.

Table 3

Compound	Species	$T_{1/2}(min)$	CL (µL/min/mg)
12a	Human	32.7	42.4
	Rat	23.2	59.7
Dextromethorphan	Human	7.2	36.0
Omeprazole	Rat	38.5	193.3

Rat and human liver microsomal metabolic stability assay.

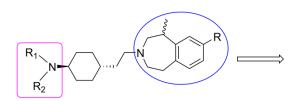
Based on *in vitro* studies, **12a** was further characterized in animal models for behavioral studies. Acute phencyclidine (PCP) can imitate positive symptoms²¹ and has been used to simulate schizophrenia symptoms in animals. **12a** (1.0, 2.0, and 10.0 mg/kg, p.o.), and classic antipsychotic agent clozapine (10.0 mg/kg, p.o.) and recently launched cariprazine (0.8 mg/kg, p.o.) produced significant dose-dependent responses

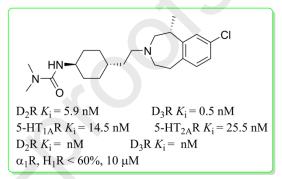
in this model compared with PCP-treated group (Fig. 3).

Fig. 3. Inhibition of PCP induced hyperactivity by tested compound and reference antipsychotic agents clozapine and cariprazine in male Sprague-Dawley rats. Compounds were administered 20 min before PCP (5 mg/kg) injection. Locomotor activities were measured for a 1 h duration after PCP administration and the total travel distance was expressed as Mean \pm standard error of the mean (n = 8-10). * and **, P<0.05 and P<0.01 versus PCP treated group.

this series of In work. a trans-4-(2-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)ethyl)cyclohexan-1-amine derivatives were designed and synthesized to identify potential antipsychotics that target $D_2/D_3/5$ -HT_{1A}/5-HT_{2A} receptors and have low affinities for $\alpha_1 R$ and $H_1 R$. Preliminary SAR between the designed compounds and four drug targets, as well as α_1 and H₁ receptors was also discussed. The SAR results revealed that the trans-tetrahydro-3H-benzo[d]azepin-3-yl cyclohexyl amine scaffold was a kind of privileged structure having low α_1 and H_1 receptor affinity. The substitutions on the amine, substitutions at the phenyl and the chirality of the methyl on the azepine ring had influence on the affinity for the D_2 , D_3 , 5-HT_{1A} and 5-HT_{2A} receptors both individually and collectively. Among these derivatives, compound 12a was confirmed as an optimal compound. 12a also exhibited suitable metabolic stability and

micromolar affinity for hERG channel. Further *in vivo* animal model tests showed that **12a** was a potential multi-receptor antipsychotic. This study provides insights into the development of novel multi-target antipsychotic molecule with potential therapeutic effects and good drug target selectivity.


Acknowledgments


The authors gratefully acknowledge the financial support from the National Science and Technology Major Project (Grant No. 2019ZX09301116), the National Natural Science Foundation of China (Grant No. 81803371), Key Technologies R&D Program of Shanghai Municipal Science and Technology Commission (Grant No. 17431903800), Shanghai Rising-Star Program (Grant No. 19QB1406200). We thank M.S. Jiao-jiao Chen (College of Pharmaceutical Sciences, Soochow University, China) for *in vivo* studies.

References

- 1. Azmanova M, Pitto-Barry A, Barry NPE. Med Chem Comm. 2018;9:759-782.
- 2. Ross CA, Margolis RL, Reading SAJ, et al. Neuron. 2006;52:139-153.
- 3. Owen MJ, Sawa A, Mortensen PB. Lancet. 2016;388:86-97.
- 4. Kooyman L, Dean K, Harvey S, et al. Brit J Psychiat. 2007;191:29-36.
- 5. Chesney E, Goodwin GM, Fazel S. World Psychiatry. 2014;13:153-160.
- 6. Miyamoto S, Miyake N, Jarskog LF, et al. *Mol Psychiatry*. 2012;17:1206-1227.
- 7. Reynolds GP, Kirk SL. Pharmacol Ther. 2010;125:169-179.
- Burghardt KJ, Seyoum B, Mallisho A, et al. *Prog Neuropsychopharmacol Biol Psychiatry*. 2018;83:55-63.
- 9. Minzenberg MJ, Yoon JH. Exp Clin Psychopharmacol. 2011;19:31-39.
- 10. Horacek J, Bubenikova-Valesova V, Kopecek M, et al. CNS Drugs. 2006;20:389-409.
- 11. Laszy J, Laszlovszky I, Gyertyán I. Psychopharmacology. 2005;179:567-575.
- 12. Bressan RA, Erlandsson K, Jones HM, et al. Am J Psychiatry. 2003;160:1413-1420.
- 13. Higuchi TSaY. Curr Med Chem. 2013;20:357-362.
- 14. Németh GR, Laszlovszky I, Czobor P, et al. Lancet. 2017;389:1103–1113.
- 15. Sokoloff P, Foll BL. Eur J Neurosci. 2016;45:2-19.

- 16. Chen XW, Sun YY, Fu L, et al. Eur J Med Chem. 2016;123:332-353.
- 17. Smith BM, Smith JM, Tsai JH, et al. J Med Chem. 2008;51:305-313.
- 18. Smith BM, Smith JM, Tsai JH, et al. *Bioorg Med Chem Lett*. 2005;15:1467-1470.
- 19. Hadley MS, Johnson CN, MacDonald GJ, et al. U.S. Patent 6605607, October 6, 1999.
- 20. Citrome L. Clin Schizophr Relat Psychoses. 2016;10:109-119.
- 21. Swerdlow NR, Geyer MA. Schizophr Bull. 1998;24:285-301.

22.

Highlights

A series of novel 1,2,4,5-tetrahydro-3H-benzo[d]azepine derivatives have been synthesized.

All compounds were evaluated for $D_2/D_3/5$ -HT_{1A}/5-HT_{2A}/ α_1/H_1 binding affinities *in vitro*.

The optimal compound was screened using the animal model of locomotor-stimulating effects of phencyclidine.

Compound **12a** was a potential multireceptor antipsychotic in animal behavioral models with good metabolic stability and target selectivity.

23.