pubs.acs.org/joc

Article

Well-Defined Palladium N-Heterocyclic Carbene Complexes: Direct C–H Bond Arylation of Heteroarenes

Anuj Kumar, Manoj Kumar, and Akhilesh K. Verma*

 Cite This: https://dx.doi.org/10.1021/acs.joc.0c02024
 Read Online

 ACCESS
 Image: Metrics & More
 Image: Article Recommendations
 Image: Supporting Information

 ABSTRACT: A series of palladium N-heterocyclic carbene
 Image: Perspective Recommendation Recommendation Recommendation Recommendation
 Image: Recommendation Recommendation Recommendation

ABSTRACT: A series of palladium N-heterocyclic carbene (NHC) complexes of type *trans*-{(NHC)PdCl₂L} ($L = C_{s}H_{s}N$, 3-ClC_sH₄N, and PPh₃) (3–5) have been developed as efficient precatalysts for direct C–H bond arylation of various heteroarenes. In particular, an in situ generated new NHC ligand derived from {1,3-di-(2,6-diethylphenyl)acenaphtho[1,2-d] imidazolium} chloride (2) is used for the stabilization of the palladium metal center. Among the screened palladium precatalysts (3–5), the most active

PEPPSI themed complex (3) was successfully employed toward direct C–H bond arylation of various heteroarenes and aryl bromides. A range of functional groups on aryl bromides as well as on heteroarenes sustained throughout the standard reaction conditions for easy access of various arylated heterocyclic compounds. Significantly, the utility of the protocol was demonstrated by the effective synthesis of a precursor of raloxifene, a selective estrogen receptor modulator.

INTRODUCTION

Arylated heteroarenes are constructive units for several important natural products, pharmaceuticals, and functional materials.^{1–3} Primarily, thiophene-,^{4–6} indole-,^{7–9} and furan^{10–12}-derived motifs are present in a variety of drugs and other bioactive organic molecules. The high utility of these molecules always demands the development of new alternative paths to access the arylated heterocycles and became an exciting area in organic chemistry.¹³ Recently, the focus has been shifted toward the development of convenient, efficient, and time-dominant C–C bond formation methods.^{14–20} In this order, direct C–H bond arylation emerged as an alternative approach over the traditional cross-coupling reactions as it does not require the preparation of organometallic reagents, which avoid the formation of quantitative metal waste (Figure 1).^{21–24}

The last few decades were dedicated to ligand designing for improving the catalytic efficiency of palladium complexes for direct C–H bond arylation reaction.^{25–28} Notably, extensive studies on bulky and electron-rich phosphine ligands have been carried out over the past few years. In addition, various phosphine-free nitrogen-based ligands, for example, 1,10phenanthroline,^{29,30} bipyridyl,^{31–33} bulky diamine,^{34,35} and others,³⁶ were used to increase the palladium catalytic efficiency for this type of conversion. However, the efficacy of the reported protocols was limited because of high catalytic loading, very high reaction temperature (up to 150 °C), and long reaction time.^{37–39} Therefore, there is a need to design an efficient and structurally characterized catalytic system, which can make these reactions more user-friendly.

Parallelly, the development of N-heterocyclic carbene (NHC) ligands achieved an extensive portfolio in chemical

Figure 1. Pd-NHC-catalyzed cross-coupling reactions.

catalysis.^{40–48} The great success of these classes of wonder ligands lies in their easily tunable steric and electronic properties, which play an essential role in catalysis.^{49–53} Pd– NHC complexes were found to be extremely successful precatalysts for C–C and C–N bond formation via cross-

```
Received: August 21, 2020
```

Scheme 1. Synthesis of Pd-NHC Complexes of Acenaphthoimidazoline-2-ylidene-Derived NHC Ligand

Figure 2. Molecular structures of complexes **3**, **4**, and **5** showing 50% probability ellipsoids; hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°) for **3**: Pd1–C1 1.971(3), Pd1–N3 2.106(3), Pd1–Cl1 2.295(1), Pd1–Cl2 2.287(1), C1–Pd1–N3 179.4(3), Cl1–Pd1–Cl2 178.0(5), and N1–C1–N2 105.5(2). **4**: Pd1–C1 1.968(3), Pd1–N3 2.091(3), Pd1–Cl1 2.298(1), Pd1–Cl2 2.301(1), C1–Pd1–N3 175.3(3), Cl1–Pd1–Cl2 176.7(1), and N1–C1–N2 106.1(3). **5**: Pd1–C1 2.036(2), Pd1–P1 2.317(1), Pd1–Cl00 2.279(1), Pd1–Cl02 2.296(1), C1–Pd1–P1 175.3(3), Cl00–Pd1–Cl02 179.6(3), N1–C1–N2 105.8(2).

coupling reactions.⁵⁴⁻⁵⁸ In particular, pyridine-enhanced precatalyst preparation, stabilization, and initiation (PEP-PSI)-themed and mixed NHC-/phosphine-derived Pd-NHC complexes have emerged as highly active precatalysts in terms of their low catalyst loading and broad applications.55,56,59 Seminal reports by Shao et al.,⁶⁰⁻⁶² Özdemir et al.,⁶³⁻⁶⁶ and others^{67,68} represent the high catalytic efficiency of $[PdX_2(NHC)(imidazole)], [PdX_2[(NHC)_2], and trans-$ [PdX₂(NHC)(pyridine)] type palladium complexes in C-H bond arylation of various heteroarenes. Recently, we explored the C-H bond amination of arenes⁶⁹⁻⁷¹ and are further interested to explore the scope of NHCs in direct C-H bond arylation of heteroarenes.^{10,72,73} In the present study, we chose to explore the potential of Pd-NHC complexes in more challenging and competitively less studied direct C-H bond arylating C-C bond formation reactions. In this article, we have reported a series of Pd–NHC complexes (3–5) based on a bis(imino)acenaphthene-derived new NHC ligand. The scope of various heteroarenes is explored with the most efficient catalyst 3 and 4-bromobenzonitrile as an arylating substrate.

RESULTS AND DISCUSSION

The imidazolium NHC ligand precursor (2) has been prepared from N,N'-(acenaphthylene-1,2-diylidene)bis(2,6-diethylaniline) using a modified literature procedure.⁷⁴ Ganter et al. described that the heteronuclear ${}^{1}J(C-H)$ coupling constant in azolium salts could provide an estimate on the σ -donor property of the corresponding NHCs.⁷⁵ Recently, Szostak and co-workers also extended this method for various commonly used azolium salts and ranked the σ -donor efficiency of the respective NHCs.⁷⁶ A larger coupling constant would indicate a lower σ -donor strength of the parent NHCs because of the increased s-orbital character of the C–H bond. The ${}^{1}J(C-H)$ coupling constant for salt 2 (227.28 Hz) was obtained from ¹³C satellites of the acidic C2–H proton observed in ¹H NMR spectra. This value was found to be larger than that of IPr·HCl (223.70 Hz) and IMes·HCl (225.20 Hz).⁷⁶ It indicates toward less σ -donor ability of novel carbene ligand as compared to the famous IPr and IMes NHC ligands. Two PEPPSI-themed palladium complexes (3) and (4) were obtained by the reaction of imidazolium ligand precursor (2) in the presence of PdCl₂ K₂CO₃ as a base and pyridine or 3-chloropyridine as a solvent, respectively (Scheme 1). Finally, the mixed NHC/ phosphine Pd-NHC complex (5) was synthesized by replacing the labile pyridine ligand of the complex (3) with

pubs.acs.org/joc

Article

Table 1. Optimization of Reaction Conditions^a

		+ Br	CN Pd-NHC (5)	Me		
	Me ⁻ S ⁻		Solvent, Base	S.	CN	
	(6a)	(7a)		(8	aa)	
s. no.	Cat. (mol %)	time (h)	temp (°C)	solvent	base	conv. ^b
1	2.5	18	130	DMAc	NaOAc	71
2	2.5	18	130	DMAc	AgOAc	NR
3	2.5	18	130	DMAc	NH ₄ OAc	NR
4	2.5	18	130	DMAc	K ^t BuO	NP^d
5	2.5	18	130	DMAc	Cs_2CO_3	NP^d
6	2.5	18	130	DMAc	K ₃ PO ₄	NP^d
7	2.5	18	130	DMAc	Na ₂ CO ₃	51
8	2.5	18	130	DMAc	K ₂ CO ₃	100
9	1.0	24	130	DMAc	K ₂ CO ₃	100
10	1.0	3	130	DMAc	KOAc	100
11	2.5	18	90	DMAc	K ₂ CO ₃	29
12	1.0	2	130	DMAc	KOAc	100/89 ^c
13		2	130	DMAc	KOAc	NR
14	1.0	2	130	DMF	KOAc	71
15	1.0	2	130	DMSO	KOAc	29
16	1.0	2	130	toluene	KOAc	NR
17	1.0	2	130	DME	KOAc	13
18	1.0	2	130	dioxane	KOAc	5

"Reaction conditions: 2-methyl thiophene **6a** (0.6 mmol, 2 equiv), 4-bromobenzonitrile **7a** (0.3 mmol, 1 equiv), base (0.9 mmol, 3 equiv), and Pd-NHC **5** ($x \mod \%$) heated at $t \degree$ C in a screw cap sealed tube under nitrogen atmosphere. ^bConversion by GC. ^cIsolated yield. ^dUndefined product observed.

	Me S + Br (6a)	Pd-NHC CN DMAc, KOAc (7a) 130 °C	Me S CN (8aa)	
s. no.	Pd-NHC	catalyst (mol %)	time (h)	conversion ^b /yield ^c
1	(3)	1	1	100/92
2	(4)	1	1	100/91
3	(5)	1	1	84/-
4	(5)	1	2	100/89
5	(3)	0.5	2	100/90
6	(4)	0.5	2	74/60
7	Pd-PEPPSI-IPr	0.5	2	61/-
8	d Pd(OAc) ₂	0.5	2	60/-

^{*a*}Reaction conditions: 2-methyl thiophene **6a** (0.6 mmol, 2 equiv), 4-bromobenzonitrile **7a** (0.3 mmol, 1 equiv), KOAc (0.9 mmol, 3 equiv), and Pd–NHC (0.003 mmol, 1 mol % or 0.0015, 0.5 mol % mmol) heated at 130 °C in a screw cap sealed tube under nitrogen atmosphere. ^{*b*}Conversion by GC. ^{*c*}Yield isolated yield, DMAc = *N*,*N*-dimethylacetamide. ^{*d*}Reaction conditions (**6a** = 1.2 mmol, **7a** = 0.6 mmol, and KOAc = 1.8 mmol).

PPh₃ at room temperature. All the three palladium complexes (3-5) were structurally characterized by X-ray diffraction studies (Figure 2 and Table S2). As expected, Pd–NHC complexes (3-5) having a square-planar geometry around the central palladium atom and two chloride ligands occupied the remaining positions (Scheme 1).

The catalytic efficiency of Pd–NHC complexes (3-5) was examined in the catalytic C–H arylation of 2–methyl thiophene (6a). Significantly, all the three Pd–NHC complexes (3-5) were found to be active precatalysts for the C–H arylation reaction of 2-methyl thiophene (6a) and 4bromobenzonitrile (7a) at 130 °C under standard reaction conditions. The mixed NHC/phosphine complex (5) has been chosen for optimization studies and the reaction progress was analyzed by gas chromatography-mass spectrometry (GC-GCMS).

The reaction of 2-methyl thiophene (**6a**) and 4bromobenzonitrile (**7a**) yielded 71% conversion of **7a** by using 3.0 equiv of NaOAc as a base and 2.5 mol % catalyst **5** at 130 °C temperature in 18 h (Table 1, entry 1). No conversion was observed while using AgOAc or NH₄OAc (Table 1, entries 2 and 3), and the undefined product was formed by using K^tBuO, Cs₂CO₃, and K₃PO₄ as a base under similar reaction conditions (Table 1, entries 4–6). In the presence of Na₂CO₃, the catalyst was found to be moderately active with 51% conversion (Table 1, entry 7). The complete conversion of 4bromobenzonitrile (**7a**) was achieved by using K₂CO₃ as a base in the presence of 2.5 mol % precatalyst (**5**) in 18 h (Table 1, entry 8). However, on reducing the catalyst loading

from 2.5 mol % to 1 mol %, the reaction time was increased up to 24 h for achieving the complete conversion (Table 1, entry 9). Last, KOAc was found to be the most suitable base for the catalytic C-H arylation reaction of **6a** and **7a** at 130 °C temperature (Table 1, entries 10 and 11). The precatalyst **5** was efficient enough to complete the reaction within 2 h in the presence of KOAc and afforded the isolated product in 89% yield (Table 1, entry 12). There was no reaction in the absence of a catalyst (Table 1, entry 13), and solvents other than DMAc were not suitable for the given transformations (Table 1, entries 14–18).

After having the optimized reaction condition in hand, we have performed the screening of synthesized Pd-NHC complexes for this reaction. PEPPSI-themed catalysts 3 and 4 were found to be more active under standard reaction conditions and yielded the complete conversion of 7a in 1 h while loading 1 mol % catalyst (Table 2, entries 1-2). Catalyst 5 was found to be comparatively less efficient, which yielded only 84% conversion in 1 h and takes 2 h for completing the reaction (Table 2, entries 3-4). The most active catalyst (3) completes the reaction within 2 h, using 0.5 mol % catalyst loading (Table 2, entry 5). However, under this catalyst loading, catalyst 4 was unable to complete the reaction (Table 2, entry 6). Pd-PEPPSI-IPr was much less efficient than catalyst 3 under the identical reaction conditions and yielded 61% product conversion (Table 2, entry 7). Probably, the introduction of bulky acenaphthyl backbone in 3-5 would facilitate the stabilization of catalytically active Pd(0) species as compared to less-hindered Pd-PEPPSI-IPr, which has hydrogen atoms on the backbone.^{67,77} $Pd(OAc)_2$ was also found catalytically less efficient under the given reaction conditions and afforded only 60% product as calculated by GC-GCMS (Table 2, entry 8). The superior activity of two PEPPSIthemed Pd-NHC complexes 3 and 4 makes us interested in comparing the reaction kinetics under low catalyst loading conditions (Figures 3 and 4).

As shown in Figure 3, catalyst 3 was found to be the most active precatalyst, which can give a 100% conversion with 0.5% catalyst loading in 2 h. The reaction time increases up to 4 h, with 0.1 mol % catalyst loading, while catalyst 4 was found comparatively less efficient under these observations. The

Figure 3. Comparison of the reaction progress of 2-methyl thiophene 6a and 4-bromobenzonitrile 7a by 0.1 and 0.5% catalyst loading of PEPPSI-themed complexes (3) and (4).

pubs.acs.org/joc

Article

Figure 4. Reaction progress of 2-methyl thiophene and *para* (8aa)-, *meta* (8ab)-, and *ortho* (8ac)-substituted bromobenzonitrile by 0.1% catalyst loading of PEPPSI-themed complex (3).

electronic and steric influences of the CN group in the arylating substrate 7 was observed by conducting the reaction of 2-methyl thiophene (**6a**) with differently -CN-substituted bromobenzene as 4-bromobenzonitrile (7**a**), 3-bromobenzonitrile (7**b**), and 2-bromobenzonitrile (7**c**) with 0.1 mol % loading of the most active catalyst **3** under the standard reaction conditions (Figure 4). The electron-withdrawing CN group increases the reactivity of ortho- and para-substituted bromobenzene because of the -R effect. However, 2-bromobenzonitrile (7**c**) was found marginally slower reactive and can be explained by the steric fact. 3-Bromobenzonitrile (7**b**) was found to be least reactive and unable to give complete conversion even after 8 h under 0.1% catalyst loading.

In the view of time-efficient reaction conditions, the substrate scope of various aryl bromides was explored with 0.5 mol % catalyst loading and using 2-methyl thiophene (6a) as a heteroarene under standard reaction conditions. Activated aryl bromides, containing -CN and -CHO groups at ortho and para positions 7a, 7c, and 7g, were more active and provide respective products in good yields (Scheme 2, 8aa, **8ac**, and **8ag**) within 2–3 h. –OMe and –NHCOCH₃ groups at para position, that is, 7e and 7h, decreased the reactivity of aryl bromides and the reaction time increased up to 6-12 h. The products (8ae and 8ah) were obtained in 81 and 60% yields, respectively, while using 1 mol % catalyst. -OMe at meta position 7d was comparatively active and produced 78% yield in 4 h (8ad). Bromobenzene 7f and para phenyl bromobenzene 7i afforded the respective products (8ai and 8af) in 69 and 77% yields, respectively, in 6 h. We did not get product using chlorobenzene as the arylating reagent under reaction conditions, while iodobenzene yielded only 52% yield of product 8af, and GC-GCMS indicated the formation of homocoupled biphenyl as a side product. 6-Bromo-1-methyl-1H-indazole 7j and 7-bromo-4-chloroquinoline 7k reacted slowly and afforded the desired products (8aj and 8ak) in 12 h. Finally, 5-bromo-1-methyl-1H-indole 7l was also found to be suitable and afforded 29% yield of product in 12 h by using 1 mol % of most active catalyst 3.

The substrate scope for heteroarenes was elaborated with 4bromobenzonitrile (7a) as an arylating precursor under

pubs.acs.org/joc

Article

Scheme 2. Scope of Haloarenes for C-H Arylation Reaction of 2-Methyl Thiophene^a

^{*a*}Reaction conditions: 2-methyl thiophene **6a** (1.0 mmol, 2 equiv), aryl bromides (aryl halide for entry **8af**) (0.5 mmol, 1 equiv), KOAc (3 mmol, 3 equiv), and Pd–NHC (0.0025, 0.5 mol % mmol) heated at 130 °C in a screw cap sealed tube under nitrogen atmosphere, ^{*d*}0.005 mmol, 1 mol % Pd–NHC, yield = isolated yield, and ^eGC conversion.

Scheme 3. Scope of Heteroarenes for C-H Arylation Reaction^a

^{*a*}Reaction conditions: heteroarene (1.0 mmol, 2 equiv), aryl bromide 7a (0.5 mmol, 1 equiv), KOAc (3 mmol, 3 equiv), and Pd–NHC (0.0025 mmol, 0.5 mol % mmol) heated at 130 °C in a screw cap sealed tube under nitrogen atmosphere, ^d0.005 mmol, 1 mol % Pd–NHC, yield = isolated yield, °GC conversion. DMAc = N_iN -dimethylacetamide, and reaction time not optimized.

optimized reaction conditions. Significantly, various thiophene-, pyrrole-, indole-, and furan-derived heteroarenes are suitable under standard reaction conditions and afforded the corresponding products in moderate to good yield (Scheme 3).

In particular, thiophene-derived heteroarenes such as 2-acetyl thiophene **6b**, benzo[b]thiophene **6c**, 3-bromobenzo[b] thiophene **6d**, 6-methoxybenzo[b]thiophene **6e**, 4-methoxybenzo[b]thiophene **6f**, and even more satirically hindered 3-(3,4,5-trimethoxyphenyl)benzo[b]thiophene **6g** efficiently react to afford the respective products (**9ba-9ga**) in good yields (72-85%).

After the successful implementation of our Pd-NHC catalyst on thiophene-derived heteroarenes, we became interested in another important class of heterocycles, that is, indoles, which are also important building blocks of various important biologically active organic molecules. Many substituted indoles, for example, 3-methylindole 6h, 1,3dimethylindole 6i, 1-methylindole 6j, 5-bromo-1-methylindole 7l, 5-chloro-1-methylindole 6l, and 2-(3-methyl-1H-indol-1yl)benzonitrile 6n have been examined toward the C-H arylation reaction catalyzed by Pd-NHC complex 3. 1,3-Dimethylindole 6i yielded 88% product (9ia) under optimized reaction conditions while 3-methylindole 6h afforded 62% product (9ha) yield even after 1 mol % of catalyst loading. 1-Methylindole 6j yielded two products corresponding to C2-H and C3-H activation and found more selective for C2-H activation, as products were obtained in 60:40 ratio, respectively (9'ja & 9"ja). It is noteworthy that 5-bromo-1methylindole 71 and 5-chloro-1-methylindole 61 afforded predominantly C2-H-activated products (9ka and 9la) in 69% and 71% yield, respectively. However, a less amount of C3-H-activated product can be identified by GC-GCMS. 2-(3-methyl-1H-indol-1-yl)benzonitrile 6n yielded the corresponding products in 65% (9na) and 1-acetylindole 60 remained unreacted in the standard reaction condition (90a).

We have also extended the application of our Pd–NHC catalyst toward C–H activation of pyrroles. 1-Methylpyrrole **6p** and 2-(1*H*-pyrrol-1-yl) aniline **6n** were reacted well with 4-bromobenzonitrile (7**a**) to afford the corresponding arylated product (**9pa** and **9qa**) in good yields. 2-Acetyl furan yielded the respective C–H arylated product (**9ra**) in moderate yield. Quite interestingly, benzo[*b*]furan reacted to afford the predominantly double C–H-activated product **9sa** in 79% yield. 3-Bromobenzo[*b*]thiophene also behaved as a heteroarylating agent and afforded a self hetero-arylated product, namely, 3-bromo-2,3'-bibenzo[*b*]thiophene (**10**) in 52% yield (Scheme 4).

Scheme 4. Self-Heteroarylation by C-H Activation of 3-Bromobenzo[b]thiophene

Furthermore, the bis(hetero)benzene 11(a-d) type organic framework was constructed using dibromo benzene as an

arylating agent, and the strategy is applicable for various heteroarenes. In particular, 2-methylthiophene 6a and 1-methylpyrrole 6p reacted with 1,3- and 1,4-dibromobenzene 7m and 7n to afford desired products in good yield by using 1 mol % of catalyst 3 and under optimized reaction conditions (Scheme 5).

Additionally, we have extended our synthetic methodology for catalytic double C–H arylation of unsubstituted furan **6t** and 1-methylpyrrole **6p**. Significantly, C–H-activated arylation observed selectively at C2 and C5 positions (Scheme 6). 4-Bromobenzonitrile (**7a**) reacted with respective heteroarenes to provide corresponding bis-arylated products **12 a–b** in moderate yield (55–79%). Notably, we obtained dominant or exclusively α -arylated products during arylation of a library of heteroarenes, which indicate that the catalytic cycle followed the concerted metalation–deprotonation mechanism.^{27,78}

The competitive experiment studies may provide a deep understanding of heteroarene reactivity. The results are summarized in Scheme 7. 2-Methyl thiophene **6a** was found to be more reactive toward the C–H arylation reaction with 4bromobenzonitrile **7a** as compared to the 2-acetyl thiophene **6b** (Scheme 7a) and 1,3-dimethylindole **6i** (Scheme 7b). 1,3-Dimethylindole **6i** has shown far better reactivity as compared to 3-methylindole **6h** (Scheme 7c). 1,3-Dimethylindole **6i** and 1,2-dimethylindole **6m** reacted similarly, and an equal amount of C3- and C2-activated product was observed by GC (Scheme 7d).

Last, we demonstrated the application of catalyst 3 in the synthesis of 6-methoxy-2-(4-methoxyphenyl)benzo[b]thiophene (13), which is a key intermediate for the total synthesis of bioactive raloxifene 79 and known as a selective estrogen receptor modulator (Scheme 8). 6-Methoxybenzo-[b] thiophene 6e reacted with 1-bromo-4-methoxybenzene 7e with 1 mol % of catalyst to afford 67% of the desired compound (13) under standard reaction conditions. Similarly, the practical utility of the method as a synthetic tool is highlighted by the gram-scale synthesis of compound 8aa in good (85%) yield. A comparison of precatalyst 3 has been made with some literature-reported precatalysts which are utilized for C-H arylation reaction of heteroarenes (Supporting Information Table S1). However, a fair comparison is not possible because of using different reaction conditions, arylating substrates, and temperature in various reports. Nevertheless, it resulted that precatalyst 3 afforded the arylated heteroarenes in a time-efficient way, without the requirement of any external additive, and with a decent catalyst loading.

CONCLUSIONS

The new structurally characterized Pd–NHC complexes (3-5) are active precatalysts for the C–H arylation of 2-methyl thiophene by using 4-bromobenzonitrile under optimized reaction conditions. PEPPSI-themed Pd–NHC complex (3) and (4) were found to be a better precatalyst than mixed

Scheme 5. Synthesis of Bis(hetero)benzene-Type Framework by Using Dibromo Benzene

pubs.acs.org/joc

Article

Scheme 6. C2 and C5 Activation of Heteroarenes

Scheme 7. Competitive Experiment Studies

Scheme 8. Synthesis of Intermediate Compound (13) by Direct C-H Arylation Reaction

NHC/phosphine complex (5), which again shows the superiority of these classes of NHC-derived, easily prepared, and demanding precatalysts. The aryl bromides were found to be a better choice of the arylating agent as compared to aryl iodides and aryl chlorides. The substrate scope of aryl bromide and heteroarenes elaborated with the most active precatalyst complex (3), which concluded that the reaction conditions sustain with various substituents on both the reactants. Competitive experimental studies suggest that the reactivity of heteroarenes follows the order thiophene > N-methylated indole > 1H indole in standard reaction conditions. Catalyst (3) was used to obtain an organic intermediate (13), which is a building block for a selective estrogen receptor modulator known as raloxifene. This is projecting its potential in the application for synthesis of natural products and other biologically active molecules, where the C-C bond formation reaction can be achieved in reduced steps and less metal waste manner by the C-H arylation reaction. Overall, the study keeps the NHC promise to behave as an efficient ligand in the world of chemical catalysis.

EXPERIMENTAL SECTION

General Information and Method. ¹H NMR (400 MHz) and ${}^{13}C{}^{1}H{}NMR$ (100 MHz) spectra were recorded in CDCl₃ and (CD₃)₂SO. Chemical shifts for protons and carbons are reported in ppm from tetramethylsilane and are referenced to the carbon

resonance of the solvent. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and dd = doublet of doublet), coupling constants in Hertz, and integration. The Pd-PEPPSI-IPr complex was prepared by the literature-reported procedure.⁸⁰ High-resolution mass spectra were recorded on a q-TOF electrospray mass spectrometer. X-ray diffraction data for compounds 3, 4, and 5 were collected on an Oxford Diffraction XCALIBUR diffractometer using graphitemonochromatic Mo K α radiation (λ = 0.71073 Å). Crystal data collection and refinement parameters are summarized in Table S2. The structures were solved by direct methods using SHELXS-97and refined with SHELXL-2014 using Olex2. The non-hydrogen atoms were refined anisotropically, whereas the hydrogen atoms were fixed at the calculated positions with isotropic thermal parameters. TLC analysis was performed on commercially prepared 60 F₂₅₄ silica gel plates and visualized by either UV irradiation or by staining with I₂. All purchased chemicals were used as received. Aromatic carbon signals were assigned as (Ar–C) in the ${}^{13}C{}^{1}H$ NMR spectrum of respective compounds. The preheated oil bath has been used as a heating source for the reactions performed at higher than room temperature.

Synthesis of N,N'-(Acenaphthylene-1,2-diylidene)bis(2,6-diethylaniline) (1). Acenaphthenequinone (6.00 g, 33.0 mmol), 2,6diethylaniline (10.3 g, 69.2 mmol), and ZnCl_2 (4.50 g, 33.0 mmol) were suspended in glacial acetic acid (*ca.* 100 mL). The mixture was refluxed for 2 h and then cooled to room temperature, during which a red-colored precipitate was observed. The precipitate was filtered and washed with water, followed by diethyl ether. The precipitate was dried under vacuum and further suspended in dichloromethane (*ca.*

300 mL). A solution of potassium oxalate (12.1 g, 66.0 mmol) in 30 mL of H₂O was added to the suspension and stirred vigorously for 45 min. A white precipitate of zinc oxalate was observed in the aqueous phase during this period. The organic layer was separated, washed with water (*ca.* 3×40 mL), and dried over anhydrous sodium sulfate. Finely, the organic layer was filtered and vacuum-dried to afford the product as an orange solid (12.4 g, 85%). ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.88 (d, 2H, ${}^{3}J_{HH}$ = 8 Hz, C₁₂<u>H</u>₆), 7.37 (t, 2H, ${}^{3}J_{HH}$ = 8 Hz, $C_{10}\underline{H}_{13}$), 7.22–7.15 (m, 6H, $C_{12}\underline{H}_{6}$ & $C_{10}\underline{H}_{13}$), 6.68 (d, 2H, ${}^{3}J_{\text{HH}} = 8 \text{ Hz}, C_{12}H_{6}$, 2.81–2.54 (m, 4H, C H_{2} CH₃ of C₁₀ H_{13}), 2.50– 2.42 (m, 4H, CH_2CH_3 of $C_{10}H_{13}$), 1.11 (t, 12H, ${}^3J_{HH}$ = 8 Hz, CH_2CH_3 of $C_{10}H_{13}$, ${}^{13}C{}^{1}H$ NMR (CDCl₃, 100 MHz, 25 °C): δ 160.7 (<u>C</u>=N), 148.5, 140.6, 131.0, 130.7, 129.6, 128.8, 128.1, 126.4, 123.9, 122.9 (Ar-C), 24.7 (<u>C</u>H₂CH₃), 13.9 (CH₂<u>C</u>H₃). HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $[C_{32}H_{33}N_2]$, 445.2662; found, 445.2599. (Unable to get satisfactory CHN results after multiple attempts.)

Synthesis of 1,3-Bis(2,6-diethylaniline)acenaphthylenyl-4,5-imidazolium Chloride (2). N,N'-(Acenaphthylene-1,2-diylidene)bis(2,6diethylaniline) (1) (0.800 g, 1.80 mmol) and chloromethyl ethyl ether (ca. 5 mL) were added to a thick-walled sealed tube and then the reaction mixture was allowed to stir overnight at 90 °C. A browncolored suspension was separated from a clear red solution during this period. The reaction mixture was cooled to ambient temperature and diethyl ether (ca. 20 mL) was added into it. After that, the resulting yellow precipitate was filtered off, washed with diethyl ether (ca. 60 mL), and dried under vacuum to afford a yellow solid (0.731 g, 82%). ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 11.9 (s, 1H, NC<u>H</u>N), 8.01 (d, 2H, ${}^{3}J_{\text{HH}} = 8$ Hz, $C_{12}\underline{H}_{6}$), 7.63–7.56 (m, 4H, $C_{12}\underline{H}_{6}$ & $C_{10}\underline{H}_{13}$), 7.42 (d, 4H, ${}^{3}J_{HH} = 8$ Hz, $C_{10}H_{13}$), 7.24 (d, 2H, ${}^{3}J_{HH} = 8$ Hz, $C_{12}H_{6}$), 2.74–2.57 (m, 8H, C<u>H</u>₂CH₃ of C₁₀<u>H</u>₁₃), 1.19 (t, 12H, ³J_{HH} = 8 Hz, CH₂C<u>H₃</u> of C₁₀<u>H₁₃</u>), ¹³C{¹H} MMR (CDCl₃, 100 MHz, 25 °C): δ 141.8 (NCHN), 140.1, 137.1, 131.8, 130.9, 130.5, 130.4, 129.9, 128.2, 127.7, 123.1, 123.0 (Ar-C), 24.5 (<u>CH</u>₂CH₃), 14.5 (CH₂CH₃). HRMS (ESI-TOF): 457.2632 $[M - Cl]^+$ calcd for $[C_{33}H_{33}N_2]$, 457.2638; found, 457.2632. Anal. Calcd for C33H33ClN2·2H2O: C, 74.91; H, 7.05; N, 5.29. Found: C, 75.28; H, 6.32; N, 5.90%.

Synthesis of [{1,3-Bis(2,6-diethylaniline)acenaphthylenyl-4,5imidazolium-2-ylidene}PdCl2-(pyridine)] (3). A mixture of NHC. HCl (2) (0.200 g, 0.406 mmol), PdCl₂ (0.072 g, 0.406 mmol), and K₂CO₃ (0.224 g, 1.62 mmol) was refluxed in pyridine (ca. 5 mL) for 16 h. Then, the reaction mixture was cooled to room temperature, diluted with ethyl acetate (ca. 150 mL), and then washed with an aqueous CuSO₄ solution (ca. 3×70 mL) and water (ca. 70 mL). The organic layer was separated, dried over Na2SO4, and finally vacuumdried to afford the product as a yellow solid (0.215 g, 74%). Single crystals were obtained by slow evaporation of concentrated acetonitrile solutions. ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 8.52–8.49 (m, 2H, $C_{5}H_{5}$), 7.75 (d, 2H, $J_{HH} = 8$ Hz, $C_{12}H_{6}$), 7.58 (t, 2H, ${}^{3}J_{HH} = 8$ Hz, $C_{10}\underline{H}_{13}$), 7.57–7.53 (m, 1H, $C_{5}\underline{H}_{5}$), 7.42 (d, 4H, ${}^{3}J_{\text{HH}} = 8 \text{ Hz}, C_{10}\underline{H}_{13}), 7.41-7.37 \text{ (m 2H, } C_{12}\underline{H}_{6}), 7.10 \text{ (d, 2H, } {}^{3}J_{\text{HH}} =$ 7 Hz, $C_{5}H_{5}$), 6.96 (d, 2H, ${}^{3}J_{HH}$ = 8 Hz, $C_{12}H_{6}$), 3.09–2.99 (m, 4H, CH_2CH_3 of $C_{10}H_{13}$), 2.85–2.75 (m, 4H, CH_2CH_3 of $C_{10}H_{13}$), 1.15 (t, 12H, ${}^{3}J_{HH} = 8$ Hz, CH₂C<u>H</u>₃ of C₁₀<u>H</u>₁₃), ${}^{13}C{}^{1}H$ NMR (CDCl₃, 100 MHz, 25 °C): δ 158.8 (Pd-N<u>C</u>N), 151.5, 142.0, 139.2, 137.4, 135.1, 130.1, 128.0, 127.6, 126.3, 125.8, 123.9, 121.0 (Ar-C), 24.8 (<u>CH</u>₂CH₃), 14.2 (CH₂<u>C</u>H₃). Anal. Calcd for C₃₈H₃₇Cl₂N₃Pd: C, 64.01; H, 5.23; N, 5.89. Found: C, 63.84; H, 5.06; N, 6.15%.

Synthesis of [{1,3-Bis(2,6-diethylaniline)acenaphthylenyl-4,5imidazolium-2-ylidene}PdCl₂-(3-chloropyridine)] (4). A mixture of NHC·HCl (2) (0.300 g, 0.610 mmol), PdCl₂ (0.108 g, 0.610 mmol), and K₂CO₃ (0.338 g, 2.45 mmol) was stirred at 90 °C in 3chloropyridine (*ca.* 3 mL) for 24 h. After that, 3-chloropyridine was removed by vacuum distillation to afford a crude product as a brown solid. The crude product was purified by column chromatography using petroleum ether/EtOAc (90:10 v/v) to afford a yellow solid (0.257 g, 56%). Single crystals were obtained by slow evaporation of concentrated acetonitrile solutions. ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 8.57 (s, 1H, C₃<u>H</u>₄Cl), 8.47 (d, 1H, J_{HH} = 5 Hz, C₃<u>H</u>₄Cl), 7.75 (d, 2H, J_{HH} = 8 Hz, C₁₂<u>H</u>₆), 7.58 (t, 2H, ³J_{HH} = 8 Hz, C₁₀<u>H</u>₁₃), 7.57– 7.53 (m, 1H, $C_{3}\underline{H}_{4}$ Cl), 7.43 (d, 4H, ${}^{3}J_{HH} = 8$ Hz, $C_{10}\underline{H}_{13}$), 7.41–7.37 (m 2H, $C_{12}\underline{H}_{6}$), 7.09–7.05 (m, 1H, $C_{3}\underline{H}_{4}$ Cl), 6.96 (d, 2H, ${}^{3}J_{HH} = 8$ Hz, $C_{12}\underline{H}_{6}$), 3.08–2.98 (m, 4H, $C\underline{H}_{2}$ CH₃ of $C_{10}\underline{H}_{13}$), 2.84–2.73 (m, 4H, $C\underline{H}_{2}$ CH₃ of $C_{10}\underline{H}_{13}$), 2.84–2.73 (m, 4H, $C\underline{H}_{2}$ CH₃ of $C_{10}\underline{H}_{13}$), 1.15 (t, 12H, ${}^{3}J_{HH} = 8$ Hz, $CH_{2}C\underline{H}_{3}$ of $C_{10}\underline{H}_{13}$), ${}^{13}C{}^{1}H$ NMR (CDCl₃, 100 MHz, 25 °C): δ 158.8 (Pd–N<u>C</u>N), 151.5, 142.1, 139.5, 137.4, 135.3, 130.1, 128.0, 127.6, 126.3, 123.9, 121.0 (Ar–C), 24.8 (<u>C</u>H₂CH₃), 14.2. Anal. Calcd for $C_{38}H_{36}Cl_{3}N_{3}Pd$: C, 61.06; H, 4.85; N, 5.62. Found: C, 60.59; H, 4.58; N, 5.76%.

Synthesis of [{1,3-Bis(2,6-diethylaniline)acenaphthylenyl-4,5imidazolium-2-ylidene}PdCl₂-(PPh₃)] (5). A mixture of palladium complex (3) (0.100 g, 0.140 mmol) and PPh₃ (0.036 g, 0.140 mmol) was stirred in CH₂Cl₂ (ca. 20 mL) at room temperature for 3 h. The solvent was removed under vacuum to afford the crude product as a vellow solid. The crude product was recrystallized from CH₂CN to afford the product as a yellow solid (0.112 g, 89%). Single crystals were obtained by slow evaporation of concentrated acetonitrile solutions. ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.73 (d, 2H, J_{HH} = 8 Hz, $C_{12}H_6$), 7.61 (t, 2H, ${}^{3}J_{HH}$ = 8 Hz, $C_{10}H_{13}$), 7.42 (d, 4H, ${}^{3}J_{HH}$ = 8 Hz, $C_{10}H_{13}$), 7.41–7.20 (m 17H, $C_{12}H_6$ & $C_{18}H_{15}P$), 6.99 (d, 2H, ${}^{3}J_{\text{HH}} = 8 \text{ Hz}, C_{12}\underline{H}_{6}$, 3.03–2.92 (m, 4H, C<u>H</u>₂CH₃ of C₁₀<u>H</u>₁₃), 2.88– 2.79 (m, 4H, CH_2CH_3 of $C_{10}H_{13}$), 1.09 (t, 12H, ${}^3J_{HH}$ = 8 Hz, CH₂C<u>H</u>₃ of C₁₀<u>H</u>₁₃), 13 C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 176.5 (Pd-NCN), 142.1, 139.0, 138.9, 135.5, 135.0, 134.9, 130.7, 130.2, 129.7, 129.6, 129.6, 127.8, 127.7, 127.6, 126.1, 126.0, 120.9 (Ar-C), 24.7 (<u>CH</u>₂CH₃), 14.0 (CH₂<u>C</u>H₃). Anal. Calcd for C₅₁H₄₇Cl₂N₂PPd: C, 68.35; H, 5.29; N, 3.13. Found: C, 67.87; H, 5.22; N, 3.20%.

General Procedure for Reaction Optimization, Catalyst Screening, and Kinetic Studies. 2-methyl thiophene 6a (0.6 mmol, 2 equiv), bromobenzonitrile 7a (or 7b or 7c) (0.3 mmol, 1 equiv), base (0.9 mmol, 3 equiv), and Pd–NHC (x mol %) were transferred to a screw cap sealed tube under nitrogen atmosphere. The solvent (*ca.* 2 mL) was added and the sealed tube was heated at 130 °C for the respective time. The reaction mixture was cooled to ambient temperature and an aliquot was taken out with the help of a micropipette under the nitrogen atmosphere. The aliquot was diluted with ethyl acetate and analyzed by GC-GCMS.

General Procedure for Schemes 2 and 3. Heteroarene (1.0 mmol, 2 equiv), aryl halide (0.5 mmol, 1 equiv), base (3 mmol, 3 equiv), and Pd–NHC (3) (0.5–1.0 mol %) were transferred to the screw cap sealed tube under nitrogen atmosphere. DMAc (*ca.* 3 mL) was added *via* a syringe, and the sealed tube was heated at 130 °C for the respective time. The reaction mixture was cooled to ambient temperature, diluted with ethyl acetate (*ca.* 60 mL), and then washed with water (*ca.* 3 × 15 mL). The organic layer was separated, dried over Na₂SO₄, and finally vacuum-dried to afford the crude product. The crude product was purified by column chromatography using hexane/EtOAc.

General Procedure for Scheme 5. Heteroarene (1.5 mmol, 3 equiv), dibromobenzene (0.5 mmol, 1 equiv), base (4.0 mmol, 4 equiv), and Pd-NHC (3) (1.0 mol %) were transferred to the screw cap sealed tube under nitrogen atmosphere. DMAc (*ca.* 3 mL) was added *via* a syringe and the sealed tube was at 130 °C for 12 h.

General Procedure for Scheme 6. Heteroarene (0.5 mmol, 1 equiv), dibromobenzene (1.25 mmol, 2.5 equiv), base (3.0 mmol, 3 equiv), and Pd-NHC (3) (1.0 mol %) were transferred to the screw cap sealed tube under nitrogen atmosphere. DMAc (*ca.* 3 mL) was added *via* a syringe and the sealed tube was heated at 130 °C for 12 h.

General Procedure for Competitive Experiment Studies. Heteroarenes (0.6 mmol each), 4-bromobenzonitrile 7a (0.3 mmol, 1 equiv), base (1.2 mmol, 4 equiv), and Pd–NHC ($x \mod \%$) were transferred to the screw cap sealed tube under nitrogen atmosphere. DMAc (*ca.* 2 mL) was added and the sealed tube was heated at 130 °C for the respective time. The reaction mixture was cooled to ambient temperature and an aliquot was taken out with the help of a micropipette under nitrogen atmosphere. The aliquot was diluted with ethyl acetate and analyzed by GC-GCMS.

4-(5-Methylthiophen-2-yl)benzonitrile (8aa). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to

afford 8aa as a white solid (90 mg, 90%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.61 (br, 4H, C₆<u>H</u>₄), 7.22 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 6.77 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 2.53 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 142.2, 139.6, 138.9, 132.6, 126.8, 125.5, 125.1 (Ar–C), 118.9 (<u>C</u>=N), 109.9 (Ar–C), 15.5 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₂H₁₀NS], 200.0528; found, 200.0516.

3-(5-Methylthiophen-2-yl)benzonitrile (**8ab**). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to afford **8ab** as a white solid (88 mg, 88%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.77 (s, 1H, C₆<u>H</u>₄), 7.77 (d, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.47 (d, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.41 (t, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.13 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 6.73 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 2.50 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 141.2, 139.0, 135.8, 130.0, 1129.5, 129.4, 128.5, 126.5, 124.3 (Ar–C), 118.6 (<u>C</u>=N), 112.9 (Ar–C), 15.4 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₂H₁₀NS], 200.0528; found, 200.0516.

2-(5-Methylthiophen-2-yl)benzonitrile (**8ac**). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to afford **8ac** as a white solid (89 mg, 89%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.62 (d, 1H, ³J_{HH} = 8 Hz,C₆<u>H</u>₄), 7.50 (s, 1H, C₆<u>H</u>₄), 7.49–7.48 (m, 1H, C₆<u>H</u>₄), 7.39 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 7.28– 7.24 (m, 1H, C₆<u>H</u>₄), 6.75 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 2.47 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 142.1, 137.5, 136.8, 134.1, 132.7, 129.0, 127.4, 126.9, 126.4 (Ar–C), 118.9 (<u>C</u>=N), 109.1 (Ar–C), 15.2 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₂H₁₀NS], 200.0528; found, 200.0516.

2-(3-Methoxyphenyl)-5-methylthiophene (8ad). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to afford 8ad as a white solid (79 mg, 78%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.33 (t, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.22 (d, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.18 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 7.17 (s, 1H, C₆<u>H</u>₄), 6.87 (dd, 1H, ³J_{HH} = 8 Hz, 1H, ⁴J_{HH} = 1 Hz, C₆<u>H</u>₄), 6.79–6.78 (m, 1H, C₅<u>H</u>₅S), 3.88 (s, 3H, OC<u>H</u>₃), 2.56 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), 1³C{¹H</sup>} NMR (CDCl₃, 100 MHz, 25 °C): δ 159.8, 141.7, 139.5, 135.9, 129.7, 126.1, 123.0, 118.0, 112.3, 111.0 (Ar–C), 55.0 (O<u>C</u>H₃), 15.3 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₂H₁₃OS], 206.0682; found, 206.0665.

2-(4-Methoxyphenyl)-5-methylthiophene (**8ae**). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to afford **8ae** as a white solid (82 mg, 81%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.48 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 6.98 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 6.89 (d, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 6.70–6.79 (m, 1H, C₅<u>H</u>₅S), 3.82 (s, 3H, OC<u>H</u>₃), 2.50 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H</sup> NMR (CDCl₃, 100 MHz, 25 °C): δ 158.8, 141.9, 138.4, 127.6, 126.7, 126.0, 1218, 114.2 (Ar–C), 55.3 (O<u>C</u>H₃), 15.4 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₂H₁₃OS], 206.0682; found, 206.0665.

2-Methyl-5-phenylthiophene (**8af**). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to afford **8af** as a white solid (66 mg, 69%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.58 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H₅</u>), 7.37 (t, 2H, ³J_{HH} = 8 Hz, C₆<u>H₅</u>), 7.37 (t, 2H, ³J_{HH} = 8 Hz, C₆<u>H₅</u>), 7.26 (t, 1H, ³J_{HH} = 8 Hz, C₆<u>H₅</u>), 7.13 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H₅</u>S), 6.75–6.73 (m, 1H, C₅<u>H₅</u>S), 2.53 (s, 3H, C<u>H₃</u> of C₅<u>H₅</u>S), ¹³C{¹H</sup>} NMR (CDCl₃, 100 MHz, 25 °C): δ 142.1, 139.6, 138.9, 132.6, 126.8, 125.5, 125.1, 118.9, 109.9 (Ar–C), 15.5 (<u>CH₃</u>). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₁H₁₁S], 175.0576; found, 175.0564.

4-(5-Methylthiophen-2-yl)benzaldehyde (**8ag**). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford **8ag** as a white solid (86 mg, 85%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 9.97 (s, 1H, C<u>H</u>O), 7.84 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.68 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.26 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 6.78 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 2.53 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H</sup> NMR (CDCl₃, 100 MHz, 25 °C): δ 191.5 (<u>C</u>HO), 142.1, 140.4, 140.2, 134.7, 130.4, 126.9, 126.7, 125.4, 125.2 (Ar–C), 15.6 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₂H₁₁OS], 203.0525; found, 203.0514.

N-(4-(5-*Methylthiophen-2yl)phenyl)acetamide* (**8ah**). The crude product was purified by column chromatography (hexane/EtOAc = 85/15) to afford **8ah** as a white solid (69 mg, 60%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.86 (br, 1H, N<u>H</u>COCH₃), 7.41–7.35 (m, 4H, ³J_{HH} C₆<u>H</u>₄), 6.94 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 6.61 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 2.40 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), 2.07 (s, 3H, NHCOC<u>H</u>₃), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 168.7 (<u>COCH</u>₃), 141.3, 139.1, 136.8, 131.8, 130.8, 126.1, 125.8, 122.4, 120.3 (Ar–C), 24.4 (<u>CH</u>₃), 15.4 (<u>CH</u>₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₃H₁₃NOS], 232.0791; found, 232.0778.

2-([1,1'-Biphenyl]-4-yl)-5-methylthiophene (**8ai**). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford **8ai** as a white solid (96 mg, 77%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.72–7.66 (m, 6H, C₆<u>H</u>₄ & C₆<u>H</u>₅), 7.53 (t, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₅), 7.43 (t, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₅), 7.23 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 6.84–6.82 (m, 1H, C₅<u>H</u>₅S), 2.60 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 141.5, 140.5, 139.7, 139.6, 133.7, 128.8, 127.4, 127.3, 126.8, 126.3, 125.8, 122.9 (Ar–C), 15.5 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₇H₁₅S], 251.0889; found, 251.0913.

1-Methyl-6-(5-methylthiophen-2-yl)-1H-indazole (8aj). The crude product was purified by column chromatography (hexane/ EtOAc = 90/10) to afford 8aj as a white solid (92 mg, 81%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.94 (s, 1H, C₈<u>H</u>₇N₂), 7.67 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₇N₂), 7.50 (s, 1H, C₈<u>H</u>₇N₂), 7.38 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₇N₂), 7.19 (d, 1H, ³J_{HH} = 3 Hz, C₅<u>H</u>₅S), 6.76 (d, 1H, ³J_{HH} = 3 Hz, C₅<u>H</u>₅S), 4.08 (s, 1H, C<u>H</u>₃ of C₈<u>H</u>₇N₂), 2.53 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 142.3, 140.6, 140.1, 133.2, 132.9, 126.5, 123.8, 123.3, 121.5, 119.6, 105.2 (Ar–C), 35.7 (<u>C</u>H₃), 15.7 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₃H₁₃N₂S], 229.0794; found, 229.0805.

4-*Chloro-7-(5-methylthiophen-2-yl)quinoline* (**8ak**). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford **8ak** as a white solid (92 mg, 71%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 8.71 (br, 1H₁, C₉<u>H</u>₅ClN), 8.21 (s, 1H, C₉<u>H</u>₅ClN), 8.12 (d, 1H, ³J_{HH} = 8 Hz_n, C₉<u>H</u>₅ClN), 8.12 (d, 1H, ³J_{HH} = 8 Hz_n, C₉<u>H</u>₅ClN), 7.79 (d, 1H, ³J_{HH} = 8 Hz, C₉<u>H</u>₅ClN), 7.29 (d, 1H, ³J_{HH} = 8 Hz, C₉<u>H</u>₅ClN), 7.29 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 6.76 (d, 1H, ³J_{HH} = 4 Hz, C₅<u>H</u>₅S), 2.51 (s, 3H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 150.3, 149.4, 142.4, 141.5, 140.3, 136.6, 126.6, 125.5, 125.3, 124.7, 124.5, 124.4, 120.6 (Ar–C), 15.5 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₄H₁₁ClNS], 260.0295; found, 260.0310.

4-(5-Acetylthiophen-2-yl)benzonitrile (9ba). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford 9ba as a white solid (93 mg, 82%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.72–7.70 (m, 2H, C₆<u>H₄</u>), 7.67–7.65 (m, 3H, C₆<u>H₄</u> & C₆<u>H₅</u>OS), 7.39 (d, 1H, ³J_{HH} = 4 Hz, C₆<u>H₅</u>OS), 2.56 (s, 3H, C<u>H₃</u> of C₆<u>H₅</u>OS). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 190.4 (<u>COCH₃</u>), 149.5, 144.9, 137.4, 133.3; 132.8, 127.8, 126.5, 125.7, 118.3, 112.1 (Ar–C), 26.6 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₃H₁₀NOS], 228.0478; found, 228.0492.

4-(*Benzo[b]thiophen-2-yl*)*benzonitrile* (9*ca*). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford 9*ca* as a white solid (99 mg, 85%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.83 (d, 1H, ³J_{HH} = 8 Hz, C₈H₅S), 7.80 (d, 1H, ³J_{HH} = 8 Hz, C₈H₅S), 7.76 (d, 2H, ³J_{HH} = 8 Hz, C₆H₄), 7.60 (d, 2H, ³J_{HH} = 8 Hz, C₆H₄), 7.63 (s, 1H, C₈H₅S), 7.40–7.34 (m, 2H, C₈H₅S). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 141.6, 140.2, 139.9, 138.5, 132.7, 126.7, 125.3, 124.9, 124.1, 122.3, 121.7 (Ar–C), 118.6 (*C*≡N), 111.3 (Ar–C). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₅H₁₀NS], 236.0528; found, 236.0518.

4-(3-Bromobenzo[b]thiophen-2-yl)benzonitrile (9da). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford 9da as a white solid (117 mg, 75%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.89 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.83 (d, 2H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄SBr), 7.40 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.83 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.83 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.57-7.43 (m, 2H, C₈<u>H</u>₄SBr). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 138.9, 137.7, 137.6, 135.6, 132.3, 130.1, 126.2, 125.6, 124.0, 122.3 (Ar–C), 118.5 (<u>C</u>=N), 112.2, 106.6

pubs.acs.org/joc

(Ar–C). HRMS (ESI-TOF): $[M + H]^+$ calcd for $[C_{15}H_9BrNS]$, 313.9634; found, 313.9654.

4-(6-Methoxybenzo[b]thiophen-2-yl)benzonitrile (**9ea**). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford **9ea** as a white solid (95 mg, 72%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.66–7.57 (m, 5H, C₆<u>H</u>₄ & C₈<u>H</u>₄S), 7.48 (s, 1H, C₈<u>H</u>₄S), 7.28 (s, 1H, C₈<u>H</u>₄S), 6.98–6.95 (m, 1H, C₈<u>H</u>₄S), 3.84 (s, 3H, OC<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 158.1, 141.5, 138.8, 134.2, 132.5, 126.1, 124.8, 121.3 (Ar–C), 118.7 (<u>C</u>=N), 115.1, 110.6, 104.6 (Ar–C), 55.5 (O<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₂NOS], 266.0634; found, 266.0628.

4-(4-Methoxybenzo[b]thiophen-2-yl)benzonitrile (**9fa**). The crude product was purified by column chromatography (hexane/ EtOAc = 90/10) to afford **9fa** as a white solid (100 mg, 76%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.48 (s, 1H, C₈<u>H</u>₄S), 7.68 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.58 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.36 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄S), 7.26 (t, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄S), 6.71 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄S), 3.93 (s, 3H, OC<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 155.2, 141.3, 139.8, 138.6, 132.5, 131.1, 126.5, 118.7, 118.5, 114.6, 110.8, 104.4 (Ar–C), 55.4 (O<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₂NOS], 266.0634; found, 266.0628.

4-(3-(3,4,5-Trimethoxyphenyl)benzo[b]thiophen-2-yl)benzonitrile (**9ga**). The crude product was purified by column chromatography (hexane/EtOAc = 85/15) to afford **9ga** as a white solid (166 mg, 83%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.86 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄S), 7.68 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄S), 7.52 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.42 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.40–7.37 (m, 2H, C₈<u>H</u>₄S), 6.51 (s, 2H, C₆<u>H</u>₂), 3.92 (s, 3H, OC<u>H</u>₃), 3.73 (s, 6H, OC<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 153.5, 140.3, 138.7, 137.6, 136.5, 135.0, 131.9, 129.9, 129.6, 127.6, 125.3, 124.8, 123.6, 122.0 (Ar–C), 118.4 (<u>C</u>=N), 110.8, 107.0 (Ar–C), 60.8 (O<u>C</u>H₃), 55.9 (O<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₂₄H₂₀NO₃S], 402.1158; found, 402.1166.

4-(1,3-Dimethyl-1H-indol-2-yl)benzonitrile (9ia). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford 9ia as a white solid (108 mg, 88%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.80 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.66 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄N), 7.54 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.39 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄N), 7.34 (t, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄N), 7.22 (t, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄N), 3.66 (s, 3H, C<u>H</u>₃), 2.35 (s, 3H, C<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 137.7, 136.8, 135.4, 132.0, 130.9, 128.2, 122.7, 119.5, 119.1 (Ar–C), 118.7 (C≡N), 111.1, 110.3, 109.4 (Ar–C), 31.1 (<u>C</u>H₃), 9.35 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₇H₁₅N₂], 247.1230; found, 247.1219.

4-(1-Methyl-1H-indol-2-yl)benzonitrile (9'ja). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford 9'ja as a white solid (60 mg, 60%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.78 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.68 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₅N), 7.66 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.42 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₅N), 7.33 (t, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₅N), 7.22 (t, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₅N), 7.22 (t, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₅N), 6.69 (s, 1H, C₈<u>H</u>₅N), 3.81 (s, 3H, C<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 139.5, 139.2, 137.5, 132.5, 129.7,127.9, 122.9, 121.1, 120.6 (Ar–C), 118.9 (<u>C</u>=N), 111.4, 110.0, 103.7 (Ar–C), 31.7 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₇H₁₅N₂], 247.1230; found, 247.1219.

4-(1-Methyl-1H-indol-3-yl)benzonitrile (9"ja). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford 9"ja as a white solid (41 mg, 40%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.96 (d, 1H, ³J_{HH} = 6 Hz, C₈H₅N), 7.73 (d, 4H, ³J_{HH} = 8 Hz, C₆H₄), 7.44–7.29 (m, 4H, C₈H₅N), 3.89 (s, 3H, C<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 140.8, 137.8, 133.0, 132.7, 128.1, 128.0, 127.2, 125.7, 122.7, 120.9, 119.7 (Ar–C), 119.7 (<u>C</u>=N), 115.0, 110.1, 108.5 (Ar–C), 33.3 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₃N₂], 233.1073; found, 233.1052.

4-(5-Bromo-1-methyl-1H-indol-2-yl)benzonitrile (9ka). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford 9ka as a white solid (107 mg, 69%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 8.00 (s, 1H, C₈<u>H</u>₄NBr), 7.68 (s,

4H, $C_{c}\underline{H}_{4}$), 7.38 (d, 1H, ${}^{3}J_{HH} = 8$ Hz, $C_{8}\underline{H}_{4}$ NBr), 7.31 (s, 1H, $C_{8}\underline{H}_{4}$ NBr), 7.24 (d, 1H, ${}^{3}J_{HH} = 8$ Hz, $C_{8}\underline{H}_{4}$ NBr), 3.84 (s, 3H, $C\underline{H}_{3}$). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 100 MHz, 25 °C): δ 139.8, 136.3, 132.6, 128.7, 127.1, 125.4, 122.1 (Ar–C), 119.2 ($\underline{C}\equiv$ N), 114.5, 114.2, 111.4, 108.8 (Ar–C), 33.2 ($\underline{C}H_{3}$). HRMS (ESI-TOF): [M + H]⁺ calcd for [$C_{16}H_{12}BrN_{2}$], 311.0178; found, 311.0182.

4-(5-Chloro-1-methyl-1H-indol-2-yl)benzonitrile (**9***la*). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford **9***l***a** as a white solid (94 mg, 71%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.82 (s, 1H, C₈<u>H</u>₄NCl), 7.74 (d, 1H, ³*J*_{HH} = 8 Hz, C₈<u>H</u>₄NCl), 7.66 (s, 4H, C₆<u>H</u>₄), 7.32 (s, 1H, C₈<u>H</u>₄NCl), 7.24 (d, 1H, ³*J*_{HH} = 8 Hz, C₈<u>H</u>₄NCl), 3.82 (s, 3H, C<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 143.4, 139.8, 135.9, 132.8, 128.9, 126.9, 126.6, 122.8(Ar–C), 119.0 (<u>C</u>=N), 114.5, 110.9, 108.7 (Ar–C), 33.2 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₂ClN₂], 267.0684; found, 267.0674.

4-(1,2-Dimethyl-1H-indol-3-yl)benzonitrile (**9ma**). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford **9ma** as a white solid (106 mg, 87%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.71 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.63 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄N), 7.57 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.34 (d, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄N), 7.23 (t, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄N), 7.15 (t, 1H, ³J_{HH} = 8 Hz, C₈<u>H</u>₄N), 3.75 (s, 3H, C<u>H</u>₃), 2.50 (s, 3H, C<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 141.2, 136.9, 134.6, 132.4, 129.9, 126.4, 121.8, 120.5, 119.5 (Ar–C), 118.3 (<u>C</u>=N), 112.7, 109.2, 108.8 (Ar–C), 29.9 (<u>C</u>H₃), 11.3 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₇H₁₅N₂], 247.1230; found, 247.1228.

2-(2-(4-Cyanophenyl)-3-methyl-1H-indol-1yl)benzonitrile (**9na**). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford **9na** as a white solid (108 mg, 65%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.69–7.64 (m, 3H, C₆<u>H</u>₄), 7.56 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.46–7.43 (m, 1H, C₈<u>H</u>₄N), 7.37–7.33 (m, 3H, C₈<u>H</u>₄N & C₆<u>H</u>₄), 7.27–7.25 (m, 2H, C₈<u>H</u>₄N & C₆<u>H</u>₄), 7.11–7.09 (m, 2H, C₈<u>H</u>₄N), 2.43 (s, 3H, C<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 141.1, 138.2, 136.0, 135.0, 134.0, 133.8, 131.8, 130.8, 129.9, 129.3, 128.2, 124.0, 121.2, 119.7 (Ar–C), 118.6 (<u>C</u>=N), 115.9, 114.2, 112.7, 110.8, 110.1 (Ar–C). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₂₃H₁₆N₃], 334.1339; found, 334.1324.

4-(1-Methyl-1H-pyrrol-2-yl)benzonitrile (**9pa**). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to afford **9pa** as a white solid (61 mg, 67%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.65 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.50 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 6.79–6.78 (m, 1H, C₄<u>H</u>₃N), 6.35 (dd, 1H, ³J_{HH} = 4 Hz, ⁴J_{HH} = 2 Hz, C₄<u>H</u>₃N), 6.23 (dd, 1H, ³J_{HH} = 4 Hz, ⁴J_{HH} = 2 Hz, C₄<u>H</u>₃N), 6.23 (dd, 1H, ³J_{HH} = 4 Hz, ⁴J_{HH} = 2 Hz, C₄<u>H</u>₃N), 3.71 (s, 3H, C<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 137.8, 132.9, 134.4, 128.4, 126.0 (Ar–C), 119.2 (<u>C</u>≡N), 110.9, 109.7, 108.7 (Ar–C), 35.6 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₂H₁₁N₂], 183.0917; found, 183.0917.

4-(1-(2-Aminophenyl)-1H-pyrrol-2-yl)benzonitrile (**9qa**). The crude product was purified by column chromatography (hexane/EtOAc = 85/15) to afford **9qa** as a white solid (88 mg, 68%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.42 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.25 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.19 (t, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.03 (d, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 6.88–6.84 (m, 1H, C₄<u>H</u>₃N), 6.77–6.72 (m, 2H, C₆<u>H</u>₄), 6.63 (dd, 1H, ³J_{HH} = 4 Hz, ⁴J_{HH} = 2 Hz, C₄<u>H</u>₃N), 6.42 (dd, 1H, ³J_{HH} = 4 Hz, ⁴J_{HH} = 2 Hz, C₄<u>H</u>₃N), 3.62 (br, 2H, N<u>H</u>₂). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 143.1, 137.1, 133.0, 132.2, 131.9, 129.8, 128.6, 128.1, 127.1, 126.9, 126.4, 125.9, 119.3, 119.0 (Ar–C), 118.7 (<u>C</u>=N), 116.2, 111.7, 110.5, 109.2 (Ar–C). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₇H₁₄N₃], 260.1182; found, 260.1169.

4-(5-Acetylfuran-2-yl)benzonitrile (9ra). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford 9ra as a white solid (59 mg, 56%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.84 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.67 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.24 (br, 1H, C₆<u>H</u>₅O₂), 6.90 (br, 1H, C₆<u>H</u>₅O₂), 2.50 (s, 3H, C<u>H</u>₃ of C₆<u>H</u>₅O₂). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 190.4 (<u>C</u>OCH₃), 149.5, 144.9, 137.4, 133.4, 132.8, 127.8, 126.5, 125.7

(Ar-C), 118.3 (C≡N) 112.1 (Ar-C), 26.6 (<u>C</u>H₃). HRMS (ESI-TOF): $[M + H]^+$ calcd for $[C_{13}H_{10}NO_2]$, 212.0706; found, 212.0701.

4,4'-(*Benzofuran-2,3-diyl*)/*dibenzonitrile* (**9***sa*). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford **9***s***a** as a white solid (63 mg, 79%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.79–7.78 (m, 2H, C₈<u>H</u>₄O), 7.70–7.68 (m, 2H, C₈<u>H</u>₄O & C₆<u>H</u>₄), 7.61–7.57 (m, 5H, C₈<u>H</u>₄O & C₆<u>H</u>₄), 7.46–7.40 (m, 1H, C₈<u>H</u>₄O & C₆<u>H</u>₄), 7.29–7.24 (m, 1H, C₈<u>H</u>₄O), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 141.6, 140.2, 139.9, 138.5, 132.7, 126.7, 125.3, 124.9, 124.1, 122.3, 121.7 (Ar–C), 118.6 (<u>C</u>≡N), 111.3 (Ar–C). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₂₂H₁₃N₂O], 321.1022; found, 321.1034.

3-Bromo-2,3'-Bibenzo[b]thiophene (10). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford 10 as a white solid (90 mg, 52%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.91–7.88 (m, 3H, C₈<u>H</u>₄SBr & C₈<u>H</u>₅S), 7.82–7.77 (m, 1H, C₈<u>H</u>₄SBr or C₈<u>H</u>₅S), 7.72 (s, 1H, C₈<u>H</u>₅S), 7.82–7.77 (m, 1H, C₈<u>H</u>₄SBr or C₈<u>H</u>₅S), 7.42–7.37 (m, 3H, C₈<u>H</u>₄SBr & C₈<u>H</u>₅S), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 139.8, 138.5, 138.1, 137.7, 132.0, 128.5, 128.1, 125.6, 125.4, 125.3, 124.8, 124.5, 123.6, 123.5, 122.7, 122.2, 107.5 (Ar–C). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₀BrS₂], 344.9402; found, 344.9396.

1,3-Bis(5-methylthiophen-2-yl)benzene (11a). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to afford 11a as a white solid (110 mg, 82%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.82 (s, 1H, C₆<u>H</u>₄), 7.50 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.41 (t, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.23 (d, 1H, ³J_{HH} = 1 Hz, C₅<u>H</u>₅S), 7.82 (d, 1H, ³J_{HH} = 1 Hz, C₅<u>H</u>₅S), 2.60 (s, 6H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H</sup>} NMR (CDCl₃, 100 MHz, 25 °C): δ 141.6, 139.6, 135.2, 129.2, 126.2, 124.1, 123.2, 123.1, 122.5 (Ar–C), 15.4 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₅S₂], 271.0610; found, 271.0591.

1,3-Bis(1-methyl-1H-pyrrol-2-yl)benzene (11b). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to afford 11b as a white solid (100 mg, 85%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.48–7.42 (m, 2H, C₆<u>H</u>₄), 7.36 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.41 (t, 1H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 6.75 (br, 2H, C₅<u>H</u>₆N), 6.28 (d, 2H, ³J_{HH} = 4 Hz, C₅<u>H</u>₆N), 6.24 (d, 2H, ³J_{HH} = 4 Hz, C₅<u>H</u>₆N), 3.72 (s, 6H, C<u>H</u>₃ of C₅<u>H</u>₆N). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 134.3, 133.4, 128.6, 128.3, 126.9, 127.7, 108.8, 107.8 (Ar–C), 35.1 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₇N₂], 237.1386; found, 237.1392.

1,4-Bis(5-methylthiophen-2-yl)benzene (11c). The crude product was purified by column chromatography (hexane/EtOAc = 98/02) to afford 11c as a white solid (111 mg, 82%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.51 (s, 4H, C₆<u>H</u>₄), 7.10 (d, 2H, ³J_{HH} = 1 Hz, C₅<u>H</u>₅S), 6.72 (d, 2H, ³J_{HH} = 1 Hz, C₅<u>H</u>₅S), 2.50 (s, 6H, C<u>H</u>₃ of C₅<u>H</u>₅S), ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 141.6, 139.5, 133.3, 126.3, 125.7, 122.8, 122.7 (Ar–C), 29.7 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₅S₂], 271.0610; found, 271.0591.

1,4-Bis(1-methyl-1H-pyrrol-2-yl)benzene (11d). The crude product was purified by column chromatography (hexane/EtOAc = 95/05) to afford 11d as a white solid (101 mg, 86%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.46 (s, 4H, C₆<u>H</u>₄), 6.77 (br, 2H, C₅<u>H</u>₆N), 6.30–6.29 (m, 2H, C₅<u>H</u>₆N), 6.26–6.25 (m, 2H, C₅<u>H</u>₆N), 3.75 (s, 6H, C<u>H</u>₃ of C₅<u>H</u>₆N). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 134.4, 131.8, 128.6, 124.0, 108.9, 108.0 (Ar–C), 35.3 (<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₇N₂], 237.1386; found, 237.1392.

4,4'-(Furan-2,5-diyl)dibenzonitrile (12a). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford 12a as a white solid (74 mg, 55%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.83 (d, 4H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.70 (d, 4H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 6.95 (br, 2H, C₄<u>H</u>₂O). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 153.0, 134.0, 132.9, 124.3 (Ar–C), 118.9 (<u>C</u>≡N), 111.1, 110.8 (Ar–C). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₈H₁₁N₂O], 271.0866; found, 271.0863.

4,4'-(1-Methyl-1H-pyrrole-2,5 diyl)dibenzonitrile (12b). The crude product was purified by column chromatography (hexane/ EtOAc = 90/10) to afford 12b as a white solid (112 mg, 79%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.74 (d, 4H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), pubs.acs.org/joc

7.59 (d, 4H, ${}^{3}J_{HH} = 8$ Hz, $C_{6}H_{4}$), 6.42 (br, 2H, $C_{5}H_{5}N$), 3.68 (s, 6H, CH_{3} of $C_{5}H_{5}N$). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 100 MHz, 25 °C): δ 137.3, 137.1, 132.6, 128.8 (Ar–C), 119.0 ($\underline{C}\equiv N$), 111.5, 110.5 (Ar–C), 35.1 ($\underline{C}H_{3}$). HRMS (ESI-TOF): [M + H]⁺ calcd for [$C_{19}H_{14}N_{3}$], 284.1182; found, 284.1162.

6-Methoxy-2-(4-methoxyphenyl)benzo[b]thiophene (13). The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford 13 as a white solid (90 mg, 67%), ¹H NMR (CDCl₃, 400 MHz, 25 °C): 7.53 (d, 1H, ³J_{HH} = 8 Hz C₈<u>H</u>₄S), 7.51 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 7.24 (s, 1H, C₈<u>H</u>₄S), 7.21 (s, 1H, C₈<u>H</u>₄S), 6.88 (d, 1H, ³J_{HH} = 8 Hz C₈<u>H</u>₄S), 7.85 (d, 2H, ³J_{HH} = 8 Hz, C₆<u>H</u>₄), 3.79 (s, 3H, OC<u>H</u>₃), 3.76 (s, 3H, OC<u>H</u>₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 158.4, 156.2, 140.5, 139.6, 133.9, 126.4, 126.2, 122.9, 116.7, 113.3, 103.9 (Ar–C), 54.6 (O<u>C</u>H₃), 54.3 (O<u>C</u>H₃). HRMS (ESI-TOF): [M + H]⁺ calcd for [C₁₆H₁₅O₂S], 271.0787; found, 271.0791.

Gram-Scale Synthesis of 4-(5-Methylthiophen-2-yl)benzonitrile (**8aa**). 1-Methyl thiophene **6a** (1.08 g, 11.1 mmol), 4-bromobenzonitrile 7a (1.00 g, 5.55 mmol), KOAc (1.63 g, 16.6 mmol), and Pd–NHC (3) (0.020 g, 0.028 mmol, 0.5 mol %) were transferred to the Schlenk tube under nitrogen atmosphere and DMAc (*ca.* 20 mL) was added via a syringe. The Schlenk tube was closed using a glass stopper and a steel clamp, and the reaction mixture was heated at 130 °C for the 2 h. After this, the volatiles were removed under vacuum at 80 °C, and then the reaction mixture was cooled to ambient temperature. The residue was diluted with ethyl acetate (*ca.* 150 mL) and then washed with water (*ca.* 3 × 50 mL). The organic layer was separated, dried over Na₂SO₄, and finally vacuum-dried to afford the crude product. The crude product was purified by column chromatography using petroleum ether/EtOAc to afford a white solid (0.941 g, 85%).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.0c02024.

Comparison table, NMR spectra, elemental analysis data (2-5), selected crystallographic data table (3-5), and selected GC-GCMS data (PDF) Crystallographic data of 4 (CIF) Crystallographic data of 3 (CIF) Crystallographic data of 5 (CIF)

Accession Codes

CCDC **1887442**, **1887443**, and **1887444** contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ data_request/cif, or by emailing data_request@ccdc.cam.ac. uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Akhilesh K. Verma – Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India; o orcid.org/0000-0001-7626-5003; Email: averma@acbr.du.ac.in

Authors

- Anuj Kumar Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
- Manoj Kumar Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India

Complete contact information is available at:

https://pubs.acs.org/10.1021/acs.joc.0c02024

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The research work was supported by SERB (EEQ/2018/ 000317) and PDF/2016/002263 from Science & Engineering Research Board, Department of Science & Technology (SERB-DST), Government of India. M.K. thanks CSIR, New Delhi, for the research fellowship.

REFERENCES

(1) John, A.; Joule, K. M. Heterocyclic Chemistry, 5th ed.; Wiley, 2010.

(2) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, 2nd. ed.; Wileys, 2014.

(3) Pitts, A. K.; O'Hara, F.; Snell, R. H.; Gaunt, M. J. A Concise and Scalable Strategy for the Total Synthesis of Dictyodendrin B Based on Sequential C-H Functionalization. *Angew. Chem., Int. Ed.* **2015**, *54*, 5451–5455.

(4) Keri, R. S.; Chand, K.; Budagumpi, S.; Balappa Somappa, S.; Patil, S. A.; Nagaraja, B. M. An overview of benzo[b]thiophene-based medicinal chemistry. *Eur. J. Med. Chem.* **2017**, *138*, 1002–1033.

(5) Ferretti, G.; Bacchetti, T.; Simental-Mendía, L. E.; Reiner, Ž.; Banach, M.; Sahebkar, A. Raloxifene Lowers Plasma Lipoprotein(a) Concentrations: a Systematic Review and Meta-analysis of Randomized Placebo-Controlled Trials. *Cardiovasc. Drugs Ther.* **201**7, *31*, 197–208.

(6) Rey, J.; Hu, H.; Kyle, F.; Lai, C.-F.; Buluwela, L.; Coombes, R. C.; Ortlund, E. A.; Ali, S.; Snyder, J. P.; Barrett, A. G. M. Discovery of a New Class of Liver Receptor Homolog-1 (LRH-1) Antagonists: Virtual Screening, Synthesis and Biological Evaluation. *ChemMed*-*Chem* **2012**, *7*, 1909–1914.

(7) Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. *Eur. J. Med. Chem.* **2018**, *150*, 9–29.

(8) Limbadri, S.; Luo, X.; Lin, X.; Liao, S.; Wang, J.; Zhou, X.; Yang, B.; Liu, Y. Bioactive Novel Indole Alkaloids and Steroids from Deep Sea-Derived Fungus Aspergillus fumigatus SCSIO 41012. *Molecules* **2018**, *23*, 2379.

(9) Kaushik, N.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.; Verma, A.; Choi, E. Biomedical Importance of Indoles. *Molecules* **2013**, *18*, 6620–6662.

(10) Kumar, A.; Gangwar, M. K.; Prakasham, A. P.; Mhatre, D.; Kalita, A. C.; Ghosh, P. Accessing a Biologically Relevant Benzofuran Skeleton by a One-Pot Tandem Heck Alkynylation/Cyclization Reaction Using Well-Defined Palladium N-Heterocyclic Carbene Complexes. *Inorg. Chem.* **2016**, *55*, 2882–2893.

(11) Flynn, B. L.; Gill, G. S.; Grobelny, D. W.; Chaplin, J. H.; Paul, D.; Leske, A. F.; Lavranos, T. C.; Chalmers, D. K.; Charman, S. A.; Kostewicz, E.; Shackleford, D. M.; Morizzi, J.; Hamel, E.; Jung, M. K.; Kremmidiotis, G. Discovery of 7-Hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a Tubulin Polymerization Inhibitor with Potent Antiproliferative and Tumor Vascular Disrupting Properties. J. Med. Chem. 2011, 54, 6014–6027.

(12) Singh, S. N.; Fletcher, R. D.; Fisher, S. G.; Singh, B. N.; Lewis, H. D.; Deedwania, P. C.; Massie, B. M.; Colling, C.; Lazzeri, D. Amiodarone in Patients with Congestive Heart Failure and Asymptomatic Ventricular Arrhythmia. *N. Engl. J. Med.* **1995**, 333, 77–82.

(13) Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. Practical Aspects of Carbon-Carbon Cross-Coupling Reactions Using Heteroarenes. *Org. Process Res. Dev.* **2010**, *14*, 30–47.

(14) Miralles, N.; Maza, R. J.; Fernández, E. Synthesis and Reactivity of 1,1-Diborylalkanes towards C-C Bond Formation and Related Mechanisms. *Adv. Synth. Catal.* **2018**, *360*, 1306–1327.

(15) Choi, J.; Fu, G. C. Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry. *Science* **2017**, *356*, No. eaaf7230.

(16) Schmidt, N. G.; Eger, E.; Kroutil, W. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products. *ACS Catal.* **2016**, *6*, 4286–4311.

(17) Yang, H.; Yang, X.; Tang, W. Transition-metal catalyzed asymmetric carbon-carbon cross-coupling with chiral ligands. *Tetrahedron* **2016**, *72*, 6143–6174.

(18) Henrion, M.; Ritleng, V.; Chetcuti, M. J. Nickel N-Heterocyclic Carbene-Catalyzed C–C Bond Formation: Reactions and Mechanistic Aspects. ACS Catal. 2015, 5, 1283–1302.

(19) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C-C Bonds. *Chem. Rev.* **2015**, *115*, 9587–9652.

(20) Roscales, S.; Csákÿ, A. G. Transition-metal-free C-C bond forming reactions of aryl, alkenyl and alkynylboronic acids and their derivatives. *Chem. Soc. Rev.* **2014**, *43*, 8215–8225.

(21) Wedi, P.; van Gemmeren, M. Arene-Limited Nondirected C-H Activation of Arenes. *Angew. Chem., Int. Ed.* **2018**, *57*, 13016–13027.

(22) Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H Coupling Reactions between Two (Hetero)arenes. *Chem. Rev.* 2017, 117, 8787–8863.

(23) Mercier, L. G.; Leclerc, M. Direct (Hetero)Arylation: A New Tool for Polymer Chemists. *Acc. Chem. Res.* 2013, *46*, 1597–1605.

(24) Churruca, F.; Hernández, S.; Perea, M.; SanMartin, R.; Domínguez, E. Direct access to pyrazolo(benzo)thienoquinolines. Highly effective palladium catalysts for the intramolecular C–H heteroarylation of arenes. *Chem. Commun.* **2013**, *49*, 1413–1415.

(25) Gao, Y.; Zhu, W.; Yin, L.; Dong, B.; Fu, J.; Ye, Z.; Xue, F.; Jiang, C. Palladium-catalyzed direct C2-arylation of free (NH) indoles via norbornene-mediated regioselective CH activation. *Tetrahedron Lett.* **2017**, *58*, 2213–2216.

(26) Reay, A. J.; Hammarback, L. A.; Bray, J. T. W.; Sheridan, T.; Turnbull, D.; Whitwood, A. C.; Fairlamb, I. J. S. Mild and Regioselective $Pd(OAc)_2$ -Catalyzed C–H Arylation of Tryptophans by [ArN₂]X, Promoted by Tosic Acid. ACS Catal. **2017**, 7, 5174– 5179.

(27) Théveau, L.; Schneider, C.; Fruit, C.; Hoarau, C. Orthogonal Palladium-Catalyzed Direct C–H Bond Arylation of Heteroaromatics with Aryl Halides. *ChemCatChem* **2016**, *8*, 3183–3194.

(28) Ting, C. P.; Maimone, T. J. C-H Bond Arylation in the Synthesis of Aryltetralin Lignans: A Short Total Synthesis of Podophyllotoxin. *Angew. Chem., Int. Ed.* **2014**, *53*, 3115-3119.

(29) Shibahara, F.; Asai, Y.; Murai, T. Chelation-Assisted β -Selective Direct C–H Bond Arylation of 2-Thienylthioamide Catalyzed by Palladium–1,10-Phenanthroline Complexes. *Asian J. Org. Chem.* **2018**, *7*, 1323–1326.

(30) Yanagisawa, S.; Itami, K. tert-Butoxide-Mediated C–H Bond Arylation of Aromatic Compounds with Haloarenes. *ChemCatChem* **2011**, *3*, 827–829.

(31) Kamiya, H.; Yanagisawa, S.; Hiroto, S.; Itami, K.; Shinokubo, H. Functionalization of a Simple Dithienylethene via Palladium-Catalyzed Regioselective Direct Arylation. *Org. Lett.* **2011**, *13*, 6394–6397.

(32) Meyer, C.; Neue, B.; Schepmann, D.; Yanagisawa, S.; Yamaguchi, J.; Würthwein, E.-U.; Itami, K.; Wünsch, B. Exploitation of an additional hydrophobic pocket of σ 1 receptors: Late-stage diverse modifications of spirocyclic thiophenes by C–H bond functionalization. *Org. Biomol. Chem.* **2011**, *9*, 8016–8029.

(33) Yanagisawa, S.; Ueda, K.; Sekizawa, H.; Itami, K. Programmed Synthesis of Tetraarylthiophenes through Sequential C–H Arylation. *J. Am. Chem. Soc.* **2009**, *131*, 14622–14623.

(34) Ouyang, J.-S.; Li, Y.-F.; Shen, D.-S.; Ke, Z.; Liu, F.-S. Bulky α diimine palladium complexes: highly efficient for direct C–H bond arylation of heteroarenes under aerobic conditions. *Dalton Trans.* **2016**, 45, 14919–14927.

(35) Luo, B.-T.; Liu, H.; Lin, Z.-J.; Jiang, J.; Shen, D.-S.; Liu, R.-Z.; Ke, Z.; Liu, F.-S. Aerobic and Efficient Direct Arylation of Five-Membered Heteroarenes and Their Benzocondensed Derivatives with Aryl Bromides by Bulky α -Hydroxyimine Palladium Complexes. *Organometallics* **2015**, *34*, 4881–4894.

(36) Li, Y.; Wang, J.; Huang, M.; Wang, Z.; Wu, Y.; Wu, Y. Direct C-H Arylation of Thiophenes at Low Catalyst Loading of a Phosphine-Free Bis(alkoxo)palladium Complex. J. Org. Chem. 2014, 79, 2890-2897.

(37) Wu, H.-C.; Chu, J.-H.; Li, C.-W.; Hwang, L.-C.; Wu, M.-J. Palladium-Catalyzed Regioselective Arylation of Pyrazolo[1,5-a]-pyridines via C-H Activation and Synthetic Applications on P38 Kinase Inhibitors. *Organometallics* **2016**, *35*, 288–300.

(38) Shigenobu, M.; Takenaka, K.; Sasai, H. Palladium-Catalyzed Direct C·H Arylation of Isoxazoles at the 5-Position. *Angew. Chem., Int. Ed.* **2015**, *54*, 9572–9576.

(39) Bedford, R. B.; Durrant, S. J.; Montgomery, M. Catalyst-Switchable Regiocontrol in the Direct Arylation of Remote C-H Groups in Pyrazolo[1,5-a]pyrimidines. *Angew. Chem., Int. Ed.* **2015**, *54*, 8787–8790.

(40) Wang, W.; Cui, L.; Sun, P.; Shi, L.; Yue, C.; Li, F. Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. *Chem. Rev.* **2018**, *118*, 9843–9929.

(41) Vivancos, Á.; Segarra, C.; Albrecht, M. Mesoionic and Related Less Heteroatom-Stabilized N-Heterocyclic Carbene Complexes: Synthesis, Catalysis, and Other Applications. *Chem. Rev.* **2018**, *118*, 9493–9586.

(42) Janssen-Müller, D.; Schlepphorst, C.; Glorius, F. Privileged chiral N-heterocyclic carbene ligands for asymmetric transition-metal catalysis. *Chem. Soc. Rev.* **2017**, *46*, 4845–4854.

(43) Zhang, C.; Hooper, J. F.; Lupton, D. W. N-Heterocyclic Carbene Catalysis via the α , β -Unsaturated Acyl Azolium. ACS Catal. **2017**, 7, 2583–2596.

(44) Zhao, D.; Candish, L.; Paul, D.; Glorius, F. N-Heterocyclic Carbenes in Asymmetric Hydrogenation. *ACS Catal.* **2016**, *6*, 5978–5988.

(45) Menon, R. S.; Biju, A. T.; Nair, V. Recent advances in employing homoenolates generated by N-heterocyclic carbene (NHC) catalysis in carbon-carbon bond-forming reactions. *Chem. Soc. Rev.* **2015**, *44*, 5040–5052.

(46) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. *Nature* **2014**, *510*, 485–496.

(47) Cohen, D. T.; Scheidt, K. A. Cooperative Lewis acid/Nheterocyclic carbene catalysis. *Chem. Sci.* **2012**, *3*, 53–57.

(48) Patil, N. T. Merging metal and N-heterocyclic carbene catalysis: on the way to discovering enantioselective organic transformations. *Angew. Chem., Int. Ed.* **2011**, *50*, 1759–1761.

(49) Huynh, H. V. Electronic Properties of N-Heterocyclic Carbenes and Their Experimental Determination. *Chem. Rev.* **2018**, *118*, 9457–9492.

(50) Wang, N.; Xu, J.; Lee, J. K. The importance of N-heterocyclic carbene basicity in organocatalysis. *Org. Biomol. Chem.* **2018**, *16*, 8230–8244.

(51) Balcells, D.; Nova, A. Designing Pd and Ni Catalysts for Cross-Coupling Reactions by Minimizing Off-Cycle Species. *ACS Catal.* **2018**, *8*, 3499–3515.

(52) Froese, R. D. J.; Lombardi, C.; Pompeo, M.; Rucker, R. P.; Organ, M. G. Designing Pd-N-Heterocyclic Carbene Complexes for High Reactivity and Selectivity for Cross-Coupling Applications. *Acc. Chem. Res.* **2017**, *50*, 2244–2253.

(53) Würtz, S.; Glorius, F. Surveying Sterically Demanding N-Heterocyclic Carbene Ligands with Restricted Flexibility for Palladium-catalyzed Cross-Coupling Reactions. *Acc. Chem. Res.* **2008**, *41*, 1523–1533.

(54) Shi, S.; Nolan, S. P.; Szostak, M. Well-Defined Palladium(II)-NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N-C/O-C Cleavage. *Acc. Chem. Res.* **2018**, *51*, 2589– 2599. (55) Valente, C.; Pompeo, M.; Sayah, M.; Organ, M. G. Carbon-Heteroatom Coupling Using Pd-PEPPSI Complexes. *Org. Process Res. Dev.* 2014, *18*, 180–190.

(56) Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. The Development of Bulky Palladium NHC Complexes for the Most-Challenging Cross-Coupling Reactions. *Angew. Chem., Int. Ed.* **2012**, *51*, 3314–3332.

(57) Fortman, G. C.; Nolan, S. P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. *Chem. Soc. Rev.* **2011**, *40*, 5151–5169.

(58) Marion, N.; Nolan, S. P. Well-Defined N-Heterocyclic Carbenes-Palladium(II) Precatalysts for Cross-Coupling Reactions. *Acc. Chem. Res.* **2008**, *41*, 1440–1449.

(59) Valente, C.; Belowich, M. E.; Hadei, N.; Organ, M. G. Pd-PEPPSI Complexes and the Negishi Reaction. *Eur. J. Org. Chem.* **2010**, 4343–4354.

(60) Yin, S.-C.; Zhou, Q.; He, Q.-W.; Li, S.-W.; Qian, P.-C.; Shao, L.-X. N -Heterocyclic carbene-Pd(II)-1-methylimidazole complex catalyzed C H bond arylation of (benzo)thiophenes with aryl chlorides. *Tetrahedron* **2017**, *73*, 427–431.

(61) Yin, S.-C.; Zhou, Q.; Zhao, X.-Y.; Shao, L.-X. N-Heterocyclic Carbene-Palladium(II)-1-Methylimidazole Complex Catalyzed Direct C-H Bond Arylation of Benzo[b]furans with Aryl Chlorides. *J. Org. Chem.* **2015**, *80*, 8916–8921.

(62) Ji, Y.-Y.; Zhang, Y.; Hu, Y.-Y.; Shao, L.-X. N-heterocyclic carbene-Pd(II)-1-methylimidazole complex catalyzed C–H bond benzylation of (benzo)oxazoles with benzyl chlorides. *Tetrahedron* **2015**, *71*, 6818–6823.

(63) Kaloğlu, M.; Kaloğlu, N.; Özdemir, İ. Direct C-H Bond Arylation of C2-Blocked Pyrrole with Aryl Halides Using Palladium-(II)-N-Heterocyclic Carbene Catalysts. *ChemistrySelect* **2018**, *3*, 5600–5607.

(64) Kaloğlu, M.; Özdemir, İ.; Dorcet, V.; Bruneau, C.; Doucet, H. PEPPSI-Type Palladium–NHC Complexes: Synthesis, Characterization, and Catalytic Activity in the Direct C5-Arylation of 2-Substituted Thiophene Derivatives with Aryl Halides. *Eur. J. Inorg. Chem.* **2017**, 1382–1391.

(65) Ozdemir, I.; Gök, Y.; Özeroglu, Ö.; Kaloglu, M.; Doucet, H.; Bruneau, C. N-Heterocyclic Carbenes: Useful Ligands for the Palladium-Catalysed Direct C5 Arylation of Heteroaromatics with Aryl Bromides or Electron-Deficient Aryl Chlorides. *Eur. J. Inorg. Chem.* **2010**, 1798–1805.

(66) Doğan, O.; Gürbüz, N.; Ozdemir, I.; Çetinkaya, B.; Sahin, O.; Büyükgüngör, O. Synthesis, characterization and catalytic activity of novel N-heterocyclic carbene-palladium complexes. *Dalton Trans.* **2009**, 7087–7093.

(67) Hu, L.-Q.; Deng, R.-L.; Li, Y.-F.; Zeng, C.-J.; Shen, D.-S.; Liu, F.-S. Developing Bis(imino)acenaphthene-Supported N-Heterocyclic Carbene Palladium Precatalysts for Direct Arylation of Azoles. *Organometallics* **2018**, *37*, 214–226.

(68) Campeau, L.-C.; Thansandote, P.; Fagnou, K. High-Yielding Intramolecular Direct Arylation Reactions with Aryl Chlorides. *Org. Lett.* **2005**, *7*, 1857–1860.

(69) Kumar, M.; Verma, S.; Mishra, P. K.; Verma, A. K. Cu(II)-Mediated Ortho-C–H Amination of Arenes with Free Amines. *J. Org. Chem.* **2019**, *84*, 8067–8079.

(70) Kumar, M.; Verma, S.; Kumar, A.; Mishra, P. K.; Ramabhadran, R. O.; Banerjee, S.; Verma, A. K. Mechanistic insights of Cu(ii)mediated ortho-C–H amination of arenes by capturing fleeting intermediates and theoretical calculations. *Chem. Commun.* **2019**, *55*, 9359–9362.

(71) Kumar, P.; Garg, V.; Kumar, M.; Verma, A. K. Rh(iii)-catalyzed alkynylation: synthesis of functionalized quinolines from amino-hydrazones. *Chem. Commun.* **2019**, *55*, 12168–12171.

(72) Kumar, A.; Ghosh, P. Studies of the Electronic Properties of N-Heterocyclic Carbene Ligands in the Context of Homogeneous Catalysis and Bioorganometallic Chemistry. *Eur. J. Inorg. Chem.* **2012**, 3955–3969.

М

(73) Kumar, A.; Naaz, A.; Prakasham, A. P.; Gangwar, M. K.; Butcher, R. J.; Panda, D.; Ghosh, P. Potent Anticancer Activity with High Selectivity of a Chiral Palladium N-Heterocyclic Carbene Complex. *ACS Omega* **2017**, *2*, 4632–4646.

(74) Tu, T.; Sun, Z.; Fang, W.; Xu, M.; Zhou, Y. Robust Acenaphthoimidazolylidene Palladium Complexes: Highly Efficient Catalysts for Suzuki–Miyaura Couplings with Sterically Hindered Substrates. *Org. Lett.* **2012**, *14*, 4250–4253.

(75) Verlinden, K.; Buhl, H.; Frank, W.; Ganter, C. Determining the Ligand Properties of N-Heterocyclic Carbenes from ⁷⁷Se NMR Parameters. *Eur. J. Inorg. Chem.* **2015**, 2015, 2416–2425.

(76) Meng, G.; Kakalis, L.; Nolan, S. P.; Szostak, M. A simple ¹H NMR method for determining the σ -donor properties of N-heterocyclic carbenes. *Tetrahedron Lett.* **2019**, *60*, 378–381.

(77) Lan, X.-B.; Chen, F.-M.; Ma, B.-B.; Shen, D.-S.; Liu, F.-S. Pd-PEPPSI Complexes Bearing Bulky [(1,2-Di-(tert-butyl)acenaphthyl] (DtBu-An) on N-Heterocarbene Backbones: Highly Efficient for Suzuki–Miyaura Cross-Coupling under Aerobic Conditions. *Organometallics* **2016**, 35, 3852–3860.

(78) Tang, S.-Y.; Guo, Q.-X.; Fu, Y. Mechanistic Origin of Ligand-Controlled Regioselectivity in Pd-Catalyzed C-H Activation/ Arylation of Thiophenes. *Chem.—Eur. J.* 2011, *17*, 13866–13876.

(79) Schmid, C. R.; Sluka, J. P.; Duke, K. M. Nucleophilic aromatic substitution on 3-aroyl-2-arylbenzothiophenes. Rapid access to raloxifene and other selective estrogen receptor modulators. *Tetrahedron Lett.* **1999**, *40*, 675–678.

(80) Nasielski, J.; Hadei, N.; Achonduh, G.; Kantchev, E. A. B.; O'Brien, C. J.; Lough, A.; Organ, M. G. Structure-activity relationship analysis of Pd-PEPPSI complexes in cross-couplings: a close inspection of the catalytic cycle and the precatalyst activation model. *Chem.*—*Eur. J.* **2010**, *16*, 10844–10853.