was evapt to 6 l., diluted with H_2O (6 l.) and extracted with C_6H_6 . Evapn of the C_6H_6 fraction yielded a brown, oily residue (290 g),

which was fractioned on a silica gel column with petrol and

petrol-CH₂Cl₂ (19:1, 9:1, 4:1, 7:3, 1:1), then on a polyamide

column (MeOH-H₂O, 2:3, 3:2, 7:3, 4:1). The flavanone-

containing fractions were purified on silica gel prep. layers in n-

hexane-Me₂CO (4:1), n-hexane-EtOAc (4:1) and C₆H₆-EtOAc

(19:1). By this method, 10 mg of amoradin (1), 610 mg of

amoradicin (2) and 1.5 mg of amoradinin (3) were obtained in crystalline form. R_f (C_6H_6 -EtOAc, 19:1): 1 0.28; 2 0.09; 3 0.42; (*n*-

REFERENCES

1. Rózsa, Zs., Hohmann, J., Czakó, M., Mester, I., Reisch, J. and

2. Hohmann, J., Rózsa, Zs., Reisch, J. and Szendrei, K. (1982)

3. Rózsa, Zs., Hohmann, J., Reisch, J., Mester, I. and Szendrei K.

4. Rózsa, Zs., Hohmann, J., Szendrei, K., Reisch, J. and Mester, I.

5. Harborne, J. B., Mabry, T. J. and Mabry, H. (1975) The

Szendrei, K. (1981) Proc. Int. Bioflavonoid Symp. 245.

hexane-Me₂CO, 4:1): 1 0.22; 2 0.10; 3 0.23.

Herba Hung, 179.

(1982) Phytochemistry 21, 1827.

Flavonoids. Chapman & Hall, London.

(1982) Heterocycles 19, 1793.

hydroxyl, a methoxyl and two prenyl groups. According to the fragment $[B]^+$, 1 has a hydroxyl (m/z 120) in the 4'-position, while 2 has two hydroxyl groups (m/z 136) in the 3',4'-position.

The substitution pattern of ring A was determined by the 13 C NMR chemical shifts (Table 1), by placing the methoxyl group at C-7 and the prenyl substituents at C-6 and C-8 in 1 (5,4'-dihydroxy-7-methoxy-6,8-di-Cprenylflavanone) and 2 (5,3',4'-trihydroxy-7-methoxy-6,8di-C-prenylflavanone).

The ¹H NMR spectrum of 3 showed two methoxyl groups (δ 3.91, 3.75) and a chelated hydroxyl group (δ 12.02). Methylation gave a product which was identical to the dimethyl ether of 2. Compounds 2 and 3 had identical UV spectra with diagnostic reagents, thus one of the methoxyl groups in 3 must be at C-7. On the basis of these data it could not be decided whether the second methoxyl is at the C-3' or at the C-4'-position. The structural investigations could not be extended because of scarcity of the isolated compound.

EXPERIMENTAL

Extraction and isolation. Dried, powdered root bark of A. fruticosa L. (14 kg) was percolated with MeOH (70 l.). The extract

Phytochemistry, Vol. 23, No. 8, pp. 1819–1821, 1984. Printed in Great Britain. 0031-9422/84 \$3.00 + 0.00 © 1984 Pergamon Press Ltd.

PHENOLIC DERIVATIVES FROM ARTEMISIA CAMPESTRIS SUBSP. GLUTINOSA

J. DE PASCUAL TERESA, M. S. GONZÁLEZ, M. R. MURIEL and I. S. BELLIDO

Department of Organic Chemistry, Salamanca University, Spain

(Revised received 6 January 1984)

Key Word Index-Artemisia campestris; Compositae; flavonoids; acetophenone derivatives.

Abstract—From the hexane extract of Artemisia campestris subsp. glutinosa, sakuranetin, dihydroquercetin-7,3'dimethyl ether and three acetophenone derivatives identified as 3-[4-acetoxyisopent-2(Z)-enyl]-4hydroxyacetophenone, 3-[4-acetoxyisopent-2(E)-enyl]-4-hydroxyacetophenone and 3-(3-acetoxymethyl-2-hydroxybut-3-enyl)-4-hydroxyacetophenone, have been isolated.

INTRODUCTION

Column chromatography of the weakly acidic fraction of the hexane extract of Artemisia campestris L., subsp. glutinosa (Gay ex Besser) Batt., afforded the previously reported acetophenone derivatives [1, 2], sakuranetin [3], dihydroquercetin-7,3'-dimethyl ether [4] and three acetophenone derivatives, 1-3.

RESULTS AND DISCUSSION

Compounds 1 and 2 were chromatographically very similar and showed practically the same spectral properties: $[M]^+$ at m/z 262 (C₁₅H₁₈O₄); IR spectra with

spectra showed the presence of one 1,3,4-trisubstituted aromatic ring, the substituents being identified as COMe, OH and 4-acetoxyisopent-2-enyl groups (Table 1). The only significant difference was the signal due to the CH₂OAc groups, which appeared in both as singlets, but at δ 4.72 in 1, and 4.45 in 2. This difference suggested that 1 and 2 may be one pair of (Z) and (E) stereoisomers [2]. The stereochemistry (Z) for 1 and (E) for 2, was confirmed by acetylation and saponification of 1 and 2, which gave 1a or 2a and 1b or 2b, respectively. Compounds 1b and 2b were identical in all respects with those already isolated from A. campestris [2].

bands at v_{max} 3300 (OH), 1680 (C=O), 1640 (C=C), 1600,

1500 (aromatic) and 1740, 1270 (OAc) cm⁻¹; the ¹H NMR

Table 1. ¹H NMR spectral data for 1-3 and 1a-3a (60 MHz, CDCl₃, TMS)

	1	la	2	2a	3	3 a
— H-2	7.72 d (2)*	7.83 d (2)	7.64 d (2)	7.90 d (2)	7.68 d (2)	7.80 d (2)
H-5	6.89 d (8)	7.10 d (8)	6.76 d (8)	7.16 d (8)	6.83 d (8)	7.10 d (8)
H-6	7.64 dd (8, 2)	7.70 dd (8, 2)	7.58 dd (8, 2)	7.85 dd (8, 2)	7.58 dd (8, 2)	7.75 dd (8, 2)
H-8	2.56 s	2.58 s	2.52 s	2.54 s	2.51 s	2.55 s
H-9	3.44 d (8)	3.38 d (7)	3.37 d (8)	3.36 d (7)	3.06 d (7)	2.95 d (7)
H-10	5.54 t (8)	5.47 t (7)	5.50 t (8)	5.60 t (7)	4.13 t (7)	5.45 t (7)
H-12	1.81 br s	1.82 s	4.45 br s	4.52 s	5.18 s 5.25 s	5.10 s 5.20 s
H-13	4.72 br s	4.68 s	1.76 s	1.76 s	4.60 br s	4.60 br s
Ph-OH	8.84 s		9.67s		9.54 s	
Ph-OAc		2.33 s		2.37 s		2.36 s
R-OAc	2.11 s	2.10 s	2.04 s	2.08 s	2.19 s	2.10 s 1.98 s

*Coupling constants in Hz are given in parentheses.

Compound 3 had $[M]^+ m/z$ 278 (C₁₅H₁₈O₅) and IR spectrum with v_{max} cm⁻¹: 3300 (OH), 1690 (C=O), 1650 (C=C), 1600, 1500 (aromatic), 890 (C=CH₂) and 1740, 1270 (OAc). Its ¹H NMR spectrum suggested the presence of a 1,3,4-trisubstituted aromatic ring with the COMe, OH and 3-acetoxymethyl-2-hydroxybut-3-enyl groups as substituents (Table 1). Acetylation of 3 gave 3a, $[\alpha]_D = -0.8^\circ$ and IR spectrum v cm⁻¹: 1760 and 1740 (Ar-OAc and R-OAc). Its ¹H NMR (Table 1) showed signals at δ 1.98, 2.10 and 2.36 (three OAc groups); the signal at δ 5.45 (1H, J = 7 Hz) confirmed that one of the acetoxyl groups was secondary. The proposed structure for 3, was confirmed by transformation of 1a in 3a: epoxidation of 1a with *m*-chloroperbenzoic acid gave the epoxide 4, which by acetolysis with HOAc-NaOAc [5], gave 5. Dehydration of 5 with POCl₃-pyridine [6] afforded (±)3a.

EXPERIMENTAL

Mps are uncorr. UV spectra were recorded in EtOH and ¹H NMR at 60 MHz using TMS as int. standard. Analytical TLC was performed on silica gel (Merck No 7731) and CC on silica gel 60 (Merck No 7734).

Extraction and isolation of compounds. Plant material collected near 'La Flecha' (Salamanca) was identified by Prof. B. Casaseca Mena. A voucher specimen (Herbarium No 7362) is kept at the Botany Department of Salamanca University. The aerial parts of the plant (2.6 kg) were finely ground and extracted with hexane. The extract, previously steam-distilled consisted of ca 65 % of a neutral fraction and ca 35 % of an acidic fraction. The alkaline aq. soln of the acidic fraction was satd with CO_2 (pH 7.5–8) and extracted with Et_2O , to give 24.0 g of weak acids (20 % of extract), which were chromatographed on silica gel and eluted with C_6H_6 -Et₂O mixtures and Et₂O, giving several acetophenone derivatives [1, 2], sakuranetin (50 mg), dihydroquercetin-7,3'- dimethyl ether (62 mg), 1 (213 mg), 2 (97 mg) and 3 (30 mg).

3-[4-Acetoxyisopent-2(Z)-enyl]-4-hydroxyacetophenone (1). Viscous oil; UV λ_{max}^{EiOH} nm: 226 (ϵ 15.438), 280 (ϵ 12.652); IR ν cm⁻¹: 3300 (OH) 1740, 1270 (acetate), 1690 (C=O), 1600, 1500 (aromatic), 1350, 1130, 1020, 820; ¹H NMR (Table 1); MS m/z (%): 262 [M]⁺ (7), 202 [M-HOAc]⁺ (17), 187 [202 - Me]⁺ (29), 159 [187 - CO]⁺ (18), 144 (10), 131 (7), 85 (77), 83 [C₅H₇O]⁺ (100). Acetylation of 1 (45 mg) gave 1a (48 mg), oil; IR ν cm⁻¹: 1750, 1715, 1250, 1215 (two acetates), 1670 (C=O), 1590, 1500; ¹H NMR (Table 1); [M]⁺ m/z 304 (C₁₇H₂₀O₅). Alkaline hydrolysis of 1 (27 mg) with KOH-MeOH (10%, 4 ml) gave the dihydroxy compound 1b (20 mg), identical in all respects with the natural product [2].

3-[4-Acetoxyisopent-2(E)-enyl]-4-hydroxyacetophenone (2). Viscous oil; UV λ_{max}^{ECOH} nm: 228 (ε18 724), 282 (ε14 337); IR v cm⁻¹: 3280 (OH), 1740, 1270 (acetate), 1680 (C=O), 1590, 1510 (aromatic), 1360, 1120, 1040, 820; ¹H NMR (Table 1); MS m/z (%): 262 [M]⁺ (5), 202 (12), 187 (25), 159 (26), 144 (14), 131 (8), 85 (60), 83 (100). Acetylation of 2 (36 mg) gave 2a (39 mg), oil; IR v cm⁻¹: 1770, 1740, 1690, 1610, 1500, 1250, 1210; ¹H NMR (Table 1); [M]⁺ m/z 304 (C₁₇H₂₀O₅). Alkaline hydrolysis of 2 (40 mg) with KOH-MeOH (10%, 5 ml) gave the dihydroxy compound 2b (32 mg), identical with the natural product [2].

3-(3-Acetoxymethyl-2-hydroxybut-3-enyl)-4-hydroxyacetophenone (3). A semi-solid mass; IR v cm⁻¹: 3300 (OH), 1730, 1270 (acetate), 1700 (C=O), 1640, 890 (C=CH₂), 1590, 1500 (aromatic), 1375, 1120, 1070, 920; ¹H NMR (Table 1); MS m/z (%): 278 [M]⁺ (8), 218 [M - HOAc]⁺ (6), 205 [M - CH₂OCOMe]⁺ (14), 187 [205 - H₂O]⁺ (9), 149 (23), 117 (15), 60 (87), 43 [MeCO]⁺ (100). Acetylation of 3 (24 mg) gave 3a (29 mg); IR v cm⁻¹: 1760, 1740, 1230 (acetates), 1680 (C=O), 1600, 1500 (aromatic), 1190, 1120, 910, 890; ¹H NMR (Table 1); [M]⁺ m/z 362 (C₁₉H₂₂O₇).

Synthesis of (\pm) 3a. To a stirred soln of 1a (172 mg) in CH₂Cl₂ (3 ml) was added for 1 hr, a soln of *m*-chloroperbenzoic acid (130 mg) in CH₂Cl₂ (3 ml). A 10% aq. soln of Na₂SO₃ was then added dropwise and the organic layer washed \times 3 with a 5% aq. NaHCO₃, dried and evapd. The residue was chromatographed on silica gel to afford 4 (170 mg), IR v cm⁻¹: 1760, 1740, 1690, 1590, 1500, 1370, 1230, 1200, 1170, 1040; ¹H NMR (CDCl₃): δ 1.37 (3H, s), 2.11 (3H, s), 2.34 (3H, s), 2.53 (3H, s), 2.93 (3H, m), 4.16 (2H, s), 7.10 (1H, d, J = 8 Hz), 7.77 (1H, dd, J = 8 and 2 Hz), 7.84 (1H, d, J = 2 Hz); [M] ⁺ m/z 320 (C₁₇H₂₀O₆). Treatment of 4 (150 mg) with dry NaOAc (230 mg) in HOAc (2 ml) at 60–65° for 7 hr, followed by extraction with Et₂O and washing with aq. NaHCO₃, afforded 5 (124 mg) after chromatographic purification; IR v cm⁻¹: 3460, 1760, 1740, 1680, 1590, 1500, 1370, 1260, 1160, 1110, 1040, 920; ¹H NMR (CDCl₃): δ 1.28 (2H, s), 1.88 (3H, s), 2.08 (3H, s), 2.32 (3H, s), 2.54 (3H, s), 2.91 (2H, m), 3.99 (2H, s), 5.11 (1H, dd, J = 9 and 5 Hz), 7.00 (1H, d, J = 8 Hz), 7.67 (1H, dd, J = 8 and 2 Hz), 7.71 (1H, d, J = 2 Hz); [M] ⁺ m/z 380 (C₁₉H₂₄O₈).

Dehydration of 5. To a stirred soln of 5 (40 mg) in dry pyridine (2 ml) at 0°, 0.15 ml of POCl₃ were added dropwise and the soln kept at room temp. for 12 hr. The soln was then poured over ice H₂O and extracted with CH₂Cl₂. The organic layer was washed with 2 N HCl, aq. NaHCO₃ soln and H₂O, dried (Na₂SO₄) and evapd to give a compound (32 mg) of $[\alpha]_D = (\pm) 0^\circ$, whose spectral data were identical to those above described for 3a.

REFERENCES

- De Pascual Teresa, J., Bellido, I. S., González, M. S., Muriel, M. R. and Hernández, J. M. (1980) *Phytochemistry* 19, 2781.
- De Pascual Teresa, J., Bellido, I. S., González, M. S., Muriel, M. R. and Hernández, J. M. (1981) *Phytochemistry* 20, 2417.
- 3. Gauguly, A. K. and Seshadri, T. R. (1961) J. Chem. Soc. 2787.
- Rodríguez, E., Carman, N. J., Vander Velde, G., McReynolds, J. H., Mabry, T. J., Irwin, M. A. and Geissman, T. A. (1972) *Phytochemistry* 11, 3509.
- 5. Fieser, L. F. and Fieser, M. (1967) Reagents for Organic Synthesis, Vol. 1, p. 135. John Wiley, New York.
- Allen, W. S. and Bernstein, S. (1955) J. Am. Chem. Soc. 77, 1028.