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Abstract: Inexpensive retinyl acetate has been subjected to transesterification followed by allylic oxidation to give retinal in 98% yield as
a92:8 mixture of all-trans/13-cis isomers after chromatographic separation. More convenient methods of isolating the all-frans isomer have

also been employed.
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Scheme 1

Retinal (vitamin A aldehyde; 1, Figure 1) is an important
metabolite of retinol (vitamin A; 2) and is essential as the
mammalian visual pigment chromophore.' It may also
play a role in adipogenesis in mammals.? Furthermore, 1
is the immediate metabolic precursor of retinoic acid (3),
the principal active form of the vitamin in controlling epi-
thelial cell differentiation.® As a result of its important role
in retinoid homeostasis and the importance of these mole-
cules in a variety of physiological processes, many studies
are performed using this material. Our current interest in
this polyene stems from our use of 1 as a reactant for the
synthesis of retinoids 4 and 5, analogues of N-(4-hydroxy-
phenyDretinamide (4-HPR; 6) (Figure 2), a long-known
analogue of 3 with cancer chemopreventive and chemo-
therapeutic activity, and reduced toxicity.* The unhydro-
lyzable analogues 4 and 5 are at least as effective as 6, but
clearly show reduced toxicity relative to the parent retina-
mide.>® Our synthesis of these two analogues makes use
of 1, activated as the umpoled synthon 7, for reaction with
a suitable electrophile. The promise of these two ana-
logues necessitates the preparation of multigram quanti-
ties for detailed studies of their biological activity.

As a starting material, retinal (1) is an expensive reactant,
costing from about $8000-$20000/100 g depending on
source and purity required. While it is possible to oxidize
retinol (2) to 1 with relative ease, 2 is virtually as expen-
sive as 1, probably due to its relative instability. The ester
retinyl acetate (8) is prepared on industrial scale to pro-
vide a relatively stable source of 2 for vitamin supplemen-
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tation. This material can be obtained for about $100-
$200/100 g and has been employed as a source to provide
1 via hydrolysis and oxidation.”
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2 R =CH,0H

3 R=COOH

7 R=CH(OTBS)CN
8 R =CH,0Ac

Figure 1 Retinal (1) and related compounds
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4 X=CHp, Y=0H

5X=CHyp, Y =

6 X=NH,Y=0H

Figure 2 Retinoids 4 and 5 and retinamide 6
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In our experience, alkaline hydrolysis of 8 on larger scales
leads to significant decomposition of the base labile 2.
This is a sufficiently general problem that Sigma-Aldrich
has introduced a flow process microreactor useful for this
situation and has applied the device (costing ca. $25000)
to the industrial-scale saponification of 8 to 2 in 70%
yield.® Alternatively, reductive cleavage of 8 to 2 has been
used with little detail provided.” In our hands, this ap-
proach also results in significant decomposition of 2.
Once 2 is obtained, oxidation to 1 is most frequently ac-
complished using activated MnO,.!° We and others find
that reacting 2 with activated MnO, does produce 1, but
typically requires many days of stirring. Also, variable
and sometimes poor recoveries with overoxidation prod-
uct contaminants are observed. Many years ago, Wald
passed 2 over a MnO, column to produce 1 smoothly, al-
though the extent of side-product formation increased
with column length.!" Thus, an improved, low-cost pro-
cess for generating 1 would be useful.

We hypothesized that transesterification of 8 in anhydrous
methanol with catalytic sodium would generate 2 with
minimal exposure to base. We were disappointed to learn
that this process has been tried and requires many hours
for completion (20-24 h) and gives only modest yields of
2 (40-50%).'> However, when one equivalent of sodium
metal and a dilute methanolic solution of 8 (Scheme 1)
were employed, the transesterification was complete in
30-60 minutes and the resulting 2 could be separated from
the basic medium quickly by volume reduction and pas-
sage through an ion-exchange resin (Amberlite IRA-400,
chloride form). After extensive experimentation on the ra-
tio of MnO, to 2 and the ratio of inert matrix to MnO,, it
was determined that a column packed with a 5-10:1 (w/w)
mixture of diatomaceous earth to MnO, containing 20
equivalents of MnQ, relative to 8, and eluted with CH,Cl,,
readily oxidizes 2 to 1. Depending on reaction scale, the
retinoid-containing column needs to sit for 2—12 hours
prior to elution with CH,Cl, to effect complete oxidation,
although 3.5 hours is usually a sufficient delay before elu-
tion. Careful column chromatography can then separate
the resulting isomers of 1. Yields of the retinal (1) over the
two steps on a one-gram scale have been as good as 98%
with a 92:8 ratio of the separated all-trans/13-cis isomers
being formed. If it proves desirable to avoid the final
lengthy column chromatography, formation of the revers-
ible crystalline retinal complex with hydroquinone'® al-
lows for easy isolation of at least 55% of the all-trans
retinal. The remaining sample enriched in the 13-cis iso-
mer can then be subjected to iodine-catalyzed photoi-
somerization.'* In our hands, this produced a 3:1
equilibrium mixture of all-frans/13-cis isomer in 1.5
hours from which more all-trans isomer could be isolated.

All reagents were purchased as reagent grade from Sigma-Aldrich
and were used as obtained. Reactions were performed in oven-dried
glassware under an argon atmosphere and gold fluorescent lights.
Column chromatography was performed on silica gel 60 (70-230
mesh) from Merck. Analytical TLC was performed on silica gel 60
F245 aluminum plates from Merck. Analytical HPLC was done on
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a Beckman Instruments unit (model 127 pump, model 166 detector)
using 1 mL/min of 90% MeOH-H,O through a Polaris C18,
4.6 x 250 mm column with monitoring at 360 nm. 'H and '*C NMR
spectra were recorded in acetone-d, on a Bruker DRX400 instru-
ment (400 MHz for 'H). Electrospray mass spectra were measured
on a Micromass QTOF mass spectrometer in the Ohio State Univer-
sity Campus Chemical Instrument Center.

Retinal (1)

To a stirred solution of 8 (1.08 g, 3.28 mmol) in anhyd MeOH was
added Na pieces (0.078 g, 3.38 mmol) and the mixture was allowed
to stir for 45-60 min at which time TLC indicated the complete con-
sumption of 8. The solution was concentrated by one half and
passed through a column containing Amberlite IRA-400 (chloride
form, 0.8 g, 1.4 meq/mL exchange capacity) and the eluent was con-
centrated. The residue containing 2 was suspended in CH,Cl, (5
mL) and the soluble portion eluted into a column composed of a
slurry of oven-dried MnO, (5.4 g, 61.87 mmol) and of diatoma-
ceous earth (53.8 g) in CH,Cl, (200 mL). Once the crude 2 was elut-
ed well into the column bed, flow was stopped for 12 h and the
column was protected from light and air. The column was then elut-
ed with CH,Cl,, the solvent was evaporated, and the residue was
column chromatographed (silica gel; 19:1 hexanes—EtOAc, then 9:1
hexanes—EtOAc) to give 0.85 g (90%) of solid 1 and 0.08 g (8%) of
liquid 13-cis isomer' of retinal.

Alternatively, to a solution of retinal isomer mixture in Et,O (ca.
500 mg/mL) was added 3 volumes of a warm ethereal solution of
hydroquinone (1.5 equiv). The Et,O was then evaporated with ar-
gon and the resulting pink solid triturated with petroleum ether (bp
35-60 °C) and allowed to stand on ice for 1 h. The solid was then
vacuum-filtered with cold petroleum ether rinsing, dissolved in
Et,0, washed 3 times with aqg 5 N KOH (until all purple color was
extracted into the H,0), then with brine. Evaporation of the Et,O
provided the frans-1 in 55% yield. To a ~2 mg/mL methanolic so-
lution of the residue from the petroleum ether trituration (~5:1 13-
cis/trans retinal) was added 3 drops of a 3.2 mg/mL methanolic so-
lution of I, and the solution was irradiated at 520 nm for 75 min. Af-
ter this time, HPLC analysis showed no further change to the then
3:1 mixture of trans/13-cis retinal from which more trans-1 could
be isolated by the hydroquinone complexation method.

Mp 58-59.5 °C; R;=0.37 (hexanes-EtOAc, 4:1); HPLC: #; =9.8
min (>98%).'"H NMR: § =1.04 [s, 6 H, C(CH;),], 1.48 (m, 2 H,
CH,), 1.62 (m, 2 H, CH,), 1.72 (s, 3 H, CHj;) 2.04 (m, 2 H, CH,),
2.06 (s, 3 H, CHy), 2.37 (s, 3 H, CH;), 591 (d, J=8 Hz, 1 H, 14-
CH), 6.2-6.5 (m, 4 H, vinyls), 7.29 (dd, /= 11.5, 14.1 Hz, 1 H, 12-
CH), 10.13 (d, /= 8 Hz, 1 H, CHO).

13C NMR (100 MHz): § = 12.95, 19.8, 21.9, 29.2, 33.6, 34.8, 40.2,
129.7,129.8,130.5, 130.7, 133.1, 135.8, 138.2, 138 .4, 141.3, 155.1,
191.1.

HRMS (ESI): m/z [M + Na]* caled for C,jH,50 + Na: 307.2038;
found: 307.2025.
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