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Abstract—The synthesis of a nonhydrolyzable, carbon-linked analogue (4-HBR) of the retinoid N-(4-hydroxyphenyl)retinamide (4-
HPR) using Umpolung methods is described. Preliminary studies of biological activity show 4-HBR is similar to 4-HPR in its
actions although a potentially relevant and desirable difference is its reduced suppression of plasma vitamin A levels. These results
show that 4-HPR does not have to be hydrolyzed to retinoic acid to produce its chemotherapeutic effects. © 2001 Elsevier Science

Ltd. All rights reserved.

The synthetic retinoid N-(4-hydroxyphenyl)retinamide
(4-HPR; 1) was developed a number of years ago and
showed promise as, in particular, a breast cancer
chemopreventive agent in animals.! While this analogue
is derived from the natural retinoid, retinoic acid (RA;
2), it is less toxic and substantially less teratogenic.> Con-
tinued interest in this retinamide has led to its exploration
in a clinical trial as a breast cancer chemopreventive agent?
and in animal studies as an antitumor agent.*

The mechanism through which 4-HPR functions
remains unclear. When prepared, it was assumed that
4-HPR was an amide analogue that acted in a RA-like
manner. Subsequently, nuclear retinoic acid receptors
(RARs), which bind RA, and retinoid X receptors
(RXRs), which bind 9-cis-retinoic acid, were discovered.
These RARSs function as ligand dependent transcription
factors mediating most or all of the effects of RA.
While some researchers have reported that 4-HPR can
activate RARs using transactivation assays,® we find
that 4-HPR has very low affinity for RAR and RXR
proteins.” 4-HPR has also been shown to induce apop-
tosis in tumor cells that typically respond to RA by dif-
ferentiating,® and this can even occur in RA-resistant
cells.® Recently, based on studies in wild-type and
receptor knockout F9 murine teratocarcinoma cells,
Clifford and co-workers have suggested there are early
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RAR-independent and late RAR-dependent actions of
4-HPR in these cells.'?

Certainly it is plausible that 4-HPR might serve as a
prodrug which liberates RA in vivo. There is limited
evidence that 4-HPR may be metabolized to RA in
vivo,!! but there is also in vivo and in vitro work where
hydrolysis could not be detected.®'> Thus, some of the
RA-like effects of 4-HPR could be due to hydrolysis of
4-HPR. To explore this possibility we have prepared
and are studying the nonhydrolyzable, carbon-linked
4-HPR analogue 4-hydroxybenzylretinone (3; 4-HBR).
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After exploring a number of approaches to 4-HBR, an
Umpolung, or dipole inversion strategy,'? was ultimately
used in which a retinoid acyl anion equivalent was
reacted with a suitable benzyl halide. As shown in
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Scheme 1, reaction of retinal (4) with TMSCN/Et;N!4
afforded the labile silylcyanohydrin S, which was used
as obtained. Crude 5 was deprotonated (NaHMDS) and
the resulting anion was alkylated with benzyl bromide 6.
The resulting compound 7 is deprotected (TBAF) as
obtained to provide target 3. The benzyl bromide 6,
which was employed as the electrophile, was prepared
as shown in Scheme 2.!5 Surprisingly, 3 shows no evi-
dence of existing in the enol form as determined by 'H
NMR in CDCIl; or ethanol-ds. However, it should be
noted that once prepared, ketone 3 was found to
undergo thermal and acid-catalyzed isomerization to
the 13-cis isomer much more easily than 4-HPR, pro-
ducing a 60:40 trans/cis mixture at equilibrium. With
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care to avoid exposure to excess acid or heat, or by
using preparative reversed-phase HPLC (85% metha-
nol/water), 4-HBR with no more than 5-10% cis isomer
was obtained.

To justify detailed biological studies of 4-HBR and its
use as a probe for the mechanism of action of 4-HPR,
preliminary investigations of its actions have been con-
ducted. Previously, we have found that 4-HPR and its
analogues can shrink preformed mammary tumors.*
Therefore, a pilot study of the relative antitumor activ-
ity of 4-HBR was undertaken in female rats treated ca.
50 days ecarlier with dimethylbenz[a]lanthracene
(DMBA) using previously described methods.* In this
pilot study, three mammary tumor bearing rats/group
were sacrificed after 1, 7, 14, and 21 days of consuming
diet mixed with vehicle control or 2mmol/kg of test
retinoid. Blood and liver were collected at each time
point and tumor volumes measured. The time course of

4 5 the tumor volume changes for the three rats surviving
the full 21 day experiment are shown in Table 1. While
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Scheme 2. (a) NaH; TBDMSCI, THF (quant); (b) NaBH,, EtOH
(94%); (c) TFAA, THF (95%); (d) LiBr, THF (73%).

Table 1. Effect of retinoids on total mammary tumor volume?

Figure 1. Plasma concentrations of: (a) retinol in control rats (O) and
rats treated with 4-HPR (), 4-HBR (A) and RA (@) assessed by
modifications of the method in ref 18; and (b) treatment retinoid (4-
HPR, W; 4-HBR, A; RA, @). Values=mean+SE; N=3.

Diet additive (2 mmol/kg)

Mean tumor volume (cm?)P

Day 1 Day 7 Day 14 Day 21 % change®
Vehicle control 0.06+0.01 0.08+0.03 0.1140.05 0.1540.06 +257
4-HBR (3) 0.59+0.43 0.47+0.59 0.15£0.17 0.09+£0.07 -85
4-HPR (1) 0.20£0.09 0.1740.13 0.10+0.08 0.05+0.03 =77
RA (2) 0.69+0.18 0.46+0.06 0.2740.11 0.18+0.08 -74

2At 21 days of feeding diet to three rats.

®Values =mean + SE. Initial mean tumor volumes in control rats are smaller due to requirements of our approved animal use protocol which man-
date that tumors not be necrotic nor too large by the experiment’s end.

°For changes in tumor volume from day 1 to day 21, p<0.05 versus control.
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tumor activity in this model. In fact, compared to the
control group, each treatment group had a significantly
steep decline in tumor volume (all p values <0.05).
During the course of this experiment, the diet that had
been held for a maximum of 7 days in the animal room
was extracted and analyzed by HPLC and showed no
evidence of retinoid isomerization or decomposition
(93% trans at start; 92% trans at day 7).

Previously, we have found that the body weight of ani-
mals eating retinoid-containing diets reflects retinoid
toxicity* as does liver weight (unpublished results).
While we found no difference in the liver weights among
the treatment groups (data not shown), the body
weights of the RA and 4-HPR-fed groups showed a
substantial (5-6%) decline compared to the virtually
unaffected 4-HBR and control-fed groups. This indi-
cates that 4-HBR does not demonstrate any untoward
toxicity at this dose and duration of feeding. Of perhaps
greater importance, one of the major toxicities asso-
ciated with 4-HPR therapy in humans is night blindness
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Figure 2. Sedimentation analysis of RBP binding to all-trans-[*H]-
retinol (250nM; 4.7Ci/mmol) in the absence and presence of
unlabeled retinoid. RBP-containing samples were incubated with
ligands on ice for 3 h, treated with dextran-coated charcoal and ana-
lyzed on 4-20% sucrose gradients.

resulting from displacement of vitamin A (retinol) from
its serum retinol binding protein (RBP),'¢ thereby
minimizing retinol delivery to the eye. As shown in
Figure 1, there is much less of a reduction in plasma
retinol concentration in animals fed 4-HBR when com-
pared to 4-HPR and RA.!7 Although 4-HBR appears to
compete as effectively as 4-HPR for [*H]-retinol binding
to RBP (Fig. 2), 4-HBR may cause less effect on plasma
retinol levels in vivo because it achieves a lower con-
centration in the circulation than does 4-HPR (Fig. 1b).

Finally, in preliminary studies, 4-HBR has been found
to bind poorly to RARs «, B, and y, with an affinity
similar to that of 4-HPR (for example, K;’s of 4-HBR,
4-HPR, and RA for RARy are >4000, >4000, and
0.7nM, respectively). In conclusion, 4-HBR appears to
share many of the biological properties of 4-HPR,
including its effectiveness as an antitumor agent. How-
ever, 4-HBR may have a significant advantage over
4-HPR since the nonhydrolyzable analogue causes a
much reduced decline in serum retinol concentration
which may lessen the risk of developing night blindness
at therapeutic doses. Details of the chemistry, biochem-
istry, and biological activity of 4-HBR will be reported
in due course as further studies are conducted.
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