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Abstract—A brief treatment of 2-thiopyrimidine nucleosides (s2U*) with trans-2-phenylsulfonyl-3-phenyloxaziridine (PSO) results in
efficient substrate desulfurization leading to the corresponding 4-pyrimidinone analogues (H2U*). The key transformation proceeds through
oxidation of the 2-thiocarbonyl group to a sulfur oxyacid derivative and subsequent elimination of sulfur dioxide. 4-Pyrimidinone
1-b-DD-riboside (H2U) has been transformed into the respective phosphoramidite, a ready-to-use monomer for the introduction of a
modified nucleoside into an oligonucleotide chain. Moreover, the effective desulfurization of the 2-thiouridine nucleotide could be
achieved directly at the oligonucleotide level, by treatment of the TdA(s2U)dGdC oligonucleotide with PSO, as verified by MALDI-
TOF mass spectrometry.
� 2004 Elsevier Ltd. All rights reserved.
The synthesis of modified nucleosides and their incorpo-
ration into oligonucleotide sequences is an important
strategy for the elucidation of structure–function rela-
tionships of nucleic acids.1–3 A variety of nucleoside
derivatives have been prepared through deletion or by
changing the nature of the functional groups present
on the heterocyclic bases.2–4 One simple base modifica-
tion among uridine nucleotides that has dramatic effect
on nucleoside conformation is the replacement of oxy-
gen at C-2 with sulfur.5 2-Thiopyrimidine nucleosides
are known to adopt preferentially a rigid C3 0-endo sugar
ring conformation,6,7 so in RNA duplexes, a modified
s2U-A base pair is more stabilized than the unmodified
one.8–10 Furthermore, due to steric hindrance and the
weaker H-bonding ability of sulfur relative to oxygen,
2-thiouridine destabilizes the U-G wobble base pair
compared to uridine.8–10 4-Pyrimidinone nucleosides
are a class of nucleoside analogues lacking both the
N3-amide hydrogen and the 2-carbonyl function,11–14

and thus they do not form the conventional wobble
U-G base pair. An incorporation of a 2-thiouridine
and a 4-pyrimidinone-1-b-DD-riboside, instead of uridine,
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in the site specific position within the oligonucleotide
chain could provide useful models for the study of bio-
logically important U-G wobble interactions.15,16

In the present report we describe a very efficient trans-
formation of 2-thiopyrimidine nucleosides into the
corresponding 4-pyrimidinone analogues by a brief
treatment with trans-2-phenylsulfonyl-3-phenyloxa-
ziridine (PSO).17 Previously it had been reported that
the desulfurization of 2-thiopyrimidine nucleosides pro-
ceeds in moderate yield under reductive conditions by
dipotassium diazenedicarboxylate treatment11 or Ra-
ney-nickel reduction.12 Oxidative desulfurization of the
2-thiopyrimidine moiety has been observed on treatment
with hydrogen peroxide,11 aqueous iodine,13 m-chlorop-
erbenzoic acid/pyridine13 or dimethyldioxirane.14 Oxa-
ziridine-type oxidizing reagents (2-(phenylsulfonyl)-3-
(3-nitrophenyl)oxaziridine and 10-camphorsulfonyl
oxaziridine) were applied recently in the oxidation step
of oligonucleotide synthesis in H-phosphonate18 and
phosphoramidite19 approaches.

During our evaluation of 2-thiouridine stability under
different oxidizing conditions, used for automated oligo-
nucleotide synthesis, we discovered that treatment of a
2-thiopyrimidine nucleoside with PSO led to complete
loss of sulfur giving the 4-pyrimidinone analogue
quantitatively.20
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Thus, 2-thiouridine 1a and its 5-substituted analogues
1b–d, commonly found at the wobble position of the an-
ticodon loop of tRNA,16 were studied in the desulfuriza-
tion process (Scheme 1). Treatment of 2-thiouridine21

with an excess of PSO solution in pyridine (minimum
2equiv) for 30min at room temperature afforded 4-
pyrimidinone 2a in 81% isolated yield.22 Modified 2-
thiouridines 1b–d underwent similar desulfurization in
quantitative yields. The courses of the reactions were
monitored by 1H NMR spectroscopy. A significant up-
field shift of the resonance signal of 1 0-H was observed
during the 1 ! 2 transformation (from 7.2–7.0ppm for
1b–d to 5.9–5.7ppm for 2b–d).

Unexpectedly, the same quantitative transformation of
s2U to H2U was observed when the PSO-assisted oxida-
tion was carried out in the presence of oxygen or nitro-
gen nucleophiles (methanol, water, n-propylamine), so it
was possible to perform efficient desulfurization of 2-thio-
pyrimidine nucleosides in aqueous media. An aqueous
solution of the 2-thiouridine was treated with 3equiv
of PSO dissolved in acetonitrile (30min, 25 �C) and,
after washing with ethyl acetate, was concentrated in va-
cuo. The crude reaction product was purified by silica
gel column chromatography in chloroform/methanol
solution and pure derivative 2a was isolated in 79% yield.

It is noteworthy that common DNA and RNA nucleo-
sides were not affected by PSO under these reaction
conditions.

We suggest that the PSO-assisted desulfurization of 2-
thiouridines proceeds via the initial formation of an sul-
fur oxyacid14 followed by subsequent decomposition to
O
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the 4-pyrimidinone nucleosides. To confirm this, 2 0,3 0,5 0-
O-tribenzoyl-2-thiouridine in anhydrous methylene
chloride or acetonitrile was treated with 2equiv of
PSO under a stream of argon. The emerging argon
was analyzed for sulfur oxides. Using known proce-
dures,23 we showed that sulfur dioxide was the only gas-
eous reaction product. Moreover, the solid reaction
residue, separated on a silica gel column, gave in quan-
titative yield the tribenzoyl derivative of the correspond-
ing 4-pyrimidinone ribonucleoside together with the
sulfonimine PhSO2N = CHPh.

PSO-assisted desulfurization was also used for trans-
forming 50-O-(dimethoxytrityl)-20-O-(tert-butyldimethyl-
silyl)-2-thiouridine 324,25 into 4, which allowed us to
prepare the phosphoramidite 5, ready to use as a mono-
mer for the introduction of a 4-pyrimidinone nucleoside
into an oligonucleotide chain (Scheme 2). Desulfuriza-
tion of 3 was performed by its brief treatment (30min)
with two molar equivalents of PSO in anhydrous methyl-
ene chloride (after silica gel column chromatography
the isolated yield of 4 was 77%). Pyrimidinone deriva-
tive 4 was then easily converted into the respective phos-
phor-amidite 5 by the reaction with 2-cyanoethyl
diisopropylchlorophosphoramidite.26 The structure of
phosphoramidite 5 was confirmed by 31P NMR and
HR mass spectrometry.27

The desulfurization procedure shown here represents a
significant improvement over current methods.11–13

High yields, mild reaction conditions, the stability of
common nucleosides and oligonucleotides to the action
of oxaziridine-type oxidizing agents18,19 encouraged us
to apply this method to the post-synthetic modification
of oligonucleotides containing 2-thiopyrimidine nucleo-
sides. The preliminary experiment was performed on the
model pentamer TdA(s2U)dGdC. The reaction sub-
strate and products were analyzed by MALDI TOF
mass spectrometry (Fig. 1).

The peak at m/z 1495 corresponding to s2U-containing
oligonucleotide was shifted to m/z 1463 after PSO treat-
ment. This result indicated an efficient loss of sulfur
atom during oxidation, resulting in the formation of
an oligonucleotide with a modified H2U unit.

Further work on optimization of the desulfurization
protocol for 2-thiouridine-containing oligonucleotides,
also bound to the solid support is in progress.
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Figure 1. MALDI TOF mass spectra of (a) TdA(s2U)dGdC in 2,4,6-trihydroxyacetophenone as a matrix; (b) reaction mixture after TdA(s2U)dGdC

(0.2OD in 10lL of water) treatment with 0.1M PSO solution in acetonitrile (10lL).
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