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Abstract: A simple and efficient method was developed for the
synthesis of phenoxathiin derivatives. A range of 1,2-dihaloarenes
or 1-halo-2-nitroarenes reacted with 2-sulfanylphenol to give the
desired products in good-to-excellent yields. It is intriguing that 1-
halo-2-nitroarenes contaxining electron-donating groups worked
well as substrates in this reaction.
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Polycyclic fused heterocyclic derivatives can show a wide
range of interesting biological activities, and some even
have important applications in the drug industry. The
polycyclic fused heterocycle phenoxathiin and its deriva-
tives exhibit a variety of properties, including a range of
biological activities,1–7 fluorescence,8,9 and electrochemi-
cal properties.10,11 For example, phenoxathiin derivatives
can be used as selective inhibitors of monoamine oxidase
(MAO).3 Sulfonylamido derivatives of 2-aminophenox-
athiin display efficient antifungal activities.5 In addition,
some substituted phenoxathiins are strongly fluorescent.8

Ionescu et al.9 investigated the electronic and fluorescent
properties of some 3-substituted phenoxathiin derivatives
by experimental and theoretical methods. Furthermore,
phenoxathiin derivatives have attracted a great deal of in-
terest owing to stability of their cation radicals.12–14

In an early report, Bennett described the synthesis of
phenoxathiins from diphenyl ethers and sulfur as sub-
strates in the presence of aluminum trichloride.15 East-
mond and co-workers reported the use of cyano-activated
fluoro-displacement reactions to give cyanophenoxazines
and related compounds.16 A number of other researchers
have also reported syntheses of phenoxathiin deriva-
tives.17–21 Here, we describe a simple and efficient method
for synthesizing a series of phenoxathiin derivatives that
we hypothesized might be useful as fluorescent probes in
pharmaceutical science. We used 2-sulfanylphenol and
1,2-dihaloarenes or 1-halo-2-nitroarenes as the substrates
in dimethyl sulfoxide as the solvent with potassium car-
bonate as the base (Scheme 1).

Scheme 1  Synthesis of phenoxathiin derivatives

To determine the optimal conditions for the reaction, we
used 2-sulfanylphenol and 3,4-difluorobenzonitrile as
model substrates (Table 1). We initially chose potassium
carbonate as the base with N,N-dimethylformamide, di-
methyl sulfoxide, and acetonitrile as solvents, and we per-
formed the reaction at room temperature. Of these
solvents, dimethyl sulfoxide gave the highest yield (entry
2). Although high yields were obtained at room tempera-
ture, the reaction was relatively slow (entries 1–3), so we
increased the temperature to 60 °C (entries 4–6), and
again dimethyl sulfoxide gave the best results. We then
examined the effects of various bases (entries 7–11), and
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Table 1  Optimization of the Reaction Conditions

Entry Base Solvent Temp 
(°C)

Time 
(h)

Yield 
(%)

1 K2CO3 DMF r.t. 41 57

2 K2CO3 DMSO r.t. 24 82

3 K2CO3 MeCN r.t. 24 trace

4 K2CO3 DMF 60 2.5 83

5 K2CO3 DMSO 60 3 90

6 K2CO3 MeCN 60 2.5 47

7 Na2CO3 DMSO 60 3 83

8 Cs2CO3 DMSO 60 2.5 87

9 Et3N DMSO 60 6.5 28

10 DBU DMSO 60 3 89

11 NaHCO3 DMSO 60 2.5 53
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we found that potassium carbonate was the most effective.
The optimal reaction conditions therefore involve potassi-
um carbonate as base and dimethyl sulfoxide as the sol-
vent with the reaction being performed at 60 °C.

To continue our study, we treated a series of 1-halo-2-ni-
troarenes or 1,2-dihaloarenes with 2-sulfanylphenol under
the optimized conditions. The desired products were ob-
tained in good-to-excellent yields, and the results are
shown in Table 2. It is noteworthy that 1,2-dihaloarenes or
1-halo-2-nitroarenes containing strong electron-with-
drawing groups, such as cyano or nitro groups, gave high
yields of the required products (entries 1–4), whereas 1,2-
dichloro-4-nitrobenzene gave a lower yield from a slower
reaction (entry 5). 1,2-Dihaloarenes or 1-halo-2-nitro-
arenes containing weak electron-withdrawing group also
gave moderate yields of the required products (entries 6–
8).

Substrates 2j–l that contained a pyridine moiety could
also be used in the reaction (entries 10–12). In addition,
when three 1-halo-2-nitroarenes were examined as sub-
strates, 2-bromo-1-nitrobenzene gave the corresponding

Table 2  Reactions of 2-Sulfanylphenol (1) with Various 1,2-Dihalo-
arenes or 1-Halo-2-nitroarenes 2 
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(%)
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a Isolated yield.
b Reaction conditions: 1 (1.2 mmol), 2a–r (1 mmol), K2CO3 (2.5 
mmol), DMSO (5 mL), 60 °C.
c Reaction conditions: 1 (1.2 mmol), 2a–r (1 mmol), K2CO3 (2.5 
mmol), DMSO (5 mL), 100 °C.
d Reaction conditions: 1 (1.2 mmol), 2a–r (1 mmol), Cs2CO3 (2.5 
mmol), DMSO (5 mL), 100 °C.

Table 2  Reactions of 2-Sulfanylphenol (1) with Various 1,2-Dihalo-
arenes or 1-Halo-2-nitroarenes 2  (continued)
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product in a higher yield (84%) than the other two reac-
tants (entries 13–15). The reaction of 1,5-difluoro-2,4-di-
nitrobenzene with 2-sulfanylphenol gave the symmetrical
product 4i in 54% yield (entry 9).

To extend the scope of reaction, we also examined the use
of some 2-halo-1-nitroarenes containing an electron-
donating group as substrates (entries 16–18). It is intriguing
that the reaction also proceeded smoothly with these sub-
strates to give the corresponding phenoxathiin derivatives
in moderate yields. As can be clearly seen in Table 2, sub-
strates 2 that possess a strong electron-withdrawing group
worked well to give the desired products in high yields un-
der relatively harsh conditions. Similarly, substrates 2
with no substituent group require the use of cesium car-
bonate as the base at 100 °C to give the corresponding
products. From these result, it is clear that substrates 2
with electron-donating substituents and those lacking sub-
stituent groups need relatively higher temperatures and
stronger bases to react. The structure of phenoxathiin-3-
carbonitrile (4a) was confirmed by means of a single-
crystal X-ray diffraction analysis (Figure 1).22

Figure 1 X-ray structure of phenoxathiin-3-carbonitrile (4a)

A plausible mechanism for the cyclization reaction is
shown in Scheme 2. Reactants 1 and 2m were chosen as
model substrates to demonstrate the mechanism. First, 2-
sulfanylphenol (1) gives a sulfur anion in the presence of
cesium carbonate, and this anion subsequently forms the
sulfide 3 through a nucleophilic substitution. The phenox-
athiin is then formed through a second nucleophilic sub-
stitution reaction of sulfide 3.

Scheme 2  A plausible mechanism for the reaction

In summary, we have developed a simple and effective
route for synthesizing a series of phenoxathiin derivatives.
A variety of 1,2-dihaloarenes and 1-halo-2-nitroarenes 2
reacted smoothly with 2-sulfanylphenol (1) to give the
corresponding products in good-to-excellent yields. In
this method, the electron-withdrawing group on the halo-
arene 2 plays a vital role in the first nucleophilic substitu-
tion step, so it is surprising that haloarenes 2 containing
electron-donating groups worked well in the reaction and
gave the desired products in moderate yields. Some of the
phenoxathiin derivatives, such as phenoxathiin-3-carbo-
nitrile (4a) and 3-nitrophenoxathiin (4c), exhibit fluores-
cent properties, so the products might be useful as
fluorescent probes for use in biophotonic studies.

Commercial reagents were used as received without further purifi-
cation. All reactions were conducted under N2 and monitored by
TLC. Melting points were determined on an XD-4 digital micro
melting-point apparatus. 1H NMR spectra were recorded at 300
MHz on a Bruker Avance 300 spectrometer with TMS as the inter-
nal standard and CDCl3 as solvent. 13C NMR spectra were recorded
on a Bruker Avance 300 (75 MHz) spectrometer with TMS as the
internal standard and CDCl3 as solvent. High-resolution mass spec-
tra were recorded on an Agilent Q-TOF6510 spectrograph or a
Bruker Apex IV FTMS spectrograph. IR spectra were recorded on
a Nicolet 5MX-S infrared spectrophotometer. The single-crystal X-
ray diffraction study was performed by using a Rigaku R-AXIS-
SPIDER IP diffractometer operating at 50 kV and 20 mA. Data col-
lection was performed at 273(2) K by using graphite-monochromat-
ed Mo Kα radiation (λ = 0.71073 Å).

Phenoxathiin-3-carbonitrile (4a); Typical Procedure
Anhyd DMSO (5 mL) was added to a mixture of 2-HSC6H4OH (151
mg, 1.2 mmol), 3,4-F2C6H3CN (139 mg, 1.0 mmol), and K2CO3

(345 mg, 2.5 mmol) under N2, and the mixture was stirred for 3 h at
60 °C. The mixture was then cooled to r.t. and extracted with EtOAc
(3 × 25 mL). The organic layers were combined, washed with sat.
brine (2 × 20 mL), dried (MgSO4), filtered, and concentrated under
reduced pressure. The crude product was purified by column chro-
matography [silica gel, PE–CH2Cl2 (2:1)] to give white crystals;
yield: 202 mg (90%); mp 142.6–143.4 °C.

IR (film): 753, 822, 883, 1472, 2222 cm–1.
1H NMR (300 MHz, CDCl3): δ = 6.98–7.02 (m, 1 H), 7.04–7.08 (m,
2 H), 7.14–7.20 (m, 2 H), 7.21–7.22 (d, J = 1.5 Hz, 1 H), 7.25–7.28
(m, 1 H).
13C NMR (75 MHz, CDCl3): δ = 110.94, 117.97, 120.74, 125.28,
126.77, 127.33, 127.51, 127.98, 128.48, 150.92, 151.94.

HRMS (ESI): m/z [M + H]+ calcd for C13H8NOS: 226.0321; found:
226.0334.

Phenoxathiin-1-carbonitrile (4b)
White solid; yield: 187 mg (83%); mp 99.4–100.5 °C.

IR (film): 737, 1288, 1429, 1439, 2232 cm–1.
1H NMR (300 MHz, CDCl3): δ = 7.00–7.03 (m, 1 H), 7.04–7.10 (m,
1 H), 7.13–7.22 (m, 4 H), 7.33–7.36 (m, 1 H).
13C NMR (75 MHz, CDCl3): δ = 110.53, 115.80, 117.71, 117.88,
121.75, 125.36, 125.89, 127.05, 127.80, 128.62, 128.82, 151.19,
152.58.

HRMS (ESI): m/z [M + H]+ calcd for C13H8NOS: 226.0321; found:
226.0318.

3-Nitrophenoxathiin (4c)
Yellow solid; yield: 225 mg (92%); mp 132.9–135.5 °C.
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IR (film): 737, 1225, 1345, 1463, 1511 cm–1.
1H NMR (300 MHz, CDCl3): δ = 7.00–7.03 (m, 1 H), 7.05–7.09 (m,
2 H), 7.16–7.21 (m, 2 H), 7.80–7.81 (d, J = 2.4 Hz, 1 H), 7.85–7.89
(dd, J = 2.4, 8.7 Hz, 1 H).
13C NMR (75 MHz, CDCl3): δ = 112.79, 117.49, 118.01, 119.46,
125.39, 126.64, 126.73, 128.66, 129.59, 150.65, 151.83.

HRMS (ESI): m/z [M + H]+ calcd for C12H8NO3S: 246.0219; found:
246.0217.

3-Fluorophenoxathiin (4f)
Faint-yellow solid; yield: 146 mg (67%); mp 73.2–75.0 °C (Lit.23

77.5–79 °C).
1H NMR (300 MHz, CDCl3): δ = 6.72–6.79 (m, 2 H), 6.98–7.05 (m,
3 H), 7.08–7.17 (m, 2 H).
13C NMR (75 MHz, CDCl3): δ = 106.47 (d, JCF = 25.5 Hz), 112.10
(d, JCF = 21.8 Hz), 115.75 (d, JCF = 3.8 Hz), 118.29, 120.35, 125.36,
127.29, 127.70 (d, JCF = 9.8 Hz), 128.32, 152.07, 153.59
(JCF = 12.0 Hz), 162.74 (JCF = 244.5 Hz).

3-Chlorophenoxathiin (4g)
White solid; yield: 181 mg (77%); mp 77.2–78.9 °C.
1H NMR (300 MHz, CDCl3): δ = 6.97–7.04 (m, 5 H), 7.06–7.10 (m,
1 H), 7.11–7.16 (m, 1 H).
13C NMR (75 MHz, CDCl3): δ = 117.86, 118.25, 118.76, 119.49,
124.61, 124.87, 126.79, 127.25, 127.92, 132.93, 151.59, 152.62.

1-Chlorophenoxathiin (4h)
White solid; yield: 117 mg (50%); mp 92.5–93.9 °C.
1H NMR (300 MHz, CDCl3): δ = 6.85–6.88 (dd, J = 1.8, 7.5 Hz, 1
H), 6.94–7.00 (m, 2 H), 7.03–7.06 (m, 2 H), 7.08–7.15 (m, 2 H).
13C NMR (75 MHz, CDCl3): δ = 116.41, 118.06, 119.24, 120.75,
125.25, 125.28, 127.35, 127.89, 128.55, 131.29, 151.65, 152.86.

[1,4]Benzoxathiino[3,2-b]phenoxathiin (4i)
White solid; yield: 174 mg (54%); mp 179.1–180.8 °C.

IR (film): 745, 871, 1224, 1457, 2924 cm–1.
1H NMR (300 MHz, CDCl3): δ = 6.72 (s, 1 H), 6.79 (s, 1 H), 6.97–
6.99 (m, 1 H), 7.00–7.01 (m, 2 H), 7.03–7.10 (m, 3 H), 7.10–7.16
(m, 2 H).
13C NMR (75 MHz, CDCl3): δ = 108.36, 116.22, 118.29, 120.07,
123.90, 125.20, 127.27, 128.30, 152.15, 152.21.

HRMS (ESI): m/z [M+] calcd for C18H10O2S2: 322.0117; found:
322.0115.

[1,4]Benzoxathiino[3,2-b]pyridine (4j)
White solid; yield: 149 mg (74%); mp 68.6–69.4 °C.

IR (film): 754, 1220, 1273, 1413, 1475 cm–1.
1H NMR (300 MHz, CDCl3): δ = 6.95–6.98 (m, 1 H), 7.01–7.05 (m,
2 H), 7.07–7.12 (m, 2 H), 7.15–7.18 (m, 1 H), 8.11–8.13 (d, J = 4.8
Hz, 1 H).
13C NMR (75 MHz, CDCl3): δ = 117.62, 119.08, 122.42, 123.82,
124.90, 127.09, 127.93, 143.65, 144.85, 148.07, 150.13.

HRMS (ESI): m/z [M + H]+ calcd for C11H8NOS: 202.0321; found
202.0317.

[1,4]Benzoxathiino[2,3-c]pyridine (4k)
White solid; yield: 157 mg (78%); mp 108.2–109.7 °C.

IR (film): 760, 821, 1277, 1404, 1469 cm–1.
1H NMR (300 MHz, CDCl3): δ = 6.98–7.06 (m, 4 H), 7.11–7.18 (m,
1 H), 8.14–8.16 (d, J = 5.1 Hz, 1 H), 8.20 (s, 1 H).
13C NMR (75 MHz, CDCl3): δ = 117.75, 118.61, 121.28, 125.54,
127.35, 128.93, 131.13, 139.23, 145.59, 148.65, 151.60.

HRMS (ESI): m/z [M + H]+ calcd for C11H8NOS: 202.0321; found:
202.0318.

3-(Trifluoromethyl)[1,4]benzoxathiino[3,2-b]pyridine (4l)
White solid; yield: 148 mg (55%); mp 87.4–88.5 °C.

IR (film): 739, 754, 1115, 1164, 1332 cm–1.
1H NMR (400 MHz, CDCl3): δ = 6.96–6.98 (m, 1 H), 7.03–7.09 (m,
2 H), 7.13–7.17 (m, 1 H), 7.32 (d, J = 1.6 Hz, 1 H), 8.35 (d, J = 0.8
Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 117.68, 117.72, 120.3 (q,
JCF = 3.3 Hz), 122.85 (q, JCF = 272.3 Hz), 125.42, 125.59 (q,
JCF = 33.6 Hz), 127.07, 128.45, 141.28 (q, JCF = 4.4 Hz), 147.63,
148.71, 149.31.

HRMS (ESI): m/z [M + H]+ calcd for C12H7F3NOS: 270.0195;
found: 270.0192.

Phenoxathiin (4m)
White solid; yield: 156 mg (78%) from 2m; 162 mg (81%) from 2n;
168 mg (84%) from 2o; mp 54.8–55.7 °C.
1H NMR (300 MHz, CDCl3): δ = 6.97–7.03 (m, 4 H), 7.08–7.15 (m,
4 H).
13C NMR (75 MHz, CDCl3): δ = 118.28, 120.62, 125.00, 127.26,
128.19, 152.66.

3-Methylphenoxathiin (4p)
Yellow oil; yield: 122 mg (57%).
1H NMR (300 MHz, CDCl3): δ = 2.25 (s, 3 H), 6.86–6.92 (m, 3 H),
6.95–7.01 (m, 2 H), 7.06–7.16 (m, 2 H).
13C NMR (75 MHz, CDCl3): δ = 20.55, 117.42, 117.73, 119.61,
120.17, 124.31, 126.77, 127.03, 127.61, 128.24, 134.15, 149.94,
152.35.

1-Methylphenoxathiin (4q)
Colorless oil; yield: 109 mg (51%).
1H NMR (300 MHz, CDCl3): δ = 2.27 (s, 3 H), 6.82–6.88 (m, 2 H),
6.95–7.02 (m, 3 H), 7.07–7.12 (m, 2 H).
13C NMR (75 MHz, CDCl3): δ = 19.48, 115.29, 117.64, 119.92,
120.00, 124.39, 125.58, 126.78, 126.88, 127.76, 135.38, 151.92,
152.19.

Phenoxathiin-3-amine (4r)
Pale-brown solid; yield: 116 mg (54%); mp 90.5–91.5 °C (Lit.24

87–88 °C).

IR (film): 748, 1219, 1468, 2924, 3373 cm–1.
1H NMR (300 MHz, CDCl3): δ = 3.67 (s, 2 H), 6.36–6.39 (dd,
J = 2.4, 8.1 Hz, 1 H), 6.41 (d, J = 2.4 Hz, 1 H), 6.85–6.87 (d, J = 8.1
Hz, 1 H), 6.96–7.01 (m, 2 H), 7.08–7.13 (m, 2 H).
13C NMR (75 MHz, CDCl3): δ = 104.91, 107.73, 111.51, 117.72,
121.20, 124.31, 126.77, 127.26, 127.32, 146.65, 152.24, 153.27.

HRMS (ESI): m/z [M + H]+ calcd for C12H10NOS: 216.0478; found:
216.0474.

2-[(2-Nitrophenyl)sulfanyl]phenol (3)
Yellow solid; yield: 210 mg (85%); mp 101.6–102.6 °C.

IR (film): 733, 1334, 1471, 1515, 3440 cm–1.
1H NMR (300 MHz, CDCl3): δ = 6.28 (s, 1 H), 6.76–6.79 (dd,
J = 1.2, 8.1 Hz, 1 H), 7.02–7.07 (m, 1 H), 7.12–7.15 (m, 1 H), 7.25–
7.31 (m, 1 H), 7.36–7.42 (m, 1 H), 7.46–7.53 (m, 2 H), 8.27–8.30
(dd, J = 1.5, 8.1 Hz, 1 H).
13C NMR (75 MHz, CDCl3): δ = 114.96, 116.76, 122.50, 126.27,
126.69, 127.84, 133.98, 134.53, 136.74, 137.84, 145.97, 158.33.

HRMS (ESI): m/z [M + H]+ calcd for C12H10NO3S: 248.0376;
found: 248.0376.
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