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ABSTRACT: This work describes the one-step synthesis of 

1H-indole-2,3-dicarboxylates through C−H activation. The rhodium-catalyzed tandem 

C−H activation and annulation of 2-acetyl-1-phenylhydrazines with maleates proceeded 

smoothly in the presence of additive NaOAc and oxidant Ag2CO3 and produced the 

corresponding indole derivatives, 1H-indole-2,3-dicarboxylates, in satisfactory to good 
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2

yields. A variety of useful functional groups are tolerated on benzene ring including 

halogen atoms (F, Cl, Br, and I) and methoxycarbonyl groups.

INTRODUCTION

Furo[3,4-b]indole-1,3(4H)-dione units are important synthons for the synthesis of 

numerous commercial drugs and natural bioactive products1 and are generally 

synthesized from 1H-indole-2,3-dicarboxylates (Scheme 1).2 Intermediate 

1H-indole-2,3-dicarboxylates can be obtain from the palladium-catalyzed annulation of 

aniline derivatives with esters of acetylenedicarboxylic acids via multiple-step procedure 

(Scheme 2a).3 The transition metal-catalyzed direct functionalization of C−H bond is 

more economical and effective than traditional molecule transformation. Therefore, it is 

highly desirable to develop a method involving the direct C−H bond activation for the 

synthesis of 1H-indole-2,3-dicarboxylates with wide substrate scope, mild reaction 

conditions, and high atomic economy.4 The cleavage strategy of transition 

metal-catalyzed aromatic C−H bonds usually requires a suitable directing group linked on 

the aromatic substrate,5 such as the hydrazine group for indole synthesis.6-9 Maleimides,6 

diaryl acetylenes,7,8 and diazoketoesters9 were successfully used as partners in the 

rhodium (Rh)-catalyzed annulation of arylhydrazines10. The Rh-catalyzed intramolecular 

annulation of hydrazine-tethered alkynes was also reported for indole synthesis.11 To our 

knowledge, a few of precedents of the direct annulation of arylhydrazines with olefin 

partners for synthesis of indoles has been reported. Herein, Rh-catalyzed C−H activation 
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3

and annulation of arylhydrazines with maleates were conducted to obtain 

1H-indole-2,3-dicarboxylates that can be easily transformed into 

furo[3,4-b]indole-1,3(4H)-diones (Scheme 2b).12

Scheme 1. Representative Synthetic Applications of Furo[3,4-b]indole-1,3(4H)-diones.
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4

RESULTS AND DISCUSSION

Encouraged by our success on indole synthesis using arylhydrazines and maleimides 

as substrates,6 we initially examined the annulation reaction using 

2-acetyl-1-phenylhydrazine (1a) and maleic anhydride as starting materials in the 

presence of a Rh catalyst. However, no product was obtained, and the starting materials 

were recovered. 1a was then reacted with dimethyl maleate (2a) in the presence of a Rh 

catalyst and generated the desired product, dimethyl 1H-indole-2,3-dicarboxylate (3aa). 

Therefore, the reaction of 1a and 2a was chosen as a model to optimize the reaction 

conditions, and the results are summarized in Table 1. The catalysts were first checked 

using Ag2CO3 as oxidant in 1,2-dichloroethane (DCE) at 90 °C under nitrogen 

atmosphere (entries 1−5). A cationic Rh catalyst favors the C−H activation of 

arylhydrazines.6 Combination of [Cp*RhCl2]2 and AgSbF6, [Cp*Co(CO)I2] and AgSbF6 

or [RuCl2(p-cymene)]2 and AgSbF6 was employed. The desired 3aa was obtained in 59% 

yield when [Cp*Rh(MeCN)3](SbF6)2 was used as the catalyst (entry 2). Other different 

solvents, namely, toluene, methanol (MeOH), acetonitrile (MeCN), and 1,4-dioxane were 

subsequently screened using [Cp*Rh(MeCN)3](SbF6)2 as the catalyst. DCE was found to 

be the best solvent (entry 2 vs. entries 1 and 6–9). The reason may be that the starting 

materials have better solubility in DCE. And 3aa yield was finally increased to 78% by 

introducing a base, namely, sodium acetate (NaOAc) (entry 10). Product 3aa was not 

formed in the absence of [Cp*Rh(MeCN)3](SbF6)2, although substrate 1a completely 

Page 4 of 28

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

disappeared (entry 11). Therefore, the subsequent annulations of various 

2-acetyl-1-arylhydrazines with maleates were carried out using [Cp*Rh(MeCN)3](SbF6)2 

(5 mol%), NaOAc (25 mol%), and Ag2CO3 (2.0 eq.) in DCE at 90 °C under nitrogen 

atmosphere for 3 h.

Table 1. Reaction Condition Screeninga

+

1a 2a 3aa

COOMe

COOMe N
H

COOMe

COOMe +

3aa'

N

COOMe

COOMe

NHAc
NHNHAc

catalyst, additive
Ag2CO3, solvent

90 °C, 3 h

entry catalyst additive solvent yield (%)
3aa/3aa′

1 [Cp*RhCl2]2 AgSbF6  DCE 44/23
2 [Cp*Rh(MeCN)3](SbF6)2 None DCE 59/15
3 [Cp*Co(CO)I2] AgSbF6 DCE NRb

4 [Cp*Co(MeCN)3](SbF6)2 None DCE NRb 

5 [RuCl2(p-cymene)]2 AgSbF6 DCE NRb

6 [Cp*Rh(MeCN)3](SbF6)2 None Toluene NRb 

7 [Cp*Rh(MeCN)3](SbF6)2 None MeOH NRb

8 [Cp*Rh(MeCN)3](SbF6)2 None CH3CN NRb

9 [Cp*Rh(MeCN)3](SbF6)2 None Dioxane NRb

10c [Cp*Rh(MeCN)3](SbF6)2 None DCE 78/trace
11c none None DCE NRb,d

aReaction conditions: N-phenylacetohydrazide (1a, 0.2 mmol, 30.0 mg), dimethyl maleate (2a, 0.4 
mmol, 57.7 mg), catalyst (5 mol%), AgSbF6 (10 mol%), and Ag2CO3 (2 equiv.) in solvent (1.0 mL) at 
90 °C under a nitrogen atmosphere for 3 h. bNo reaction was observed; the starting material 2a was 
recovered. c25 mol% of NaOAc was used. dThe substrate 1a was decomposed.

The Rh-catalyzed annulation reactions of 2-acetyl-1-arylhydrazines 1a–1s with 

dimethyl maleate (2a) were conducted under optimized conditions. The results are 

summarized in Scheme 3. When 2-acetyl-1-arylhydrazines 1b–1d bearing a methyl (Me) 

group on the para-, meta-, or ortho-position were tested in the reaction of 2a, 80%, 72%, 
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6

and 66% yields of dimethyl 1H-indole-2,3-dicarboxylate products 3ba–3da were 

obtained, respectively. The structure of 3da was confirmed by X-ray crystallography. The 

result from two Me groups substituted substrate 1e was similar with mono-substituted 

one, product 3ea was obtained in 71% yield. Other electron-donating groups were also 

investigated under optimized reaction conditions. The reactions of 

2-acetyl-1-arylhydrazine substrates 1f–1i with methoxy (MeO), normal-butyl (nBu), 

tert-butyl (tBu), and phenyl (Ph) group on the para-positions of benzene rings proceeded 

smoothly to produce the desired products 3fa–3ia in good yields (71%–80%). Similar to 

that of 1d, this transformation was affected by steric hindrance, substrate 1i bearing a Ph 

group on the ortho-position gave the product 3ja in only 54% yield. Halogen-substituted 

2-acetyl-1-arylhydrazine 1k–1p were demonstrated to be suitable substrates in this 

reaction, no matter which kind of halogen atom (F, Cl, Br, or I) linked to the benzene ring, 

the reactions proceeded smoothly to furnish halogenated products 3ka−3pa in 

satisfactory yields (69%−76%). We believed further manipulation based on the C−X 

bond may produce useful compounds. The desired products 3qa and 3ra were also 

obtained in relatively low yields (53 and 50%, respectively) when substrates 1q and 1r 

bearing a strong electron-withdrawing group (methoxycarbonyl (COOMe) or 

trifluoromethyl (CF3)) on the para-positions of benzene rings. These results are 

consistent with literature,13 which suggested that the benzene ring with lower electron 

density is not conducive to C−H activation. The substrate 

N'-(naphthalen-1-yl)acetohydrazide (1s) was finally examined, and the expected product 
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3sa was obtained in 67% yield.

 

Scheme 3. Rh-Catalyzed Annulation of Various 2-Acetyl-1-arylhydrazines with 

Dimethyl Maleatea,b
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aReaction conditions: arylhydrazines (1a-1s, 0.2 mmol), dimethyl maleate (2a, 0.4 mmol, 57.7 mg), 
[Cp*Rh(MeCN)3](SbF6)2 (5 mol%, 8.3 mg), Ag2CO3 (0.4 mmol, 110.2 mg), NaOAc (25 mol%, 4.1 
mg) in DCE (1.0 mL) at 90 °C under a nitrogen atmosphere for 3 h. 

Scheme 4 shows the results obtained from the reactions of 1a with various maleates. 

The maleates 2b–2f coupled with 1a generated the corresponding indoles 3ab–3af in 
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9

satisfactory yields (68%–77%). Unfortunately, no reaction was observed when 

the mixture of 1a and 2g was treated under the established reaction conditions.

Scheme 4. Rh-Catalyzed Annulation of 2-Acetyl-1-phenylhydrazine with Various 

Maleatesa,b

N
H
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NaOAc (25 mol%)
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N
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3ag, NR
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O
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aReaction conditions: 2-acetyl-1-phenylhydrazine (1a, 0.2 mmol, 30 mmg), maleate (2b-2g, 0.4 
mmol), [Cp*Rh(MeCN)3](SbF6)2 (5 mol%, 8.3 mg), Ag2CO3 (0.4 mmol, 110.2 mg), NaOAc (25 
mol%, 4.1 mg) in DCE (1.0 mL) at 90 °C under a nitrogen atmosphere for 3 h. 

To demonstrate the practicality of this new methodology, gram-scale synthesis of 3aa 

was carried out under the standard conditions (Scheme 5, Eq. 1). Approximately 1.36 g of 

3aa was obtained with 73% yield when the reaction was performed on an 8.0 mmol scale. 

This result indicated that the scale-up reactions also proceeded smoothly without loss of 

efficiency. The product 3aa was easily converted into product 512 through N-methylation, 
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10

ester hydrolysis, and acid dehydration. The product 5 has been utilized as a key 

intermediate for the construction of DNA-intercalating reagents (Scheme 5, Eq. 2).2 

Scheme 5. Gram-scale Synthesis and Derivatization of 3aa

+

1a, 1.20 g (8.0 mmol) 2a 3aa, 1.36 g (73% yield)
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A series of experiments were conducted to probe the reaction mechanism (Scheme 6). 

The major product 2-phenyl-1-acetyldiazene (6) was formed under the standard 

conditions in a short time. This indicates that 2-acetyl-1-phenylhydrazine can easily be 

transformed into intermediate 6 in situ in the presence of an oxidant (Eq. 1). The product 

3aa was obtained in 75% yield when 6 reacted with 2a under standard conditions (Eq. 2). 

By-product 3aa′ could not be converted to 3aa under the standard conditions and 

therefore is not the intermediate for 3aa generation (Eq. 3). The kinetic isotope effect 
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determined from an intermolecular competition by reacting 1:1 mixture of 1a and 1a-d5 

(KIE value of approximately 2.2) suggested that the cleavage of the aromatic C−H bond 

was the rate-determining step (Eq. 4). A 12.5:1 ratio of 3ba to 3ra was observed in the 

intermolecular competition between 1b and 1r (Eq. 5), indicating that the reaction 

proceeds through electrophilic C−H bond activation. 

Scheme 6. Control Experiments.
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Scheme 7. Proposed Mechanism
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Scheme 7 shows a plausible mechanism for this indole synthesis on the basis of 

previous reports8 and current experimental outcomes. First, the cationic Rh catalyst 

species [Cp*Rh(OAc)2] is formed through the reaction of the precatalyst 

[Cp*Rh(MeCN)3](SbF6)2 with the base NaOAc. 1a is oxidized by Ag2CO3 to give 

2-phenyl-1-acetyldiazene (6) in situ. Cationic five-membered rhodacyclic intermediate A 

is formed through the coordination of 6 to rhodium and the subsequent ortho C−H bond 

activation processes. The insertion of the olefin moiety in 2a to C−Rh bond then produces 

intermediate B, followed by rearrangement to generate more stable six-membered 

coordinately saturated Rh species C, thereby β–hydride elimination reaction does not take 

place. Instead, intramolecular nucleophilic addition occurs to produce intermediate D, 

which undergoes N−N bond cleavage to generate intermediate E and regenerate catalytic 

species [Cp*Rh(OAc)2]. Finally, E transpires aromatization to give N-free indole 3aa.14 
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In summary, a convenient and efficient method for synthesis of 

1H-indole-2,3-dicarboxylates has been developed. As far as we know, the first successful 

example of rhodium-catalyzed C−H annulation of arylhydrazines with maleates to obtain 

1H-indole-2,3-dicarboxylates is reported in this paper. In addition, this method can 

tolerate diverse functional groups and can be applied to obtain a rather wide range 

of indole.

EXPERIMENTAL SECTION

General Information. 

Solvents were purified by standard techniques without special instructions. 1H and 13C 

NMR spectra were recorded on a 400 spectrometer (400 MHz for 1H, 100 MHz for 13C); 

DMSO-d6 was used as a solvent. The chemical shifts are reported in ppm (δ), and the 

coupling constants J are given in Hz. The peak patterns are indicated as follows: s, singlet; 

d, doublet; m, multiplet. IR spectra were recorded on a FT-IR spectrometer. High 

resolution mass spectra were recorded on a GC-TOF mass spectrometer. TLC was carried 

out on SiO2, and the spots were located with UV light. 

The starting materials 1a–1q, 2b, 2c, 2e, and 2f were synthesized according the 

literatures.7,15

General Procedure for the Rh-Catalyzed Annulation Reaction

  A reaction flask was charged with a mixture of N-arylacetohydrazide (1, 0.2 mmol), 
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maleate (0.4 mmol, 2.0 equiv.), [Cp*Rh(MeCN)3](SbF6)2 (8.3 mg, 0.01 mmol, 5 mol%), 

NaOAc (4.1 mg, 0.05 mmol, 25 mol%), Ag2CO3 (110.2 mg, 0.4 mmol, 2.0 equiv.), and 

DCE (1.0 mL). The reaction mixture was stirred at 90 °C by IKA plate for 3 h under N2 

atmosphere, and then was cooled to room temperature. The solvent was removed under 

reduced pressure, and the residue obtained was purified via silica gel chromatography 

(eluent: petroleum ether/ethyl acetate = 4:1) to give product 3.

Dimethyl 1H-indole-2,3-dicarboxylate (3aa): White solid (36.4 mg, 78% yield), mp 

122−124 °C. 1H NMR (CDCl3, 400 MHz) δ 9.52 (s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.44 

(d, J = 8.0 Hz, 1H), 7.38−7.35 (m, 1H), 7.28−7.25 (m, 1H), 3.99 (s, 3H), 3.97 (s, 3H); 

13C{1H} NMR (CDCl3, 100 MHz) δ 164.7, 161.5, 134.9, 128.1, 126.8, 125.9, 122.8, 

122.6, 112.0, 111.9, 52.7, 51.9; IR (KBr): 3311, 2951, 2919, 1704, 1537, 1442, 1332, 

1252, 1221, 1072, 770, 750 (cm-1); HRMS (EI) calcd for C12H11NO4: 233.0688 [M]+; 

found: 233.0695.

Dimethyl 5-methyl-1H-indole-2,3-dicarboxylate (3ba): White solid (39.6 mg, 80% 

yield), mp 136−138 °C. 1H NMR (CDCl3, 400 MHz) δ 9.47 (s, 1H), 7.83 (s, 1H), 7.33 (d, 

J = 8.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 3.99 (s, 3H), 3.96 (s, 3H), 2.46 (s, 3H); 13C{1H} 

NMR (CDCl3, 100 MHz) δ 164.8, 161.5, 133.3, 132.2, 128.0, 127.9, 127.1, 121.9, 111.6, 

111.3, 52.6, 51.8, 21.6; IR (KBr): 3298, 2948, 2920, 1691, 1532, 1439, 1343, 1254, 1152, 

1065, 801, 776 (cm-1); HRMS (EI) calcd for C13H13NO4: 247.0845 [M]+; found: 

247.0850.

Dimethyl 6-methyl-1H-indole-2,3-dicarboxylate (3ca): White solid (35.6 mg, 72% 

yield), mp 129−131 °C. 1H NMR (CDCl3, 400 MHz) δ 9.35 (s, 1H), 7.92 (d, J = 8.0 Hz, 

1H), 7.20 (s, 1H), 7.10 (s, 1H), 3.98 (s, 3H), 3.96 (s, 3H), 2.46 (s, 3H); 13C{1H} NMR 
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(CDCl3, 100 MHz) δ 164.7, 161.5, 136.3, 135.3, 127.4, 124.8, 124.7, 122.4, 111.9, 111.5, 

52.6, 51.8, 21.9; IR (KBr): 3304, 2947, 2919, 1730, 1682, 1532, 1447, 1327, 1257, 1072, 

810, 784 (cm-1); HRMS (EI) calcd for C13H13NO4: 247.0845 [M]+; found: 247.0851.

Dimethyl 7-methyl-1H-indole-2,3-dicarboxylate (3da): White solid (32.6 mg, 66% 

yield), mp 132−134 °C. 1H NMR (CDCl3, 400 MHz) δ 9.54 (s, 1H), 7.88 (d, J = 8.0 Hz, 

1H), 7.19−7.14 (m, 2H), 3.98 (s, 3H), 3.95 (s, 3H), 2.52 (s, 3H); 13C{1H} NMR (CDCl3, 

100 MHz) δ 164.8, 161.8, 134.7, 127.9, 126.5, 126.1, 122.8, 121.4, 120.2, 112.3, 52.7, 

51.9, 16.6; IR (KBr): 3261, 2953, 1744, 1699, 1545, 1446, 1374, 1260, 1162, 1099, 964, 

752 (cm-1); HRMS (EI) calcd for C13H13NO4: 247.0845 [M]+; found: 247.0854.

Dimethyl 5,6-dimethyl-1H-indole-2,3-dicarboxylate (3ea): White solid (36.8 mg, 

71% yield), mp 153−155 °C. 1H NMR (CDCl3, 400 MHz) δ 9.26 (s, 1H), 7.79 (s, 1H), 

7.18 (s, 1H), 3.98 (s, 3H), 3.96 (s, 3H), 2.36 (s, 6H); 13C{1H} NMR (CDCl3, 100 MHz) δ 

164.9, 161.5, 135.9, 133.9, 132.0, 127.1, 125.4, 122.2, 111.9, 111.4, 52.6, 51.8, 20.7, 

20.3; IR (KBr): 3310, 2917, 2849, 1726, 1686, 1528, 1445, 1276, 1198, 1064, 782, 767 

(cm-1); HRMS (EI) calcd for C14H15NO4: 261.1001 [M]+; found: 261.1011.

Dimethyl 5-methoxy-1H-indole-2,3-dicarboxylate (3fa): White solid (42.1 mg, 80% 

yield), mp 176−178 °C. 1H NMR (CDCl3, 400 MHz) δ 9.54 (s, 1H), 7.47 (s, 1H), 7.33 (d, 

J = 12.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 3.98 (s, 3H), 3.95 (s, 3H), 3.87 (s, 3H); 

13C{1H} NMR (CDCl3, 100 MHz) δ 164.9, 161.4, 156.1, 130.1, 128.2, 127.7, 117.8, 

113.0, 111.1, 102.5, 55.7, 52., 51.8; IR (KBr): 3287, 2943, 2922, 1721, 1688, 1525, 1463, 

1260, 1162, 972, 841, 819 (cm-1); HRMS (EI) calcd for C13H13NO5: 263.0794 [M]+; 

found: 263.0803.
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Dimethyl 5-butyl-1H-indole-2,3-dicarboxylate (3ga): White solid (43.4 mg, 75% 

yield), mp 84−85 °C. 1H NMR (CDCl3, 400 MHz) δ 9.53 (s, 1H), 7.83 (s, 1H), 7.35 (d, J 

= 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 3.99 (s, 3H), 3.95 (s, 3H), 3.72 (t, J = 8.0 Hz, 

2H), 1.68−1.60 (m, 2H), 1.40−1.35 (m, 2H), 0.93 (t, J = 8.0 Hz, 3H); 13C{1H} NMR 

(CDCl3, 100 MHz) δ 164.9, 161.6, 137.4, 133.5, 128.0, 127.3, 127.1, 121.3, 111.7, 111.4, 

52.7, 51.8, 35.9, 34.2, 22.4, 14.0; IR (KBr): 3315, 2954, 2859, 1708, 1357, 1459, 1343, 

1249, 1099, 1063, 811, 774 (cm-1); HRMS (EI) calcd for C16H19NO4: 289.1314 [M]+; 

found: 289.1325.

Dimethyl 5-(tert-butyl)-1H-indole-2,3-dicarboxylate (3ha): White solid (44.0 mg, 

76% yield), mp 145−146 °C. 1H NMR (CDCl3, 400 MHz) δ 9.47 (s, 1H), 8.02 (s, 1H), 

7.47 (d, J = 10.0 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 4.00 (s, 3H), 3.96 (s, 3H), 1.39 (s, 

9H); 13C{1H} NMR (CDCl3, 100 MHz) δ 165.0, 161.5, 145.7, 133.2, 127.9, 126.8, 124.8, 

117.9, 111.9, 111.5, 52.6, 51.8, 34.9, 31.6; IR (KBr): 3318, 2954, 2928, 1707, 1536, 

1440, 1343, 1249, 1154, 1065, 810, 774 (cm-1); HRMS (EI) calcd for C16H19NO4: 

289.1314 [M]+; found: 289.1320.

Dimethyl 5-phenyl-1H-indole-2,3-dicarboxylate (3ia): Yellow solid (43.9 mg, 71% 

yield), mp 118−120 °C. 1H NMR (DMSO-d6, 400 MHz) δ 12.70 (s, 1H), 8.13 (s, 1H), 

7.68−7.59 (m, 4H), 7.49−7.47 (m, 2H), 7.37−7.33 (m, 1H), 3.93 (s, 3H), 3.88 (s, 3H); 

13C{1H} NMR (DMSO-d6, 100 MHz) δ 164.5, 161.8, 141.4, 135.3, 135.2, 130.9, 129.4, 

127.4, 126.7, 125.0, 119.6, 113.9, 109.9, 53.1, 52.0; IR (KBr): 3312, 2951, 2924, 1706, 

1537, 1459, 1375, 1345, 1251, 1165, 1072, 761 (cm-1); HRMS (EI) calcd for C18H15NO4: 

309.1001 [M]+; found: 309.1012.
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Dimethyl 7-phenyl-1H-indole-2,3-dicarboxylate (3ja): Yellow solid (33.4 mg, 54% 

yield), mp 111−113 °C. 1H NMR (CDCl3, 400 MHz) δ 9.31 (s, 1H), 8.05 (d, J = 8.0 Hz, 

1H), 7.60−7.58 (m, 2H), 7.56−7.52 (m, 2H), 7.47−7.43 (m, 1H), 7.37−7.33 (m, 2H), 4.01 

(s, 3H), 3.97 (s, 3H); 13C{1H} NMR (CDCl3, 100 MHz) δ 164.5, 161.3, 137.7, 132.9, 

129.5, 128.3, 128.2, 128.1, 127.3, 126.6, 125.6, 123.1, 121.9, 112.4, 52.8, 51.9; IR (KBr): 

3296, 2952, 2923, 1705, 1452, 1448, 1241, 1120, 1068, 809, 759, 702 (cm-1); HRMS (EI) 

calcd for C18H15NO4: 309.1001 [M]+; found: 309.1006.

Dimethyl 5-fluoro-1H-indole-2,3-dicarboxylate (3ka): Yellow solid (38.2 mg, 76% 

yield), mp 156−158 °C. 1H NMR (CDCl3, 400 MHz) δ 9.56 (s, 1H), 7.73 (dd, J = 4.0, 8.0 

Hz, 1H), 7.37 (dd, J = 4.0, 8.0 Hz, 1H), 7.15−7.10 (m, 1H), 3.98 (s, 6H); 13C{1H} NMR 

(CDCl3, 100 MHz) δ 164.2, 161.2, 159.3 (d, J = 238.0 Hz), 131.3, 129.8, 127.4 (d, J = 

11.0 Hz), 115.4, 115.1, 113.1 (d, J = 10.0 Hz), 111.7 (d, J = 5.0 Hz), 107.7, 107.5, 52.9, 

51.9; IR (KBr): 3279, 2923, 1772, 1719, 1487, 1399, 1196, 1134, 1076, 1046, 743, 621 

(cm-1); HRMS (EI) calcd for C12H10FNO4: 251.0594 [M]+; found: 251.0603.

Dimethyl 5-chloro-1H-indole-2,3-dicarboxylate (3la): Yellow solid (39.1 mg, 73% 

yield), mp 187−189 °C. 1H NMR (CDCl3, 400 MHz) δ 9.54 (s, 1H), 8.05 (d, J = 4.0 Hz, 

1H), 7.37 (d, J = 8.0 Hz, 1H), 7.31 (dd, J = 4.0, 8.0 Hz, 1H), 3.99 (s, 3H), 3.98 (s, 3H); 

13C{1H} NMR (CDCl3, 100 MHz) δ 164.0, 161.1, 133.1, 129.4, 128.6, 127.7, 126.6, 

122.2, 113.1, 111.3, 52.9, 52.0; IR (KBr): 3330, 2951, 2922, 1683, 1530, 1449, 1348, 

1219, 1086, 946, 869, 767 (cm-1); HRMS (EI) calcd for C12H10ClNO4: 267.0298 [M]+; 

found: 267.0308.

Dimethyl 6-chloro-1H-indole-2,3-dicarboxylate (3ma): Yellow solid (36.9 mg, 69% 

yield), mp 228−230 °C. 1H NMR (DMSO-d6, 400 MHz) δ 12.75 (s, 1H), 7.91 (s, 1H), 
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7.54 (d, J = 2.0 Hz, 1H), 7.25 (dd, J = 4.0, 8.0 Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H); 

13C{1H} NMR (DMSO-d6, 100 MHz) δ 164.1, 161.5, 136.0, 131.2, 130.0, 124.9, 123.5, 

123.2, 112.8, 109.7, 53.2, 52.1; IR (KBr): 3308, 2952, 2917, 1735, 1681, 1530, 1448, 

1250, 1133, 1058, 811, 785 (cm-1); HRMS (EI) calcd for C12H10ClNO4: 267.0298 [M]+; 

found: 267.0309.

Dimethyl 5-bromo-1H-indole-2,3-dicarboxylate (3na): Yellow solid (46.8 mg, 75% 

yield), mp 202−204 °C. 1H NMR (CDCl3, 400 MHz) δ 9.40 (s, 1H), 8.22 (d, J = 4.0 Hz, 

1H), 7.46 (dd, J = 4.0, 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 3.99 (s, 6H); 13C{1H} NMR 

(CDCl3, 100 MHz) δ 164.0, 161.0, 133.3, 129.1, 128.3, 125.4, 116.2, 113.4, 111.2, 52.9, 

52.0; IR (KBr): 3300, 2952, 2922, 1705, 1537, 1445, 1338, 1215, 1167, 10786, 803, 768 

(cm-1); HRMS (EI) calcd for C12H10BrNO4: 310.9793 and 312.9773 [M]+; found: 

310.9790 and 312.9778.

Dimethyl 6-bromo-1H-indole-2,3-dicarboxylate (3oa): Yellow solid (43.1 mg, 69% 

yield), mp 232−234 °C. 1H NMR (DMSO-d6, 400 MHz) δ 12.75 (s, 1H), 7.85 (d, J = 8.0 

Hz, 1H), 7.69 (s, 1H), 7.37 (d, J = 12.0 Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H); 13C{1H} NMR 

(DMSO-d6, 100 MHz) δ 164.1, 161.5, 136.4, 131.0, 125.7, 125.1, 123.8, 118.1, 115.8, 

109.8, 53.2, 52.1; IR (KBr): 3311, 2953, 2917, 1736, 1681, 1567, 1445, 1334, 1251, 

1076, 926, 787 (cm-1); HRMS (EI) calcd for C12H10BrNO4: 310.9793 and 312.9773 [M]+; 

found: 310.9791 and 312.9776.

Dimethyl 5-iodo-1H-indole-2,3-dicarboxylate (3pa): Yellow solid (52.4 mg, 73% 

yield), mp 202−203 °C. 1H NMR (DMSO-d6, 400 MHz) δ 12.81 (s, 1H), 8.26 (d, J = 2.0 

Hz, 1H), 7.61−7.58 (m, 1H), 7.37 (d, J = 12.0 Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H); 

13C{1H} NMR (DMSO-d6, 100 MHz) δ 164.0, 161.5, 134.7, 133.4, 131.2, 130.2, 128.4, 
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115.8, 108.4, 87.1, 53.2, 52.1; IR (KBr): 3300, 2949, 2920, 1702, 1533, 1443, 1338, 

1294, 1218, 1133, 1076, 768 (cm-1); HRMS (EI) calcd for C12H10INO4: 358.9655 [M]+; 

found: 358.9650.

Trimethyl 1H-indole-2,3,5-tricarboxylate (3qa): White solid (30.9 mg, 53% yield), 

mp 172−174 °C. 1H NMR (CDCl3, 400 MHz) δ 9.90 (s, 1H), 8.76 (s, 1H), 8.03 (dd, J = 

4.0, 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 4.01 (s, 3H), 3.96 (s, 3H), 3.94 (s, 3H); 

13C{1H} NMR (CDCl3, 100 MHz) δ 167.5, 164.1, 161.1, 137.2, 129.6, 126.8, 126.2, 

125.8, 124.6, 113.0, 112.0, 52.9, 52.2, 52.1; IR (KBr): 3303, 2953, 2925, 1716, 1620, 

1542, 1437, 1286, 1245, 1167, 1062, 762 (cm-1); HRMS (EI) calcd for C14H13NO6: 

291.0743 [M]+; found: 291.0749.

Dimethyl 5-(trifluoromethyl)-1H-indole-2,3-dicarboxylate (3ra): White solid (30.1 

mg, 50% yield), mp 162−164 °C. 1H NMR (DMSO-d6, 400 MHz) δ 13.07 (s, 1H), 8.25 

(s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H); 

13C{1H} NMR (DMSO-d6, 100 MHz) δ 163.9, 161.5, 137.1, 132.7, 129.4, 126.7, 125.3, 

124.0, 123.4 (q, J = 56.0 Hz), 121.5, 119.5 (q, J = 9.0 Hz), 114.6, 110.0, 53.3, 52.2; IR 

(KBr): 3312, 2954, 1745, 1713, 1543, 1444, 1342, 1204 1112, 822, 761, 677 (cm-1); 

HRMS (EI) calcd for C13H10F3NO4: 301.0562 [M]+; found: 301.0567.

Dimethyl 1H-benzo[g]indole-2,3-dicarboxylate (3sa): Yellow solid (38.0 mg, 67% 

yield), mp 205−207 °C. 1H NMR (CDCl3, 400 MHz) δ 10.57 (s, 1H), 8.25 (d, J = 4.0 Hz, 

1H), 7.99 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.60−7.50 (m, 3H), 4.03 (s, 3H), 

3.99 (s, 3H); 13C{1H} NMR (CDCl3, 100 MHz) δ 164.9, 161.8, 132.0, 131.1, 128.9, 

126.3, 126.1, 125.9, 123.8, 123.7, 121.3, 120.7, 120.6, 113.7, 52.8, 52.0; IR (KBr): 3316, 
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2953, 2918, 1727, 1692, 1526, 1446, 1263, 1103, 818, 775, 749 (cm-1); HRMS (EI) calcd 

for C16H13NO4: 283.0845 [M]+; found: 283.0850.

Diethyl 1H-indole-2,3-dicarboxylate (3ab): Colorless oil (40.2 mg, 77% yield). 1H 

NMR (CDCl3, 400 MHz) δ 9.42 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 

1H), 7.29−7.25 (m, 1H), 7.20−7.16 (m, 1H), 4.41−4.34 (m, 4H), 1.39−1.32 (m, 6H); 

13C{1H} NMR (CDCl3, 100 MHz) δ 164.3, 161.1, 134.9, 128.2, 126.9, 125.8, 122.6, 

122.4, 112.2, 111.9, 61.9, 60.8, 14.4, 14.2; IR (neat): 3310, 2980, 2924, 1701, 1536, 

1438, 1375, 1330, 1218, 1068, 1023, 750 (cm-1); HRMS (EI) calcd for C14H15NO4: 

261.1001 [M]+; found: 261.1008.

Diisopropyl 1H-indole-2,3-dicarboxylate (3ac): White solid (43.4 mg, 75% yield), 

mp 66−68 °C. 1H NMR (CDCl3, 400 MHz) δ 9.40 (s, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.45 

(d, J = 8.0 Hz, 1H), 7.39−7.35 (m, 1H), 7.29−7.27 (m, 1H), 5.41−5.31 (m, 2H), 1.48 (s, 

3H), 1.46 (s, 3H), 1.44 (s, 3H), 1.43 (s, 3H); 13C{1H} NMR (CDCl3, 100 MHz) δ 164.3, 

161.1, 134.9, 128.2, 126.9, 125.8, 122.6, 122.4, 112.2, 111.9, 61.9, 60.8, 14.4, 14.2; IR 

(KBr): 3319, 2981, 2933, 1731, 1541, 1452, 1375, 1253, 1182, 1107, 1064, 750 (cm-1); 

HRMS (EI) calcd for C16H19NO4: 289.1314 [M]+; found: 289.1322.

Dibuty 1H-indole-2,3-dicarboxylate (3ad): White solid (48.2 mg, 76% yield), mp 

62−64 °C. 1H NMR (CDCl3, 400 MHz) δ 9.47 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.36 (d, J 

= 8.0 Hz, 1H), 7.29−7.25 (m, 1H), 7.20−7.16 (m, 1H), 4.34−4.29 (m, 4H), 1.74−1.66 (m, 

4H), 1.43−1.37 (m, 4H), 0.93−0.86 (m, 6H); 13C{1H} NMR (CDCl3, 100 MHz) δ 164.4, 

161.3, 134.9, 128.2, 126.8, 125.8, 122.6, 122.4, 112.3, 112.0, 65.8, 64.8, 30.9, 30.6, 19.4, 

19.1, 13.8, 13.7; IR (KBr): 3313, 2960, 2933, 1702, 1541, 1434, 1331, 1217, 1182, 1121, 

1070, 750 (cm-1); HRMS (EI) calcd for C18H23NO4: 317.1627 [M]+; found: 317.1633.
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Dicyclohexyl 1H-indole-2,3-dicarboxylate (3ae): White solid (56.2 mg, 76% yield), 

mp 173−175 °C. 1H NMR (CDCl3, 400 MHz) δ 9.31 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 

7.43 (d, J = 8.0 Hz, 1H), 7.36−7.33 (m, 1H), 7.26−7.23 (m, 1H), 5.13−5.05 (m, 2H), 

2.11−2.07 (m, 2H), 2.02−1.98 (m, 2H), 1.84−1.81 (m, 4H), 1.69−1.57 (m, 6H), 1.51−1.41 

(m, 4H), 1.36−1.30 (m, 2H); 13C{1H} NMR (CDCl3, 100 MHz) δ 163.6, 160.3, 134.7, 

128.5, 126.8, 125.6, 122.5, 122.2, 112.9, 111.8, 74.6, 73.4, 31.9, 31.6, 25.5, 25.4, 24.0, 

23.7; IR (KBr): 3290, 2923, 2855, 1702, 1540, 1454, 1334, 1259, 1181, 946, 768, 742 

(cm-1); HRMS (EI) calcd for C22H27NO4: 369.1940 [M]+; found: 369.1931.

Bis(2,2,2-trifluoroethyl) 1H-indole-2,3-dicarboxylate (3af): White solid (50.2 mg, 

68% yield), mp 147−149 °C. 1H NMR (CDCl3, 400 MHz) δ 9.43 (s, 1H), 8.09 (d, J = 

12.0 Hz, 1H), 7.50−7.42 (m, 2H), 7.36−7.32 (m, 1H), 4.81−4.74 (m, 4H); 13C{1H} NMR 

(CDCl3, 100 MHz) δ 161.8, 158.6, 135.1, 126.9, 126.8 (d, J = 6.0 Hz), 124.1, 123.2 (q, J 

= 182.0 Hz), 121.4, 112.2, 111.3, 60.9 (q, J = 56.0 Hz), 60.8 (q, J = 74.0 Hz); IR (KBr): 

33324, 2972, 2915, 1743, 1693, 1525, 1454, 1285, 1166, 961, 767, 746 (cm-1); HRMS 

(EI) calcd for C14H9F6NO4: 369.0436 [M]+; found: 369.0428.

Dimethyl 1-methyl-1H-indole-2,3-dicarboxylate (4):2 Ice-colded solution of 3aa 

(233.2 mg, 1.0 mmol) in DMF (10 mL) was treated with NaH (80.0 mg, 2.0 equiv.) and 

methyl iodide (212.9 mg, 1.5 equiv.), and then the mixture was stirred at 75 °C by oil 

bath for 8 h. The reaction was quenched with saturated aqueous solution of NH4Cl, and 

the product was extract with EtOAc. The combined organic layers were washed with 

water and brine, and then the organic layers were dried with Na2SO4. The residue 

obtained through filtration and concentration was purified via silica gel chromatography 

(eluent: petroleum ether/ethyl acetate = 8:1) to give 242.3 mg (98%) of 4 as a yellow oil 
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(242.3 mg, 98% yield). 1H NMR (CDCl3, 400 MHz) δ 8.11 (d, J = 8.0 Hz, 1H), 7.34 (s, 

2H), 7.30−7.25 (m, 1H), 4.01 (s, 3H), 3.91 (s, 3H), 3.80 (s, 3H); 13C{1H} NMR (CDCl3, 

100 MHz) δ 164.6, 163.3, 136.9, 134.8, 125.3, 124.5, 123.0, 122.4, 110.2, 108.1, 53.1, 

51.5, 31.5.

4-Methyl-1H-furo[3,4-b]indole-1,3(4H)-dione (5):12 A mixture of dimethyl 

1-methylindole-2,3-dicarboxylate (4, 123.6 mg. 0.5 mmol) and KOH (112.2 mg, 4.0 

equiv.) in ethanol was treated under reflux for 2h. The mixture was cooled to 0 °C and the 

precipitated potassium salt was collected and redissolved in water (5 mL). The solution 

was acidified to pH 2.0 with hydrochloric acid (5 M) to give brown solid dicarboxylic 

acid, which was used directly in the following synthesis step. Dicarboxylic acid in acetic 

anhydride (15 mL) was treated under reflux by oil bath for 2 h. The solvent was removed 

under reduced pressure, and the residue obtained was purified via silica gel 

chromatography (eluent: petroleum ether/ethyl acetate = 10:1) to give product 5 (83.5 mg, 

83%). mp 209−211 °C. 1H NMR (DMSO-d6, 400 MHz) δ 8.10 (d, J = 8.0 Hz, 1H), 7.63 

(d, J = 8.0 Hz, 1H), 7.38−7.34 (m, 1H), 7.29−7.25 (m, 1H), 3.90 (s, 3H); 13C{1H} NMR 

(DMSO-d6, 100 MHz) δ 166.7, 163.6, 136.9, 136.8, 125.6, 124.5, 122.8, 122.3, 111.6, 

107.0, 32.2.

1-(phenyldiazenyl)ethan-1-one (6):16 A reaction flask was charged with a mixture of 

substituted 2-acetyl-1-phenylhydrazine (1a, 0.2 mmol, 30 mmg), dimethyl maleate (2a, 

0.4 mmol, 57.7 mg), [Cp*Rh(MeCN)3](SbF6)2 (8.3 mg, 5 mol%), NaOAc (4.1 mg, 25 

mol%), Ag2CO3 (110.2 mg, 0.4 mmol, 2.0 equiv.) and DCE (1.0 mL). The reaction 

mixture was stirred at 90 °C by IKA plate for 10 min under N2 condition, and then was 

rapidly cooled to room temperature. The solvent was removed under reduced pressure, 
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and the residue obtained was purified via silica gel chromatography (eluent: petroleum 

ether/ethyl acetate = 8:1 to 4:1) to give 6 (15.3 mg, 52%). Red oil (13.6 mg, 46% yield). 

1H NMR (CDCl3, 400 MHz) δ 7.89 (d, J = 8.0 Hz, 2H), 7.57−7.51 (m, 3H), 2.43 (s, 3H); 

13C{1H} NMR (CDCl3, 100 MHz) δ 188.6, 151.5, 133.6, 129.4, 123.7, 21.3.
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