Downloaded via UNIV OF GLASGOW on August 12, 2021 at 00:36:18 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

J]OURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

Communication

Practical and Regioselective Synthesis of C-4-Alkylated Pyridines
Jin Choi, Gabriele Laudadio, Edouard Godineau, and Phil S. Baran*

I: I Read Online

Article Recommendations ‘

Cite This: J. Am. Chem. Soc. 2021, 143, 11927-11933

ACCESS | [l Metrics & More | @ Supporting Information

ABSTRACT: The direct position-selective C-4 alkylation of pyridines has been a long-standing challenge in heterocyclic chemistry,
particularly from pyridine itself. Historically this has been addressed using prefunctionalized materials to avoid overalkylation and
mixtures of regioisomers. This study reports the invention of a simple maleate-derived blocking group for pyridines that enables
exquisite control for Minisci-type decarboxylative alkylation at C-4 that allows for inexpensive access to these valuable building
blocks. The method is employed on a variety of different pyridines and carboxylic acid alkyl donors, is operationally simple and
scalable, and is applied to access known structures in a rapid and inexpensive fashion. Finally, this work points to an interesting
strategic departure for the use of Minisci chemistry at the earliest possible stage (native pyridine) rather than current dogma that
almost exclusively employs Minisci chemistry as a late-stage functionalization technique.

he power of C—H functionalization logic in the context
of synthesizing heteroaromatic structures is undeniable.'

A. Regioselective C4-Alkylation of Pyridines: An Unsolved Challenge
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plored.” In particular, the venerable Minisci reaction and its
many variants have long been recognized as a way to bypass
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has multiple sites to intercept a free radical, mixtures often
result, which can be useful in a discovery setting but is
problematic when a singular regiochemical outcome is desired
(e.g., process scale).” For example, simple 4-alkylated pyridines
(1, Figure 1A) are inaccessible using Minisci chemistry if a
single regioisomer is desired. In such cases, C-4 prefunction-
alization is necessary, and the logical synthon is halopyridine 2.
This conundrum has rendered the early stage application of
Minisci chemistry on pyridine and monosubstituted pyridines
rare in medicinal chemistry and, to our knowledge, nonexistent
on the process scale. A recent collaborative program® within
the agrochemical industry brought to our attention the need
for a simple and inexpensive solution to this unmet challenge
in pyridine alkylation for which available methods were not
applicable. To be sure, several attempts to solve this problem
from starting materials unfunctionalized at the carbon have
appeared over the past decade (Figure 1B) mostly based on
blocking competitive C-2 sites using transient or covalently
linked species at the pyridine nitrogen.” Nakao’s pioneering
studies using bulky Al-based Lewis acids in an elegant
hydroarylation process are limited to olefin donors and must
be performed in a glovebox.” The Fier group at Merck
invented clever oxime-based pyridinium species that could be
employed in three examples of C—C bond formation with
carbon-based nucleophiles.” Finally, the Hong group reported
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C. Comparison of Reactivity and Regioselectivity with Pyridine
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Figure 1. (A) Unsolved challenge in the field of Minisci reaction. (B)
Literature precedent. (C) Comparison experiment with pyridine.

a radical-type addition using N-sulfonamidopyridinium spe-
cies'’ using alkyl bromide donors requiring photochemical
initiation and super stoichiometric amounts of an expensive
silane [(TMS),SiH]."" While this is an important precedent, it

Received: May 21, 2021
Published: July 28, 2021

https://doi.org/10.1021/jacs.1c05278
J. Am. Chem. Soc. 2021, 143, 11927-11933


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jin+Choi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gabriele+Laudadio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Edouard+Godineau"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Phil+S.+Baran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.1c05278&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05278?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05278?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05278?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05278?goto=supporting-info&ref=pdf
https://pubs.acs.org/toc/jacsat/143/31?ref=pdf
https://pubs.acs.org/toc/jacsat/143/31?ref=pdf
https://pubs.acs.org/toc/jacsat/143/31?ref=pdf
https://pubs.acs.org/toc/jacsat/143/31?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05278?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05278?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05278?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c05278?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.1c05278?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf

Journal of the American Chemical Society

pubs.acs.org/JACS

Communication

could not be employed easily on the process scale, as three
steps are needed to install the blocking group (1. N-amination
using hydroxylamine-O-sulfonic acid, 2. tosylation, and 3.
methylation with Meerwein’s salt along with one column
purification and one recrystallization). The Buchwald group
reported a Cu-catalyzed, selective C-4 functionalization of
pyridine with styrenes without a covalent blocking group, via a
novel intramolecular rearrangement mechanism mediated by a
pyridine-coordinated copper species.”*" Herein we disclose a
highly practical method featuring a new blocking group based
on a simple fumarate backbone (6a) enabling classic Minisci
decarboxylative alkylations to take place with exquisite
selectivity at C-4 (Figure 1C) under acid-free conditions.
Emblematic of this advance is the preparation of 4-cyclo-
hexylpyridine (8). Subjecting pyridine under four different
Minisci-type conditions, the product cannot be accessed in a
synthetically useful yield, and a mixture of isomers was
observed."”

Tactically, scalable access to valuable structures such as 8
(81% isolated yield from 6a) can now be enabled with a
dramatic reduction in cost. From a strategic perspective, this
work opens a new dimension of retrosynthetic logic for use of
the Minisci transform at an early rather than late stage.

Guided by a colleague at Syngenta (E.G.), several criteria
needed to be met for a practical blocking group (BG) design,
such as (1) derivation from feedstock materials (ca. $5/mol),
(2) simple installation and removal, (3) high stability, ease of
handling, and solubility in multiple solvents, and most
critically, (4) complete regiochemical control to avoid the
need for any chromatography. Toward this end, multiple BGs
were explored, with most falling into one of two categories
(Figure 2A): (1) simple BG installation with either modest or
low reactivity under Minisci conditions (BG1, 2, 4, 6) or (2)

A. A Fumarate-Derived Blocking Group For Minisci: Discovery
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Figure 2. (A) Fumarate-derived blocking group for Minisci reaction
in the discovery stage. (B) The pyridinium 6a as an inexpensive
gateway to C-4-alkylated pyridine synthesis.

difficulty in forming a stable BG adduct. After extensive
exploration, BG10 emerged as an ideal candidate satisfying all
of the criteria laid out above. BG9 was the only other
moderately successful one; however it exhibited reduced
reactivity toward Minisci addition. The preparation of
pyridinium 6a with BG10 could be prepared through a simple,
chromatography-free, two-step sequence starting from com-
modity materials (pyridine and maleic acid) followed by
esterification. The structure of pyridinium 6a was confirmed by
X-ray crystallography and contained the ethyl sulfate as a
counteranion. This crystalline salt represents a straightforward
gateway to a variety of C-4 alkylated pyridines (vide infra) and
has been commercialized by Sigma-Aldrich (catalog
#ALDO00619).

The generalization of this fumarate-based BG approach is
illustrated in Table 1 using acid-free Minisci conditions on a
range of primary, secondary, and tertiary carboxylic acids.
Although these C-4-alkylated pyridines appear simple, it is
instructive to comment on the means by which such
compounds were previously prepared. In nearly all cases the
current method represents a more practical and cost-effective
solution. In the case of primary carboxylic acid adducts,
pyridine 11 was accessed from C-4-prefunctionalized 4-
methylpyridine via lithiation-Sy2 with corresponding alkyl
bromide (ca. $105/g"*)."* Pyridine 12 was obtained through
an analogous sequence using an alkyl bromide containing a
protected alcohol requiring subsequent deprotection and
chlorination (ca. $945/g'*")."> Pyridines 13, 14, and 17
were previouslgr prepared via photochemical addition on 4-
vinylpyridine.'® Pyridine 15 required a Pd-cross-coupling on
either 4-vinyl or 4-bromopyridine (Heck'”* or Sonogashira,17b
respectively) followed by reduction (ca. $538/g"*). Similarly,
pyridine 16 can be accessed via reduction of the Heck product
of 4-vinylpyridine and an aryl iodide."®

Numerous secondary carboxylic acids were employed to
access such pyridines with high simplicity when placed in
context. For example, pyridine 8 has been prepared multiple
times, either leading to mixtures (e.g.,, Figure 1C) or requiring
C-4-prefunctionalized pyridines (ca. $584/g'*%)." Similarly,
pyridine 18 has been accessed from 4-bromopyridine through
photochemical and electrochemical reductive couplings or by
employing Hong’s BG (Figure 1B) and a Hantzsch ester
radical precursor'® (ca. $150/g'*). Pyridine 21 has been
accessed either via cross-coupling/hydrogenation®” or C-4-
selective Grignard addition using TBSOTf to generate a
transient BG and reoxidation®”® (ca. $100/g"*"). Cyclopropyl-
containing pyridine 23 was accessed either from 4-bromo or 4-
Bpin pyridine via Suzuki or Grignard addition/rearomatization
(ca. $226/g"**).*! The trivial cyclohexanone pyridine 25 has
only been accessed in a controlled fashion using multistep
routes with protecting groups and FG manipulations (ca.
$871/g").22

Many of the quaternary centers containing C-4-alkylated
pyridines (derived from tertiary carboxylic acids) prepared
here are new (29-33) and are likely desirable starting
materials for medicinal chemistry programs. Of the known
alkylated pyridines in this series, two were prepared as mixtures
of regioisomers using radical chemistry (26 and 28)**** or via
Minisci addition to 4-cyanopyridine.”

The chemistry outlined above is not limited to the parent
pyridine 6a but can also be employed on mono- (6b, 6d—i) or
bis- (6c) substituted pyridines. Pyridines 35, 39, and 41 are
new compounds and might be challenging to access
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Table 1. Reaction Scope: Regioselective C-4 Alkylation of Pyridines via a BG Approach”

Reaction Scope: Regioselective C4-Alkylation of Pyridines via a BG Approach

R_(ﬁ e R'CO,H (2 equiv)
Kﬁ/ 0SO;Et AgNO3 (20 mol%)

/I\/COZEt (NH4)2S504 (2 equiv)
Et0,C -

6a-6i (%yield) DCE/H,0 (2:1, 0.1 M)
6a (44%), 6b (94%), 6¢ (99%) 50 °C
6d (88%), e (73%), 6f (67%)

69 (98%), 6h (93%), 6 (70%)

1 \ \
e, DBU (3 equiv) R-t
N - Z
CH,Cl,, 25 °C X
Etozc)\/cozEt zre %yield overall

10 (crude)
[>30 examples] [1 °,2°,3° carboxylic acids] [1 purification]

R R

N

C, exclusive?

Primary Carboxylic Acids

Iy

11 ( $105/g ) 12 ( $945/g

CO,Me

'y

Substituted Pyridines Substrate

79% 53% 60% 54%

0
=z z
| o |
N N
15 ( $538/g) 16 17 25 ($871/g)

56%P  33%P, 39%° 23% (45% rsm)® 39% 41%P 36%°  41%° 25% (32% rsm)
Secondary Carboxyllc Acids F. F Ts
N F. F
Me Me
= = z z =z z
NS | NS | NS | NS | NS | NS |
N N N N N N
$584/g 18 ($150/g) 19 20 21 ($137/g) 22 23 ($226/9) 24
81% 77%° 76% 71% 37% 52% 69% 60% 44%b
Tertiary Carboxylic Acids CO,Me
Cl
MeO,C Cl
Me
z z z z z
| | | | |
N N N N
27 $5 6/g) 29 1 32 33
89% 70% 67% 60% 71% 40% 77% 43% 32%, 38%") 42%°¢ 37%°

34 (from 6b) 35 (from 6¢c) 36 (from 6d) 37 (from 6e) 38 (from 6f) 39 (from 6g) 40 (from 6h)
($1620/g), 68% 64%

/

IR

41 (from 6i)
64 %o

69%

“Yields of 6b—6l are based on isolated yield from substituted pyridines (two steps). (a) 6a (0.5 mmol), carboxylic acid (1.0 mmol), AgNO; (20
mol %), (NH,),S,05 (1.0 mmol), DCE:H,0 = 1:1, 0.1 M, 50 °C, 2 h. The regioselectivity was determined by crude NMR after the first step and
confirmed again after the final purification step; (b) using carboxylic acid (2.0 mmol, 4 equiv) in the Minisci reaction step and DBU (3.0 mmol, 6
equiv) in the removal step; (c) 5.0 mmol scale reaction; (d) carboxylic acid was used as a limiting reagent; (e) performed in 0.3 M. See SI for

detailed experimental procedures.

controllably from the parent pyridines in other ways. Pyridines
such as 37, 38 (ca. $1620/g'*), and 40 have previously been
synthesized either through Grignard addition/oxidation
sequences < or via Hong’s HAT-based method'* employing
BGs similar to that in Figure 1B.

It is worth noting that pyridines 8, 12, 27, and 28 have been
prepared on a gram scale with no significant reduction in yield.
The limitations of this reaction (see SI for full disclosure) stem
from the acidic conditions used to install the BG and a lack of
tolerance for a preexisting C-2 functionality.

11929

Interestingly, when 6a was used in a borono-Minisci reaction
involving aryl boronic acids as a radical precursor,”® lower
regioselectivity was observed, leading to a mixture of C-2 and
C-4 adducts. This outcome can be rationalized with the
compact geometry of the Csp” radical, which allows the attack
on the hindered C-2 position of 6a (see SI for an accurate
description of the results).

Having facile access to pure C-4-alkylated pyridines opens
up a new opportunity for early-stage Minisci chemistry to be
employed in the synthesis of 2,4-difunctionalized systems.
Historically, such heterocycles are prepared by employing

https://doi.org/10.1021/jacs.1c05278
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A. Two-Stage, Regioselective Access to Pyridine Derivatives
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Figure 3. (A) Two-stage derivatization. (B) Practical alternatives to
synthesis. See SI for detailed experimental procedures.

conventional synthetic routes. (C) Mock medicinal and process chemistry

Minisci at the end of a sequence in order to obtain more
regioselective outcomes. As shown in Figure 3A, a reversal of
this traditional choreography is now feasible. Thus, adduct 8
can be submitted to known C-2-selective pyridine functional-
izations such as carbamoylation,”® cyanation,” and amidation®’
to afford pyridines 42, 43, and 44, respectively. This sequence
of events is general and can be utilized to obtain 46 (Minisci
followed by borono-Minisci*®), 47 and 48 (double Minisci),
and 49 (Minisci followed by amidation). Conventional
retrosynthesis of such compounds would likely involve
prefunctionalized handles at the targeted carbon for controlling
regiochemistry, whereas in the present case innate reactivity
and the fumarate-BG overcomes this challenge.

As mentioned above (Table 1), many of the pyridines
reported herein have been prepared by less direct pathways,

and this is graphically depicted for pyridines 12, 27, and 2§ in
Figure 3B. The avoidance of C-4-prefunctionalized pyridines,
pyrophoric reagents, and expensive transition metals are
highlights of this method. Moreover, a proof of concept is
shown for how the fungicide (oomycetes) candidate 54 could
conceivably be accessed in a far more practical way from
pyridine. Prior studies employed chemistry that was cost-
prohibitive for the agrochemical industry commencing from 51
and employing expensive boronate ester 52, N-oxide
chemistry, toxic TMSCN, and a Pd catalyst to access 1,3-
disubstituted 53, which required a subsequent hydrogenation
to remove the 3,4—unsaturation.29 In contrast, the two-stage
Minisci approach from 6a accesses a synthetically equivalent
intermediate S50 directly without any of those drawbacks.
Finally, as a demonstration of practicality in both medicinal

11930 https://doi.org/10.1021/jacs.1c05278
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and process scenarios, pyridine 26 can be prepared and
purified either through column chromatography or through a
simple extraction/washing protocol (Figure 3C).

To summarize, a simple solution to the long-standing
challenge of practical C-4 alkylation of pyridines has been
presented using a simple blocking group derived from
inexpensive maleic acid. The resulting pyridinium species is
stable and, in many instances, crystalline. The resulting
functionalization can be accomplished using classic Minisci
conditions without the addition of any acid and proceeds to
give a singular adduct at C-4. The scope of this reaction is
broad and can be strategically used in concert with other
functionalizations or as a stand-alone method to provide high-
value pyridines that, despite their trivial appearance, have
posed challenges for direct and inexpensive synthesis in a
scalable way.
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