Reactions of 3-Isopropenyl- and 3-Acetyltropolone with Quarternary Ammonium Tribromides

NOTES

Yoichiro Matsunaga and Kimiaki Imafuku*
Department of Chemistry, Faculty of Science, Kumamoto University,
Kurokami, Kumamoto 860
(Received July 20, 1991)

Synopsis. Treatments of 3-isopropenyltropolone with quarternary ammonium tribromides in tetrahydrofuran afforded 3-methyl-8*H*-cyclohepta[*b*]furan-8-one. The reactions in methanol-dichloromethane gave 7-bromo-3-methyl-8*H*-cyclohepta[*b*]furan-8-one. Bromination of 3-acetyltropolone with the tribromides in tetrahydrofuran produced 3-(bromoacetyl)tropolone, while the reaction in the methanolic solvent gave 7-bromo- and 5,7-dibromo-substituted 3-acetyltropolones. The brominations of 4'-hydroxyacetophenone were also carried out.

It is well-known that, on bromination with bromine, tropolones generally give substitution products.¹⁻³⁾ 3-Acetyltropolone was brominated to yield 3-acetyl-5,7-dibromotropolone,⁴⁾ while 3-isopropenyltropolone gave 3-methyl-8*H*-cyclohepta[*b*]furan-8-one and its 5,7-dibromo-substituted product.⁵⁾

Scheme 1. a: Quarternary ammonium tribromide/ Tetrahydrofuran. b: Quarternary ammonium tribromide/CH₃OH-CH₂Cl₂.

Recently, solid quarternary ammonium tribromides have been used as brominating agents in order to avoid the disadvantage of volatile, toxic, and corrosive properties of liquid bromine.^{6,7)} In the treatment of 3-acetyltropolone with phenyltrimethylammonium tribromide, an acetyl group was brominated to yield 3-(bromoacetyl)tropolone, which is applicable as a useful synthon for syntheses of tropolones bearing heterocyclic side chain.⁸⁾

The present paper deals with the reactions of 3-iso-propenyl- (1) and 3-acetyltropolone (4) with tetra-butylammonium tribromide (TBABr₃), benzyltrimethylammonium tribromide (BTMABr₃), and phenyltrimethylammonium tribromide (PTMABr₃). We investigated the differences in the reactivity of the reagents and the effects of solvents on the reactions.

Results and Discussion

Previously, it was found that alkenes are treated with BTMABr₃ to give dibromo adducts on the carbon-carbon double bond.⁹⁾ A solution of 3-isopropenyl-tropolone (1) in an aprotic solvent, tetrahydrofuran, was stirred for 2 h at room temperature in the presence of an equimolar amount of TBABr₃. From the reaction mixture, a cyclized product, 3-methyl-8*H*-cyclohepta-[*b*]furan-8-one (2),¹⁰⁾ was isolated in a 41% yield. The reactions with BTMABr₃ and PTMABr₃ under the same conditions also gave the compound 2. These results are summarized in Table 1.

On the other hand, the reactions of 1 with TBABr₃, BTMABr₃, and PTMABr₃ in a protic solvent, methanol—dichloromethane (2:5), yielded the cyclized product 2 and its 7-bromo-substituted product 3 (Table 1). The treatment of the compound 2 with quarternary ammonium tribromide did not give the brominated compound 3. This means that 1 was initially brominated to produce 7-bromo-3-isopropenyltropolone (not isolated) as an intermediate, which cyclized to the product 3.

Previously, we reported that bromination of 3-acetyltropolone (4) with PTMABr₃ in tetrahydrofuran yielded 3-(bromoacetyl)tropolone (5).⁸⁾ In a similar manner, 4 was treated with an equimolar amount of TBABr₃, BTMABr₃, and PTMABr₃ by stirring for 2 h at room temperature to afford 5 (Table 1). From the reaction with TBABr₃, the starting material 4 was also recovered.

The reactions of 3-acetyltropolone (4) with quarternary ammonium tribromide in methanol-dichloromethane (2:5) for 1 h gave 3-acetyl-7-bromotropolone (6) and 3-acetyl-5,7-dibromotropolone (7)⁴⁾ as substitution products (Table 1).

In the chemistry of benzenoid compounds, it was

Table 1. Reactions with Quarternary Ammonium Tribro	omide
---	-------

Substrate	Reagent	Solvent	Reaction time/h	Product (Yield/%)
1	TBABr ₃	THF	2	2 (41)
1	$BTMABr_3$	THF	2	2 (46)
1	$PTMABr_3$	THF	2	2 (56)
1	$TBABr_3$	CH ₃ OH-CH ₂ Cl ₂	2	2 (54) 3 (7)
1	$BTMABr_3$	CH ₃ OH-CH ₂ Cl ₂	2	2 (52) 3 (6)
1	$PTMABr_3$	CH ₃ OH-CH ₂ Cl ₂	2	2 (56) 3 (3)
4	$TBABr_3$	THF	2	5 (22) 4 ^{a)} (13)
4	$BTMABr_3$	THF	2	5 (38)
4	$PTMABr_3$	THF	2	5 (46)
4	$TBABr_3$	CH ₃ OH-CH ₂ Cl ₂	1	6 (15) 7 (34)
4	$BTMABr_3$	CH ₃ OH-CH ₂ Cl ₂	1	6 (16) 7 (31)
4	$PTMABr_3$	CH ₃ OH-CH ₂ Cl ₂	1	6 (19) 7 (54)
8	$TBABr_3$	THF	3	9 (49) 8 ^{a)} (16)
8	$BTMABr_3$	THF	2	$9(51)$ $8^{a}(27)$
8	$PTMABr_3$	THF	2	9 (55) 8 ^{a)} (19)
8	$TBABr_3$	CH ₃ OH-CH ₂ Cl ₂	0.5	9 (21) 10 (59)
8	$BTMABr_3$	$CH_3OH-CH_2Cl_2$	0.5	9 (16) 10 (69)
8	$PTMABr_3$	$CH_3OH-CH_2Cl_2$	0.5	9 (15) 10 (76)

a) Recovered substrate.

reported that the reactions of phenols with BTMABr₃ gave 2,4,6-tribromophenols,¹¹⁾ while the reactions of acetophenones gave 2-bromoacetophenones by using an equimolar amount of BTMABr₃¹²⁾ and 2,2-dibromoacetophenones by using three molar amount of the reagent.¹³⁾ However, the bromination reactions of hydroxyacetophenones bearing both the hydroxyl and acetyl group with quarternary ammonium tribromides were not reported. Thus, in comparison with the reactions of 3-acetyltropolone (4), the bromination of 4'-hydroxyacetophenone (8) with quaternary ammonium tribromides was carried out.

When a solution of 8 in tetrahydrofuran was treated with an equimolar amount of TBABr₃ at room temperature, the color of the reagent disappeared after stirring for 2 h. The reaction mixture was worked up to give 2-bromo-4'-hydroxyacetophenone (9) in a 49% yield, besides the unchanged 8. The reactions with BTMABr₃ and PTMABr₃ also gave 9 and the unchanged 8 (Table 1). On the other hand, in the reactions in methanol-dichloromethane (2:5), the color of the reagents disappeared after stirring for 30 min and then 9 and 3'-bromo-4'-hydroxyacetophenone (10) were obtained in 15—21 and 59—76% yields, respectively (Table 1).

The yields of the reactions by using three quarternary ammonium tribromides increased in order of TBABr₃<BTMABr₃<PTMABr₃ in both tetrahydrofuran and methanolic solvent. It can be said that four inductively electron-donating alkyl groups of TBABr₃ repressed the bromination reaction, while the electron-attracting phenyl group of PTMABr₃ accelerated the reactions.

We also found a striking difference in the effects of the solvents on the bromination reactions. As shown in Table 1, the bromination of 3-acetyltropolone (4) in the aprotic tetrahydrofuran took place at the side-chain acetyl group, while the reaction in the protic methanol-dichloromethane took place at the 5- and 7-positions in

Scheme 2.

the tropolone nucleus. The reactions of 4'hydroxyacetophenone (8) in tetrahydrofuran afforded the 2-brominated product 9. The reaction in the methanolic solvent gave two types of products 9 and 10. The latter was preferential to the former. When the compounds 5 and 9 were stirred at room temperature in the methanolic solvent in absence of the brominating agent, they were recovered quantitatively, respectively. On the other hand, the compounds 5 and 9 were treated with an equimolar amount of PTMABr₃ in methanoldichloromethaneto afford 5,7-dibromo-3-(bromoacetyl)tropolone (11) and 2.3'-dibromo-4'-hydroxyacetophenone (12) in 58 and 85% yields, respectively. In the reaction of 3-isopropenyltropolone (1), the 7-brominated product 3 was found in the methanolic solvent, besides the product 2.

Thus, in the methanolic solvent, the brominating agent might react with methanol to produce methyl hypobromite^{11,13)} which brominates the tropolone and benzene nucleus as a more active brominating species.

Experimental

The melting points were determined with a Yanagimoto MP-

S2 apparatus and are uncorrected. The IR spectra were taken on a JASCO A-102 spectrophotometer. The $^1\mathrm{H}$ NMR spectra were recorded with a JEOL JNM-PMX60SI spectrometer. The mass spectra were measured on a JEOL DX3-3HF spectrometer.

Reactions of 3-Isopropenyltropolone (1) with Quarternary Ammonium Tribromide. General Procedure. a) Reactions in Tetrahydrofuran. To a solution of 3-isopropenyltropolone (1) (486 mg, 3 mmol) in tetrahydrofuran (10 ml) was added quarternary ammonium tribromide (3 mmol) little by little. After stirring for 2 h at room temperature, the color of the reaction mixture changed gradually from orange to yellow. The mixture was diluted with water (100 ml) and extracted with ether (40 ml×4). The extract was evaporated, chromatographed on a Wakogel B-10 plate (30×30 cm) with ethyl acetate-chloroform (1:1), and recrystallized from methanol to give 3-methyl-8H-cyclohepta[b]furan-8-one (2): Mp 95—97 °C (lit, 10) 95—96 °C).

b) Reactions in Methanol–Dichloromethane. A solution of 3-isopropenyltropolone (1) (486 mg, 3 mmol) in methanol (20 ml)-dichloromethane (50 ml) was treated with quarternary ammonium tribromie (3 mmol) for 2 h and worked up, as described above. The evaporation residue was chromatographed on a Wakogel B-10 plate (30×30 cm) with ethyl acetate–chloroform (1:1). The lower fraction was recrystallized from methanol to give 3-methyl-8*H*-cyclohepta[*b*]furan-8-one (2). The upper fraction was recrystallized from methanol to give 7-bromo-3-methyl-8*H*-cyclohepta[*b*]furan-8-one (3): Pale yellow needles; mp 118—120 °C; IR (CHCl₃) 1597 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ =2.27 (3H, s, CH₃), 6.83 (1H, dd, J=9, 9 Hz, H-5), 7.70 (1H, m, H-2), 7.74 (1H,d, J=9 Hz, H-6), 8.23 (1H, d, J=9 Hz, H-4). Found: C, 49.98; H, 2.97%. Calcd for C₁₀H₇BrO₂: C, 50.24; H, 2.95%.

Reactions of 3-Acetyltropolone (4) with Quarternary Ammonium Tribromide. General Procedure. a) Reactions in Tetrahydrofuran. A solution of 3-acetyltropolone (4) (492 mg, 3 mmol) in tetrahydrofuran (10 ml) was treated with quanternary ammonium tribromide (3 mmol) for 2 h and worked up, as described above. The extract was evaporated and recrystallized from petroleum ether to give 3-(bromoacetyl)tropolone (5): Mp 95—97 °C (lit, 8) 97—98 °C).

b) Reactions in Methanol–Dichloromethane. A solution of 3-acetyltropolone (4) (492 mg, 3 mmol) in methanol (20 ml)-dichloromethane (50 ml) was treated with quarternary ammonium tribromide (3 mmol) for 1 h and worked up, as described above. The extract was evaporated and chromatographed on a Wakogel B-10 plate (30×30 cm) with ethyl acetate. The lower fraction was recrystallized from methanol to give 3-acetyl-7-bromotropolone (6): Yellow needles; mp 87—89 °C; IR (CHCl₃) 3220 (OH), 1693 (COCH₃), 1603 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ =2.76 (3H, s, CH₃), 7.03 (1H, dd, J=10, 10 Hz, H-5), 7.50 (1H, d, J=10 Hz, H-6), 8.70 (1H, d, J=10 Hz, H-4); MS m/z (%) 244 [(M+2)+, 45], 242 (M+46), 201 [(M+2)+-COCH₃, 91], 199 (M+-COCH₃, 92), 163 (M+-Br, 100). Found: C, 44.25; H, 2.84%. Calcd for C₉H₇BrO₃: C, 44.47; H, 2.90%.

The upper fraction was recrystallized from methanol to give 3-acetyl-5,7-dibromotropolone (7): Mp 171—173 °C (lit,4) 173—174 °C).

Reactions of 4'-Hydroxyacetophenone (8) with Quarternary Ammonium Tribromide. General Procedure. a) Reactions in Tetrahydrofuran. A solution of 4'-hydroxyacetophenone (8) (408 mg, 3 mmol) in tetrahydrofuran (10 ml) was treated with quanternary ammonium tribromide (3 mmol) for 3 h (TBABr₃) or 2 h (BTMABr₃ and PTMABr₃) and worked up, as described above. The extract was evaporated, chromatographed on a Wakogel B-10 plate (30×30 cm) with ethyl acetate, and recrystallized from benzene to give 2-bromo-4'-

hydroxyacetophenone (9): Mp 128—130 °C (lit, 14) 130 °C).

b) Reactions in Methanol-Dichloromethane. A solution of 4'-hydroxyacetophenone (8) (408 mg, 3 mmol) in methanol (20 ml)-dichloromethane (50 ml) was treated with quarternary ammonium tribromide (3 mmol) for 30 min and worked up, as described above. The extract was evaporated and chromatographed on a Wakogel B-10 plate (30×30 cm) with ethyl acetate. The lower fraction was recrystallized from benzene to give 2-bromo-4'-hydroxyacetophenone (9). The upper fraction was recrystallized from petroleum ether to give 3'-bromo-4'-hydroxyacetophenone (10): Mp 93—94 °C (lit, 15) 92—95 °C).

Reaction of 3-(Bromoacetyl)tropolone (5) with PTMABr₃. A solution of 5 (122 mg, 0.5 mmol) in methanol (3 ml)-dichloromethane (8 ml) was treated with PTMABr₃ (188 mg, 0.5 mmol) for 1 h and worked up, as described above. The extract was evaporated and recrystallized from methanol to give 5,7-dibromo-3-(bromoacetyl)tropolone (11): Yield 116 mg (58%); yellow crystals; mp $162 \,^{\circ}$ C (decomp); IR (CHCl₃) 3200 (OH), 1695 (COCH₂), $1600 \,^{\circ}$ cm⁻¹ (C=O); 1 H NMR (CDCl₃) δ =4.59 (2H, s, CH₂), 8.02 (1H, d, J=2 Hz, H-6), 8.49 (1H, d, J=2 Hz, H-4). Found: C, 26.71; H, 1.50%. Calcd for $C_{9}H_{3}Br_{3}O_{3}$: C, 26.96; H, 1.26%.

Reaction of 2-Bromo-4'-hydroxyacetophenone (9) with PTMABr₃. A solution of 9 (108 mg, 0.5 mmol) in methanol (3 ml)-dichloromethane (8 ml) was treated with PTMABr₃ (188 mg, 0.5 mmol) for 30 min and worked up, as described above. The extract was evaporated and recrystallized from benzene to give 2,3'-dibromo-4'-hydroxyacetophenone (12): Mp 140—142 °C (lit, ¹⁶) 143 °C).

References

- 1) T. Nozoe, K. Takase, and H. Matsumura, "Dai Yuki Kagaku," ed by M. Kotake, Asakura Shoten, Tokyo (1960), Vol. 13, pp. 1—437.
 - 2) F. Pietra, Chem. Rev., 73, 293 (1973).
- 3) D. Lloyd, "Non-benzenoid Conjugated Carbocyclic Compounds," Elsevier, Amsterdam (1984), pp. 107—125.
- 4) Z.-H. Li, Z.-T. Jin, B.-Z. Yin, and K. Imafuku, J. Heterocycl. Chem., 24, 779 (1987).
- 5) R.-H. Jin, B.-Z. Yin, Z.-T. Jin, and K. Imafuku, J. Heterocycl. Chem., 27, 583 (1990).
- 6) L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," John Wiley & Son, New York (1967), Vol. 1, p. 855; Vol. 2, p. 328 (1969); Vol. 4, p. 386 (1974); Vol. 5, p. 531 (1975); Vol. 11, p. 426 (1984); Vol. 13, p. 287 (1988)
- Vol. 11, p. 426 (1984); Vol. 13, p. 287 (1988).

 7) S. Kajigaeshi and T. Kakinami, *Yuki Gosei Kagaku Kyokai Shi*, **46**, 986 (1988).
- 8) C.-Y. Qian, Z.-T. Jin, B.-Z. Yin, and K. Imafuku, J. Heterocycl. Chem., 26, 60 (1989).
- 9) S. Kajigaeshi, T. Kakinami, M. Moriwaki, S. Fujisaki, and M. Tashiro, *Rept. Inst. Adv. Mater. Stud., Kyushu Univ.*, 2, 87 (1988).
- 10) K. Imafuku, K. Yamaguchi, and H. Matsumura, Bull, Chem. Soc. Jpn., 53, 745 (1980).
- 11) S. Kajigaeshi, T. Kakinami, H. Tokiyama, T. Hirakawa, and T. Okamoto, *Chem. Lett.*, **1987**, 627.
- 12) S. Kajigaeshi, T. Kakinami, T. Okamoto, and S. Fujisaki, Bull. Chem. Soc. Jpn., 60, 1159 (1987).
- 13) S. Kajigaeshi, T. Kakinami, H. Tokiyama, T. Hirakawa, and T. Okamoto, *Bull. Chem. Soc. Jpn.*, **60**, 2667 (1987).
- 14) N. P. Buu-Hoi, N. D. Xuong, and D. Lavit, *J. Chem. Soc.*, **1954**, 1034.
- 15) F.-C. Chen and T.-H. Tsai, *J. Taiwan Pharm. Assoc.*, **4**, 42 (1952).
- 16) K. W. Rosenmund and K. Pfroepffer, *Chem. Ber.*, **90**, 1922 (1957).