# Bioorganic & Medicinal Chemistry Letters 26 (2016) 3127-3134

Contents lists available at ScienceDirect

# **Bioorganic & Medicinal Chemistry Letters**

journal homepage: www.elsevier.com/locate/bmcl



CrossMark

# GroEL/ES inhibitors as potential antibiotics

Sanofar Abdeen<sup>a</sup>, Nilshad Salim<sup>a</sup>, Najiba Mammadova<sup>a,†</sup>, Corey M. Summers<sup>a,‡</sup>, Rochelle Frankson<sup>a,§</sup>, Andrew J. Ambrose<sup>b</sup>, Gregory G. Anderson<sup>c</sup>, Peter G. Schultz<sup>d</sup>, Arthur L. Horwich<sup>e</sup>, Eli Chapman<sup>b</sup>, Steven M. Johnson<sup>a,\*</sup>

<sup>a</sup> Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States <sup>b</sup> The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States <sup>c</sup> Indiana University-Purdue University Indianapolis, Department of Biology, 723 W. Michigan St., Indianapolis, IN 46202, United States <sup>d</sup> The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Rd., La Jolla, CA 92037, United States

e HHMI, Department of Genetics, Yale School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Ave., New Haven, CT 06510, United States

## ARTICLE INFO

Article history: Received 28 March 2016 Revised 28 April 2016 Accepted 29 April 2016 Available online 4 May 2016

Keywords: GroEL GroES HSP60 HSP10 Molecular chaperone Chaperonin Proteostasis Small molecule inhibitors *ESKAPE* pathogens Antibiotics

#### ABSTRACT

We recently reported results from a high-throughput screening effort that identified 235 inhibitors of the Escherichia coli GroEL/ES chaperonin system [Bioorg. Med. Chem. Lett. 2014, 24, 786]. As the GroEL/ES chaperonin system is essential for growth under all conditions, we reasoned that targeting GroEL/ES with small molecule inhibitors could be a viable antibacterial strategy. Extending from our initial screen, we report here the antibacterial activities of 22 GroEL/ES inhibitors against a panel of Gram-positive and Gram-negative bacteria, including E. coli, Bacillus subtilis, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae. GroEL/ES inhibitors were more effective at blocking the proliferation of Gram-positive bacteria, in particular S. aureus, where lead compounds exhibited antibiotic effects from the low-µM to mid-nM range. While several compounds inhibited the human HSP60/10 refolding cycle, some were able to selectively target the bacterial GroEL/ES system. Despite inhibiting HSP60/10, many compounds exhibited low to no cytotoxicity against human liver and kidney cell lines. Two lead candidates emerged from the panel, compounds 8 and 18, that exhibit >50-fold selectivity for inhibiting *S. aureus* growth compared to liver or kidney cell cytotoxicity. Compounds 8 and 18 inhibited drug-sensitive and methicillin-resistant S. aureus strains with potencies comparable to vancomycin, daptomycin, and streptomycin, and are promising candidates to explore for validating the GroEL/ES chaperonin system as a viable antibiotic target.

© 2016 Elsevier Ltd. All rights reserved.

The number of lives saved by antibiotics is a hallmark of the success of this class of drugs. However, resistant bacterial strains have been identified for every class of antibiotic, usually within a few years of general therapeutic use.<sup>1–3</sup> The threat of antibiotic resistance is epitomized by the emergence of six multi-drug resistant bacteria referred to as the *ESKAPE* pathogens: *Enterococcus faecium*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacter* species.<sup>4–8</sup>

\* Corresponding author. Tel.: +1 317 274 2458; fax: +1 317 274 4686. *E-mail address:* johnstm@iu.edu (S.M. Johnson). The Centers for Disease Control (CDC) and Prevention Antibiotic Resistance Threat Report lists these bacteria as serious threats (level 4 out of 5) requiring prompt and sustained action.<sup>9</sup> Most alarming is that antibiotic resistance has mounted to the point where therapeutics are severely limited or ineffective for once easily treated infections. For example, ~10,000 people per year are estimated to die from methicillin-resistant *S. aureus* (MRSA) infections in the United States.<sup>10</sup> Moreover, the CDC estimates the direct medical cost of treating antibiotic resistant bacterial infections in the US is more than \$20 billion per year.<sup>9</sup> Clearly, the rise of resistant bacterial strains requires enhanced research efforts to ensure an ongoing antibiotic pipeline.

Current antibiotics primarily function by blocking cell wall construction, structure and function of the cell membrane, protein synthesis, DNA structure and function, or folic acid synthesis.<sup>11</sup> Recently developed therapeutics for infections caused by drugresistant bacteria include the injectable carbapenem beta-lactam, doripenem, which targets penicillin-binding proteins and inhibits

<sup>&</sup>lt;sup>†</sup> Present address: Department of Genetics, Development and Cell Biology, Iowa State University, 1210 Molecular Biology Building, Pannel Dr, Ames, IA 50011, United States.

<sup>&</sup>lt;sup>‡</sup> Present address: Department of Kinesiology, Iowa State University, 235 Barbara E. Forker Building, Beach Rd, Ames, IA 50011, United States.

<sup>§</sup> Present address: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Hansen Life Sciences Research Building, 201 S. University Street, West Lafayette, IN 47907, United States.



**Figure 1.** General protocol for chaperonin-mediated biochemical assays. Compounds (I) are added at point A to a solution containing GroEL (or HSP60) with bound substrate protein (e.g., malate dehydrogenase, MDH). Addition of GroES (or HSP10) and ATP initiates the refolding cycle, which is quenched with EDTA after a 60 min incubation. Substrates (R) for the refolded reporter enzyme are added and after another 30–60 min incubation (until the DMSO control wells have reached ~90% consumption of NADH), absorbance is measured to evaluate the amount of refolded enzyme present, and by association the extent of chaperonin inhibition. Alternatively, addition of compounds at point B enables determination of off-target inhibition of the reporter enzyme (i.e., native MDH enzyme activity). Chaperonin-mediated ATP hydrolysis is also evaluated using a malachite green assay. Biochemical assays employing Rhodanese (Rho) are performed similarly (refer to Supporting information for detailed protocols).

cell wall synthesis;<sup>12</sup> the cyclic lipopeptide, daptomycin, which inserts into the bacterial membrane and leads to pore formation;<sup>13</sup> quinupristin/dalfopristin, which bind to two different sites on the 50S ribosomal subunit and interfere with protein synthesis;<sup>14</sup> the oxazolidinone, linezolid, which also binds the 50S ribosomal subunit;<sup>15</sup> the tetracycline derivative, tigecycline, which targets protein synthesis via the 30S ribosomal subunit;<sup>16</sup> and the lipoglycopeptide, dalbavancin, which has the same mode of action as vancomycin, binding to the p-Ala-p-Ala motif in the cell wall.<sup>17</sup> As these examples illustrate, most new antibiotics are derivatives of existing drugs that also target the aforementioned pathways. Unfortunately, bacterial resistance to these drugs is quick to develop. These data argue for the continued pursuit of antibiotics with entirely new modes of action, which may better avoid mechanisms of resistance and have longer effective life times.

An attractive strategy for the development of novel antibiotics is to target bacterial protein homeostasis (proteostasis) mechanisms, in particular molecular chaperones. Molecular chaperones



**Figure 2.** Structures of the 22 compounds under evaluation. For ease of comparison, compound numbering from **1** to **36** was maintained as presented in our previous high-throughput screening study.<sup>37</sup> Compounds **2–4**, **6**, **7**, **12**, **13**, **16**, **17**, **21**, **22**, **26**, **30**, and **36** were omitted from evaluation as they were either not commercially available, or purchased compounds were not readily identified by LC–MS and/or did not have acceptable purities confirmed by HPLC.

| Table 1                                                                     |  |
|-----------------------------------------------------------------------------|--|
| Biochemical IC <sub>50</sub> results for <i>E. coli</i> GroEL/ES inhibitors |  |

|    | Biochemical assay IC <sub>50</sub> values (µM) |                                    |                                |   |                                |                             |  |  |
|----|------------------------------------------------|------------------------------------|--------------------------------|---|--------------------------------|-----------------------------|--|--|
| #  | Native Rho<br>reporter<br>activity             | Native MDH<br>reporter<br>activity | GroEL/ES-<br>dRho<br>refolding |   | GroEL/ES-<br>dMDH<br>refolding | GroEL/ES-<br>dMDH<br>ATPase |  |  |
| 1  | >100                                           | >62.5                              | 30                             | * | 7.5                            | 119                         |  |  |
| 5  | 14                                             | >62.5                              | 0.58                           |   | 0.69                           | >250                        |  |  |
| 8  | >100                                           | 7.1                                | 1.4                            |   | 1.4                            | >250                        |  |  |
| 9  | >100                                           | >62.5                              | 1.4                            |   | 0.93                           | 80                          |  |  |
| 10 | 0.25                                           | 54                                 | 0.47                           |   | 0.80                           | 174                         |  |  |
| 11 | 12                                             | >62.5                              | 0.83                           |   | 1.2                            | 216                         |  |  |
| 14 | 2.5                                            | >62.5                              | 2.5                            |   | 3.0                            | >250                        |  |  |
| 15 | 23                                             | >62.5                              | 1.7                            |   | 2.7                            | >250                        |  |  |
| 18 | >100                                           | >62.5                              | 6.8                            |   | 5.7                            | >250                        |  |  |
| 19 | 8.1                                            | >62.5                              | 3.0                            |   | 4.8                            | >250                        |  |  |
| 20 | >100                                           | >62.5                              | 22                             | * | 5.4                            | >250                        |  |  |
| 23 | 2.1                                            | >62.5                              | 2.4                            |   | 4.7                            | >250                        |  |  |
| 24 | >100                                           | >62.5                              | 2.3                            |   | 3.6                            | >250                        |  |  |
| 25 | 1.4                                            | >62.5                              | 2.6                            |   | 6.5                            | >250                        |  |  |
| 27 | 12                                             | >62.5                              | 9.6                            | * | 4.7                            | >250                        |  |  |
| 28 | 5.3                                            | >62.5                              | 0.89                           |   | 2.6                            | >250                        |  |  |
| 29 | >100                                           | >62.5                              | 28                             |   | 24                             | 187                         |  |  |
| 31 | 52                                             | >62.5                              | 18                             |   | 31                             | >250                        |  |  |
| 32 | 10                                             | >62.5                              | 11                             | * | 42                             | 217                         |  |  |
| 33 | >100                                           | >62.5                              | >250                           |   | >100                           | >250                        |  |  |
| 34 | >100                                           | >62.5                              | 25                             |   | 24                             | >250                        |  |  |
| 35 | >100                                           | >62.5                              | 79                             | # | >100                           | 107                         |  |  |

Statistical analyses (two-tailed *t*-tests) were performed for compound log(IC<sub>50</sub>) values determined from the GroEL/ES-dRho and GroEL/ES-dMDH refolding assays. Compounds for which there is a statistically significant difference between inhibition results have been marked with a <sup>(4)</sup> between the two assay results being compared (p < 0.05). *P*-Values could not be calculated for compounds marked with a <sup>(#)</sup> as one IC<sub>50</sub> is greater than the maximum compound concentration tested. For most compounds, IC<sub>50</sub> values are not statistically different (17/22 compounds), suggesting they are 'on-target' for inhibiting the refolding of the dRho and dMDH substrates. IC<sub>50</sub> correlations are represented graphically in Figure 3.

IC<sub>50</sub> = inhibitor concentration resulting in 50% reduction of biochemical activity.

are a specialized class of proteins that help other proteins to properly fold to their native states. Among the molecular chaperones in *E. coli*, the GroEL/ES chaperonin system is the only one essential for growth under all conditions.<sup>18,19</sup> GroEL is a central processing machine that maintains the structural and functional integrity of many other proteins (Fig. 1); for a review, see Refs. 19,20.<sup>19–22</sup> Thus, targeting this one functional node results in a cascading effect that leads to the dysfunction of numerous key cellular pathways, which is lethal to bacteria.<sup>18</sup> Because no other drugs function by targeting chaperonin systems, this strategy should be effective against bacteria that are resistant to current antibiotics.

The central tenet of this antibiotic strategy raises the question of whether bacterial GroEL/ES can be targeted specifically without interfering with the metazoan counterpart in the mitochondria, HSP60/10, whose partial deficiency in humans leads to disease.<sup>2</sup> Human HSP60 shares 48% sequence identity with E. coli GroEL, and thus there is the possibility of inhibitor cross-talk between the two chaperonins. However, structural and functional differences between the two systems suggest that it should be possible to develop inhibitors that selectively target bacterial GroEL/ES over human HSP60/10. GroEL is a homo-tetradecameric protein consisting of two, seven-membered rings that stack back-to-back.<sup>24-26</sup> Through a series of events driven by ATP binding and hydrolysis, unfolded substrate proteins are bound within the central cavity of one GroEL ring and encapsulated by the heptameric GroES cochaperonin lid structure, triggering protein folding in a sequestered chamber.<sup>25–31</sup> GroEL/ES works as an allosterically-controlled, double-ring system, which is regulated through positive intra-ring ATP-binding and negative inter-ring binding. In contrast, studies have indicated that human HSP60/10 operates as a single-ring species, through at least part of the cycle, removing many of the



**Figure 3.** (A) Compounds inhibit nearly equipotently in the *E. coli* GroEL/ES-dMDH and the GroEL/ES-dRho refolding assays. Data plotted in the grey zones represent results beyond the assay detection limits (i.e., >100  $\mu$ M for the dMDH refolding assay, and >250  $\mu$ M for the dRho refolding assay). Compounds indicated by the white squares are those with statistically significant differences between their IC<sub>50</sub> values (*p* <0.05). (B) While some compounds inhibit either native MDH or Rho individually, only compound **10** inhibits in both counter-screens, and only to a minor extent against native MDH. Data plotted in the grey zones represent results beyond the assay detection limits (i.e., >62.5  $\mu$ M for the native MDH enzymatic reporter assay, and >100  $\mu$ M for the native Rho enzymatic reporter assay).

Table 2E. coli and B. subtilis bacterial proliferation  $EC_{50}$  results for GroEL/ES inhibitors

|    | Bacterial proliferation $EC_{50}$ values ( $\mu M$ ) |                      |               |             |  |  |  |  |
|----|------------------------------------------------------|----------------------|---------------|-------------|--|--|--|--|
| #  | DH5a E. coli                                         | MC4100 ⊿acrB E. coli | SM101 E. coli | B. subtilis |  |  |  |  |
| 1  | >100                                                 | >100                 | >100          | >100        |  |  |  |  |
| 5  | >100                                                 | 92                   | 27            | 25          |  |  |  |  |
| 8  | >100                                                 | 2.3                  | 0.33          | 0.10        |  |  |  |  |
| 9  | >100                                                 | >100                 | 76            | >100        |  |  |  |  |
| 10 | >100                                                 | >100                 | >100          | >100        |  |  |  |  |
| 11 | >100                                                 | >100                 | 48            | >100        |  |  |  |  |
| 14 | >100                                                 | >100                 | >100          | >100        |  |  |  |  |
| 15 | >100                                                 | >100                 | 84            | >100        |  |  |  |  |
| 18 | >100                                                 | 21                   | 3.3           | 0.47        |  |  |  |  |
| 19 | >100                                                 | >100                 | 7.6           | 16          |  |  |  |  |
| 20 | >100                                                 | >100                 | >100          | 2.8         |  |  |  |  |
| 23 | >100                                                 | >100                 | >100          | >100        |  |  |  |  |
| 24 | >100                                                 | >100                 | >100          | >100        |  |  |  |  |
| 25 | >100                                                 | >100                 | >100          | >100        |  |  |  |  |
| 27 | >100                                                 | >100                 | >100          | >100        |  |  |  |  |
| 28 | >100                                                 | >100                 | >100          | 43          |  |  |  |  |
| 29 | >100                                                 | >100                 | >100          | >100        |  |  |  |  |
| 31 | >100                                                 | >100                 | 19            | 83          |  |  |  |  |
| 32 | >100                                                 | >100                 | 68            | 72          |  |  |  |  |
| 33 | >100                                                 | >100                 | >100          | >100        |  |  |  |  |
| 34 | >100                                                 | >100                 | 25            | 13          |  |  |  |  |
| 35 | >100                                                 | >100                 | >100          | >100        |  |  |  |  |

 $EC_{50}$  = effective concentration of compound resulting in 50% reduction of bacterial proliferation.

they may not display cytotoxicity if they failed to reach the mitochondrial matrix.

We previously developed a series of compounds that bind to the ATP sites of E. coli GroEL and inhibit the chaperonin refolding cycle.<sup>35,36</sup> We also conducted a high-throughput screen to discover inhibitors of the E. coli GroEL/ES chaperonin system that target sites other than the ATP pockets, as we had concerns that ATPcompetitive inhibitors may have off-target effects against other ATP-dependent proteins in cells.<sup>37</sup> We chose the *E. coli* GroEL/ES homolog for screening because it is the best characterized chaperonin and has been a model system for studying this class of proteins.<sup>30,31,38–40</sup> It shares high homology with GroEL/ES systems from other bacteria, with 56-97% identical amino acids for GroEL and 44-94% identical amino acids for GroES among the ESKAPE pathogens (refer to Table S1 in Supporting information). Thus, E. coli GroEL/ES serves as an excellent surrogate to discover chaperonin inhibitors to treat bacterial infections. The assays we developed analyzed the full refolding cycle and used the substrate reporter enzymes β-arylsulfotransferase IV (AST-IV) and malate dehydrogenase (MDH), which require GroEL, GroES, and ATP in order to return to their native, active states (refer to Fig. 1 for a general overview of the assay protocols). From ~700,000 molecules, our high-throughput screening narrowed the number of GroEL/ES inhibitors to 235. We investigated a subset of these hits in greater detail to identify IC50 values for inhibiting GroEL/ESmediated substrate refolding and ATPase activity. While only a few compounds inhibited GroEL/ES-mediated ATPase activity, most were potent inhibitors of the refolding cycle and exhibited minimal to no off-target effects against the reporter enzyme.<sup>3</sup>

Extending from our high-throughput screening studies, we have been investigating the antibiotic potential of 22 of our initial GroEL/ ES inhibitor hits (Fig. 2). We first tested the GroEL/ES inhibitors in two additional biochemical counter-screens to further support that they are acting 'on-target' and are not simply artifacts or falsepositives. The first counter-screen evaluates for inhibition of GroEL/ES-mediated refolding of a third stringent substrate, Rhodanese (Rho). The second counter-screen evaluates for inhibition of the native Rho enzymatic reporter reaction. Detailed protocols for these two assays are presented in Supporting information).<sup>41–44</sup> For most of the compounds, we found a direct correlation between inhibition of both the GroEL/ES-mediated dMDH and dRho refolding reactions (Table 1 and Fig. 3A). While some compounds inhibited either the native MDH or Rho reporter reactions, only compound



**Figure 4.** (A) Inhibitors of the *E. coli* GroEL/ES-dMDH refolding cycle are inactive against parent *E. coli* bacteria; however, several exhibit antibacterial effects against mutant *E. coli* strains with compromised efflux pumps (MC4100  $\Delta acrB$ ) and lipopolysaccharide (LPS) outer membranes (SM101 *lpxA2*). (B) Parent *B. subtilis, E. faecium*, and *S. aureus* Gram-positive bacteria are more susceptible to the antibiotic effects of GroEL/ES inhibitors. Compound **8** potently inhibits the growth of all three strains, while compound **18** is potent against *B. subtilis* and *S. aureus*, but inactive against *E. faecium*. Data plotted in the grey zones represent results beyond the assay detection limits (i.e., >100  $\mu$ M).

| Table 3                                                           |
|-------------------------------------------------------------------|
| EC50 results for GroEL/ES inhibitors against the ESKAPE pathogens |

|                 | Bacterial proliferation $EC_{50}$ values ( $\mu$ M) |           |      |               |              |               |            |
|-----------------|-----------------------------------------------------|-----------|------|---------------|--------------|---------------|------------|
| #               | E. faecium                                          | S. aureus | MRSA | K. pneumoniae | A. baumannii | P. aeruginosa | E. cloacae |
| 1               | >100                                                | >100      | >100 | >100          | >100         | >100          | >100       |
| 5               | 90                                                  | 14        | 9.1  | >100          | 58           | >100          | >100       |
| 8               | 0.15                                                | 0.20      | 0.13 | >100          | 30           | >100          | >100       |
| 9               | >100                                                | >100      | >100 | >100          | >100         | >100          | >100       |
| 10              | >100                                                | 82        | >100 | >100          | >100         | >100          | >100       |
| 11              | >100                                                | 23        | 40   | >100          | >100         | >100          | >100       |
| 14              | >100                                                | >100      | 94   | >100          | >100         | >100          | >100       |
| 15              | >100                                                | >100      | >100 | >100          | 81           | >100          | >100       |
| 18              | >100                                                | 1.8       | 1.3  | >100          | >100         | >100          | >100       |
| 19              | >100                                                | 13        | 1.5  | >100          | >100         | >100          | >100       |
| 20              | >100                                                | >100      | 21   | >100          | >100         | >100          | >100       |
| 23              | >100                                                | >100      | >100 | >100          | >100         | >100          | >100       |
| 24              | >100                                                | >100      | 61   | >100          | >100         | >100          | >100       |
| 25              | >100                                                | >100      | >100 | >100          | >100         | >100          | >100       |
| 27              | >100                                                | 80        | >100 | >100          | >100         | >100          | >100       |
| 28              | >100                                                | 45        | 74   | >100          | >100         | >100          | >100       |
| 29              | >100                                                | >100      | 15   | >100          | >100         | 85            | >100       |
| 31              | >100                                                | >100      | 56   | 95            | 32           | >100          | >100       |
| 32              | 15                                                  | 84        | 54   | >100          | >100         | >100          | >100       |
| 33              | >100                                                | >100      | >100 | >100          | >100         | >100          | >100       |
| 34              | >100                                                | >100      | >100 | >100          | >100         | >100          | >100       |
| 35              | >100                                                | >100      | >100 | >100          | >100         | >100          | >100       |
| Ampicillin      | 0.63                                                | 0.059     | 76   | 89            | 2.5          | 27            | >100       |
| Minocycline     | < 0.05                                              | < 0.05    | 0.35 | 0.70          | < 0.05       | 2.4           | 1.5        |
| Rifampicin      | 1.2                                                 | < 0.05    | 0.15 | 5.4           | 0.47         | 5.2           | 6.2        |
| Chloramphenicol | 2.1                                                 | 2.2       | 2.3  | 1.4           | 65           | 16            | 2.2        |
| Kanamycin       | >100                                                | 8.2       | >100 | 45            | 16           | 25            | 37         |
| Streptomycin    | 50                                                  | 3.6       | >100 | 3.4           | >100         | 2.9           | >100       |
| Vancomycin      | 0.30                                                | 0.20      | 0.17 | >100          | 17           | 74            | >100       |
| Daptomycin      | 33                                                  | 5.7       | 5.7  | >100          | >100         | >100          | >100       |

 $EC_{50}$  = effective concentration of compound resulting in 50% reduction of bacterial proliferation.

**10** inhibited in both counter-screens, and only to a minor extent against native MDH (Table 1 and Fig. 3B). Thus, we are confident that compounds are on-target inhibitors of dMDH and dRho refolding. We next evaluated the 22 compounds for their antibiotic effects on *E. coli* cells. A general bacterial proliferation assay

(see Supporting information for a detailed protocol) was employed in liquid media using DH5 $\alpha$  *E. coli* cells as the initial test strain (EC<sub>50</sub> values are summarized in Table 2 and graphically in Fig. 4A). Unfortunately, no significant inhibition of bacterial growth was observed for any of the compounds up to 100  $\mu$ M. Reasoning this

#### Table 4

Human HSP60/10 biochemical IC<sub>50</sub> and liver and kidney cytotoxicity EC<sub>50</sub> results for the GroEL/ES inhibitors

|    |                         | Biochemical assay IC <sub>50</sub> values (µM) |                         |                      |                | lity $EC_{50}$ values ( $\mu M$ ) |
|----|-------------------------|------------------------------------------------|-------------------------|----------------------|----------------|-----------------------------------|
| #  | GroEL/ES-dMDH refolding |                                                | HSP60/10-dMDH refolding | HSP60/10-dMDH ATPase | THLE-3 (liver) | HEK 293 (kidney)                  |
| 1  | 7.5                     | *                                              | 89                      | 106                  | 29             | 34                                |
| 5  | 0.69                    | *                                              | 4.9                     | >250                 | 16             | 23                                |
| 8  | 1.4                     | *                                              | 5.5                     | 3.6                  | 12             | 78                                |
| 9  | 0.93                    |                                                | 1.6                     | >250                 | >100           | >100                              |
| 10 | 0.80                    | *                                              | 3.3                     | 140                  | >100           | >100                              |
| 11 | 1.2                     | *                                              | 5.2                     | >250                 | 9.9            | 12                                |
| 14 | 3.0                     |                                                | 7.4                     | >250                 | >100           | >100                              |
| 15 | 2.7                     |                                                | 10                      | >250                 | >100           | 98                                |
| 18 | 5.7                     | #                                              | >100                    | >250                 | >100           | >100                              |
| 19 | 4.8                     |                                                | 16                      | >250                 | 41             | 44                                |
| 20 | 5.4                     |                                                | 2.8                     | >250                 | 3.6            | 17                                |
| 23 | 4.7                     |                                                | 13                      | >250                 | >100           | >100                              |
| 24 | 3.6                     |                                                | 8.2                     | >250                 | 34             | 55                                |
| 25 | 6.5                     |                                                | 15                      | >250                 | >100           | >100                              |
| 27 | 4.7                     | *                                              | 13                      | >250                 | >100           | >100                              |
| 28 | 2.6                     |                                                | 1.8                     | >250                 | >100           | >100                              |
| 29 | 24                      | *                                              | 38                      | >250                 | >100           | >100                              |
| 31 | 31                      | #                                              | >100                    | >250                 | 15             | 7.7                               |
| 32 | 42                      | #                                              | >100                    | >250                 | 61             | 62                                |
| 33 | >100                    |                                                | >100                    | >250                 | >100           | >100                              |
| 34 | 24                      |                                                | 26                      | >250                 | >100           | >100                              |
| 35 | >100                    |                                                | >100                    | >250                 | >100           | >100                              |

Statistical analyses (two-tailed t-tests) were performed for compound  $\log(IC_{50})$  values determined from the GroEL/ES-dMDH and HSP60/10-dMDH refolding assays. Compounds for which there is a statistically significant difference between inhibition results have been marked with a '\*' between the two assay results being compared (p < 0.05). *P*-Values could not be calculated for compounds marked with a '#' as one IC<sub>50</sub> is greater than the maximum compound concentration tested. IC<sub>50</sub> correlations are represented graphically in Figure 5A.

 $IC_{50}$  = inhibitor concentration resulting in 50% reduction of biochemical activity.

 $EC_{50}$  = effective concentration of compound resulting in 50% reduction in cell viability.

might be due to efflux of the molecules, we tested against an MC4100  $\Delta acrB \ E. \ coli$  strain, which has one of the central components of the AcrA/AcrB/TolC efflux pump removed.<sup>45,46</sup> Compounds **8** and **18** were the most potent inhibitors of this efflux-compromised *E. coli* strain (EC<sub>50</sub> = 2.3 and 21  $\mu$ M, respectively), with the remainder of the compounds being inactive.



**Figure 5.** (A) Compounds inhibit both *E. coli* GroEL/ES and human HSP60/10 chaperonin systems, but are generally more selective for the bacterial homolog. Compound **18** is inactive against human HSP60/10, whereas compound **8** exhibits low selectivity for GroEL/ES. (B) Even though compounds can inhibit HSP60/10 biochemical function, many exhibit low or no cytotoxicity to human liver and kidney cells. Compound **18** exhibits no cytotoxicity, whereas compound **8** exhibits moderate or low toxicity. Data plotted in the grey zones represent results beyond the assay detection limits (i.e., >100  $\mu$ M).

That many of the most potent GroEL/ES biochemical inhibitors were ineffective against the MC4100  $\triangle acrB E$ . coli cells could be due to the presence of other efflux pumps that were still functional, as it is known that E. coli contains several classes of efflux pumps.47-50 However, another possibility is that the molecules were not able to traverse the highly impermeable lipopolysaccharide (LPS) outer membrane characteristic of Gram-negative bacteria. To probe this, we tested the compounds against a mutant SM101 lpxA2 E. coli strain, which has a temperature sensitive lpxA allele leading to compromised LPS biosynthesis at non-permissive temperatures, and consequently a greater permeability to molecules.<sup>51,52</sup> We found that 10 compounds inhibited the growth of this E. coli strain, with compounds 8 and 18 still proving to be the most effective (EC<sub>50</sub> values of 0.33 and 3.3  $\mu$ M, respectively). These results were further supported by the ability of many compounds to inhibit the growth of a Gram-positive bacterium, Bacillus subtilis (Table 2 and Fig. 4B), which does not contain an LPS outer membrane. That more compounds failed to inhibit either the SM101 lpxA2 E. coli or B. subtilis bacteria is putatively because of the presence of efflux pumps that were still intact for these strains, and/or the continued impermeability of compounds across the cell membranes.

While E. coli and B. subtilis were good model systems for initial proof-of-principle studies, we wanted to elucidate the antibiotic potential of our GroEL/ES inhibitors against a panel of more clinically relevant bacteria, in particular the ESKAPE pathogens. We adapted the general bacterial proliferation assay to test molecules against E. faecium, S. aureus (plus an MRSA strain), K. pneumoniae, A. baumannii, P. aeruginosa, and E. cloacae (see Supporting information for detailed protocols). A summary of the EC<sub>50</sub> values for compounds against these bacteria is presented in Table 3 (and graphically in Fig. 4B), with a comparison against several common antibiotics. As four of the ESKAPE pathogens are Gram-negative (K. pneumoniae, A. baumannii, P. aeruginosa, and E. cloacae), it is not surprising that the GroEL/ES inhibitors were largely ineffective against them. The remaining two ESKAPE pathogens, E. faecium and *S. aureus*, are Gram-positive bacteria. Compound **8** was very potent at inhibiting *E. faecium* growth ( $EC_{50} = 0.15 \mu M$ ), and compound **32** was moderately potent ( $EC_{50} = 15 \mu M$ ). Somewhat surprisingly, compound 18, which emerged as a lead inhibitor against the E. coli and B. subtilis cells, was inactive against E. faecium. The remaining compounds were ineffective against E. faecium, which again supports the notion that the presence of an LPS membrane is not the sole determinant leading to compound inactivity. While compounds 8 and 18 emerged as the lead inhibitors of *S. aureus* growth (EC<sub>50</sub> = 0.20  $\mu$ M and 1.8  $\mu$ M, respectively), four other compounds were also moderately effective with EC<sub>50</sub> values between 10 and 50 µM (5, 11, 19, and 28). To determine if they were bactericidal or bacteriostatic, we analyzed lead compounds 8 and 18 against the methicillin susceptible S. aureus strain (ATCC 25923) and found that both were acting as bactericidal inhibitors (refer to Fig. S1 in Supporting information). We further tested compounds against an MRSA strain (ATCC #BAA-44: HPV107 strain, SCCmec Type I, Iberian PFGE Type) and found a correlation with the methicillin susceptible S. aureus strain (Table 3).

While we have identified numerous inhibitors of GroEL/ES biochemical function, several of which we now know inhibit the growth of pathogenic bacteria (in particular *S. aureus* and MRSA), there remained the possibility that these compounds could be toxic to host cells owing to targeting of HSP60/10. To account for this possibility, in vitro counter-screens were carried out in analogous chaperonin-mediated dMDH refolding and ATPase biochemical assays employing HSP60/10 (Table 4). As indicated in Figure 5A, there was a correlation observed for inhibiting both *E. coli* GroEL/ES and human HSP60/10; however, compounds were generally more potent at inhibiting *E. coli* GroEL/ES. Notably, compounds **1** and



**Figure 6.** Compounds **8** and **18** are potent antibacterials against *S. aureus* & MRSA, with moderate/low to no toxicity to human liver and kidney cells. Results for Vancomycin (Van), Daptomycin (Dap), and Streptomycin (Strep) are shown for comparison. Arrows ( $\uparrow$ ) indicate EC<sub>50</sub> results are >100 µM (the maximum concentrations tested).

**18** displayed 12-fold and >17-fold selectivities, respectively, for inhibiting *E. coli* GroEL/ES over human HSP60/10. Unfortunately, the other lead inhibitor against *S. aureus* and MRSA bacteria, compound **8**, was only 4-fold selective. Thus, we were concerned about the cytotoxicity against human cells of **8** and other compounds that inhibited the HSP60/10 refolding cycle.

To gauge for potential cytotoxicity of chaperonin inhibitors to host tissues, we next evaluated compounds in viability assays using cultured human liver (THLE-3) and kidney (HEK 293) cells. These two stable cell lines were chosen because they are derived from the two main organs responsible for drug metabolism and excretion. An Alamar Blue-based cell viability assay was employed to probe for cytotoxicity.<sup>53,54</sup> We observed that inhibition of HSP60/10 biochemical activity did not directly translate into cell toxicity and that many compounds were only moderately toxic or non-toxic to both cell lines (Table 4 and Fig. 5B). This could be due to the fact that the inner mitochondrial membrane is highly impermeable to compounds, and thus inhibitors may not be able to penetrate to the mitochondrial matrix to reach HSP60/10. Compounds 8 and 18 were the most potent inhibitors of S. aureus proliferation, with the greatest therapeutic windows compared to liver and kidney cell cytotoxicity (Fig. 6). In particular, compound **8**, which exhibits an EC<sub>50</sub> of 0.20  $\mu$ M against S. aureus proliferation, has a therapeutic window of 60-fold with THLE-3 cells, and 390fold with HEK 293 cells. Compound **18**, which exhibits an EC<sub>50</sub> of 1.8 µM against S. aureus proliferation, is non-toxic to the liver and kidney cells up to the maximum concentrations tested (EC<sub>50</sub> >100 µM; therapeutic window >55-fold).

In conclusion, we have investigated a subset of our previously identified inhibitors of the *E. coli* GroEL/ES chaperonin system for their antibiotic potential against a panel of bacteria including *E. coli* (3 strains), *B. subtilis, E. faecium, S. aureus* (including an MRSA strain), *K. pneumoniae, A. baumannii, P. aeruginosa,* and *E. cloacae.* The reported GroEL/ES inhibitors were largely ineffective at preventing the proliferation of the Gram-negative bacteria. While bacterial LPS outer membranes certainly play a significant role in preventing inhibitors from penetrating these bacteria, our studies with the mutant MC4100  $\Delta acrB E$ . *coli* strain indicate that drug efflux is another contributing factor to inhibitor inactivation. Compounds **8** and **18** emerged as the lead candidate GroEL/ES

inhibitors that exhibit >50-fold selectivity for blocking the growth of S. aureus bacteria versus human liver and kidney cytotoxicities. Their antibiotic efficacies against S. aureus are comparable to vancomycin, daptomycin, and streptomycin (Fig. 6). Furthermore, they are effective against the MRSA strain evaluated here. We are pursuing further medicinal chemistry derivatization of these GroEL/ES inhibitors to develop lead analogs with more potent antibiotic effects against S. aureus (and ideally other bacteria) that remain non-toxic to mammalian cells. Since these inhibitors were discovered in a targeted GroEL/ES screen, we consider this the putative target, but we cannot rule out the possibility of off-target effects contributing to antibacterial potency. We are designing experiments to delineate the mechanism of action at the protein level and the mode of action at the whole cell level for these GroEL/ES inhibitors. The results presented here are encouraging, leading us to believe we can selectively target bacterial GroEL/ES chaperonin systems as an antibiotic strategy.

# Acknowledgments

We are grateful to the Genomics Institute of the Novartis Research Foundation for working with us on the previous highthroughput screening that initially identified these GroEL/ES biochemical inhibitors. We also thank Dr. Leendert Hamoen from the University of Amsterdam, Swammerdam Institute for Life Sciences (SILS) for the B. subtilis 168 cells. The human HSP60 expression plasmid (lacking the 26 amino acid N-terminal mitochondrial signal peptide) was generously donated by Dr. Abdussalam Azem from Tel Aviv University, Faculty of Life Sciences, Department of Biochemistry, Israel. We thank Dr. Quyen Hoang from the IU School of Medicine, Department of Biochemistry and Molecular Biology for helpful discussions and the use of various lab equipment. This work was supported in part by an IU Biomedical Research Grant, an IU Collaborative Research Grant, the Showalter Trust Foundation, and startup funds from the IU School of Medicine (S.M.J.) and the University of Arizona (E.C.).

#### Supplementary data

Supplementary data (comparison of ESKAPE pathogen GroEL and GroES sequence homology; tabulations of  $log(IC_{50})$  and  $log(EC_{50})$  results with standard deviations; bacterial inhibition curves to determine bacteriostatic vs. bactericidal mechanisms of action; experimental protocols for biochemical and cell-based assays; synthetic protocols and characterization data for compounds **10**, **15**, **23**, **24**, and **25**; and HPLC purity and MS characterization of test compounds) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl.2016.04.089.

### **References and notes**

- 1. Clatworthy, A. E.; Pierson, E.; Hung, D. T. Nat. Chem. Biol. 2007, 3, 541.
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K.; Wertheim, H. F.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H.; Greko, C.; So, A. D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A. Q.; Qamar, F. N.; Mir, F.; Kariuki, S.; Bhutta, Z. A.; Coates, A.; Bergstrom, R.; Wright, G. D.; Brown, E. D.; Cars, O. Lancet Infect. Dis. 2013, 13, 1057.
- 3. Davies, J.; Davies, D. Microbiol. Mol. Biol. Rev. 2010, 74, 417.
- 4. Rice, L. B. J. Infect. Dis. 2008, 197, 1079.
- Pendleton, J. N.; Gorman, S. P.; Gilmore, B. F. Expert Rev. Anti-Infect. Ther. 2013, 11, 297.
- Boucher, H. W.; Talbot, G. H.; Bradley, J. S.; Edwards, J. E.; Gilbert, D.; Rice, L. B.; Scheld, M.; Spellberg, B.; Bartlett, J. Clin. Infect. Dis. 2009, 48, 1.
- Boucher, H. W.; Talbot, G. H.; Benjamin, D. K.; Bradley, J.; Guidos, R. J.; Jones, R. N.; Murray, B. E.; Bonomo, R. A.; Gilbert, D.; Amer, I. D. S. *Clin. Infect. Dis.* 2013, 56, 1685.
- Bassetti, M.; Merelli, M.; Temperoni, C.; Astilean, A. Ann. Clin. Microbiol. Antimicrob. 2013, 12.
- CDC In Antibiotic Resistance Threats in the United States, 2013; Centers for Disease Control and Prevention, 2013.

- **10.** CDC Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Methicillin-Resistant Staphylococcus aureus, 2013; Centers for Disease Control and Prevention, 2013.
- Walsh, C. Antibiotics: Actions, Origins, Resistance; ASM Press: Washington, DC, 2003.
- 12. Paterson, D. L.; Depestel, D. D. Clin. Infect. Dis. 2009, 49, 291.
- Steenbergen, J. N.; Alder, J.; Thorne, G. M.; Tally, F. P. J. Antimicrob. Chemother. 2005, 55, 283.
- 14. Allington, D. R.; Rivey, M. P. Clin. Ther. 2001, 23, 24.
- Shinabarger, D. L.; Marotti, K. R.; Murray, R. W.; Lin, A. H.; Melchior, E. P.; Swaney, S. M.; Dunyak, D. S.; Demyan, W. F.; Buysse, J. M. Antimicrob. Agents Chemother. 1997, 41, 2132.
- 16. Pankey, G. A. J. Antimicrob. Chemother. 2005, 56, 470.
- 17. Scheinfeld, N. Drugs Today (Barc.) 2007, 43, 305.
- 18. Fayet, O.; Ziegelhoffer, T.; Georgopoulos, C. J. Bacteriol. 1989, 171, 1379.
- Chapman, E.; Farr, G. W.; Usaite, R.; Furtak, K.; Fenton, W. A.; Chaudhuri, T. K.; Hondorp, E. R.; Matthews, R. G.; Wolf, S. G.; Yates, J. R.; Pypaert, M.; Horwich, A.
- L. Proc. Natl. Acad. Sci. U.S.A. **2006**, 103, 15800.
- 20. Endo, A.; Kurusu, Y. Biosci., Biotechnol., Biochem. 2007, 71, 1073.
- Kerner, M. J.; Naylor, D. J.; Ishihama, Y.; Maier, T.; Chang, H. C.; Stines, A. P.; Georgopoulos, C.; Frishman, D.; Hayer-Hartl, M.; Mann, M.; Hartl, F. U. Cell 2005, 122, 209.
- 22. Fujiwara, K.; Ishihama, Y.; Nakahigashi, K.; Soga, T.; Taguchi, H. *EMBO J.* 2010, 29, 1552.
- Christensen, J. H.; Nielsen, M. N.; Hansen, J.; Fuchtbauer, A.; Fuchtbauer, E. M.; West, M.; Corydon, T. J.; Gregersen, N.; Bross, P. Cell Stress Chaperones 2010, 15, 851.
- 24. Braig, K.; Otwinowski, Z.; Hegde, R.; Boisvert, D. C.; Joachimiak, A.; Horwich, A. L.; Sigler, P. B. *Nature* 1994, 371, 578.
- 25. Horwich, A. L.; Farr, G. W.; Fenton, W. A. Chem. Rev. 2006, 106, 1917.
- 26. Sigler, P. B.; Xu, Z. H.; Rye, H. S.; Burston, S. G.; Fenton, W. A.; Horwich, A. L. Annu. Rev. Biochem. 1998, 67, 581.
- 27. Fenton, W. A.; Kashi, Y.; Furtak, K.; Horwich, A. L. Nature 1994, 371, 614.
- 28. Fenton, W. A.; Horwich, A. L. Protein Sci. 1997, 6, 743.
- Horwich, A. L.; Low, K. B.; Fenton, W. A.; Hirshfield, I. N.; Furtak, K. Cell 1993, 74, 909.
- Horwich, A. L; Fenton, W. A.; Chapman, E.; Farr, G. W. Annu. Rev. Cell Dev. Biol. 2007, 23, 115.

- Saibil, H. R.; Fenton, W. A.; Clare, D. K.; Horwich, A. L. J. Mol. Biol. 2013, 425, 1476.
- Nielsen, K. L.; McLennan, N.; Masters, M.; Cowan, N. J. J. Bacteriol. 1999, 181, 5871.
- 33. Nielsen, K. L.; Cowan, N. J. Mol. Cell 1998, 2, 93.
- 34. Illingworth, M.; Ramsey, A.; Zheng, Z. D.; Chen, L. L. J. Biol. Chem. 2011, 286, 30401.
- Chapman, E.; Farr, G. W.; Fenton, W. A.; Johnson, S. M.; Horwich, A. L. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 19205.
   Chapman, F.; Forr, G. W.; Furthel, K.; Harwich, A. L. Picarra, Mod. Cham. Lett.
- Chapman, E.; Farr, G. W.; Furtak, K.; Horwich, A. L. Bioorg. Med. Chem. Lett. 2009, 19, 811.
- Johnson, S. M.; Sharif, O.; Mak, P. A.; Wang, H. T.; Engels, I. H.; Brinker, A.; Schultz, P. G.; Horwich, A. L.; Chapman, E. *Bioorg. Med. Chem. Lett.* 2014, 24, 786.
- 38. Azia, A.; Unger, R.; Horovitz, A. FEBS J. 2012, 279, 543.
- Fenton, W. A.; Horwich, A. L. Q. *Rev. Biophys.* 2003, 36, 229.
   Karplus, M.; Gao, Y. Q.; Ma, J.; van der Vaart, A.; Yang, W. *Philos. Trans. A: Math.*
- Phys. Eng. Sci. 2005, 363, 331.
  41. Rye, H. S.; Burston, S. G.; Fenton, W. A.; Beechem, J. M.; Xu, Z. H.; Sigler, P. B.; Horwich, A. L. Nature 1997, 388, 792.
- 42. Weissman, J. S.; Hohl, C. M.; Kovalenko, O.; Kashi, Y.; Chen, S.; Braig, K.; Saibil, H. R.; Fenton, W. A.; Horwich, A. L. *Cell* **1995**, *83*, 577.
- Weissman, J. S.; Rye, H. S.; Fenton, W. A.; Beechem, J. M.; Horwich, A. L. Cell 1996, 84, 481.
- 44. HayerHartl, M. K.; Weber, F.; Hartl, F. U. EMBO J. 1996, 15, 6111.
- 45. Tikhonova, E. B.; Zgurskaya, H. I. J. Biol. Chem. 2004, 279, 32116.
- Yu, E. W.; McDermott, G.; Zgurskaya, H. I.; Nikaido, H.; Koshland, D. E., Jr. Science 2003, 300, 976.
- 47. Nishino, K.; Yamaguchi, A. J. Bacteriol. 2001, 183, 5803.
- 48. Nishino, K.; Nikaido, E.; Yamaguchi, A. Biochim. Biophys. Acta 2009, 834, 1794.
- 49. Sun, J.; Deng, Z.; Yan, A. Biochem. Biophys. Res. Commun. 2014, 453, 254.
- 50. Paulsen, I. T.; Sliwinski, M. K.; Saier, M. H., Jr. J. Mol. Biol. 1998, 277, 573.
- 51. Galloway, S. M.; Raetz, C. R. J. Biol. Chem. 1990, 265, 6394.
- 52. Vuorio, R.; Vaara, M. Antimicrob. Agents Chemother. 1992, 36, 826.
- Sykes, M. L.; Baell, J. B.; Kaiser, M.; Chatelain, E.; Moawad, S. R.; Ganame, D.; loset, J. R.; Avery, V. M. *PLoS Negl. Trop. Dis.* 2012, 6, e1896.
- 54. Sykes, M. L.; Avery, V. M. Am. J. Trop. Med. Hyg. 2009, 81, 665.