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ABSTRACT: The multi-targeted protein kinase inhibitor midostaurin is approved for the 

treatment of both newly-diagnosed FLT3-mutated acute myeloid leukemia (AML) and KIT-

driven advanced systemic mastocytosis (SM). AML is a heterogeneous malignancy and 

investigational drugs targeting FLT3 have shown disparate effects in patients with FLT3-mutated 

AML, probably as a result of their inhibiting different targets and pathways at the administered 

doses. However, the efficacy and side-effects of drugs do not just reflect the biochemical and 

pharmacodynamic properties of the parent compound, but are often comprised of complex 

cooperative effects between the properties of the parent and active metabolites. Following 

chronic dosing, two midostaurin metabolites attain steady-state plasma trough levels greater than 

that of the parent drug. In this study we characterised these metabolites and determined their 

profiles as kinase inhibitors using radiometric transphosphorylation assays. Like midostaurin the 

metabolites potently inhibit mutant forms of FLT3 and KIT, as well as several additional kinases 

that are either directly involved in the deregulated signaling pathways or which have been 

implicated as playing a role in AML via stromal support, such as IGF1R, LYN, PDPK1, RET, 

SYK, TRKA and VEGFR2. Consequently, a complex interplay between the kinase activities of 

midostaurin and its metabolites is likely to contribute to the efficacy of midostaurin in AML and 

helps to engender the distinctive effects of the drug compared to other FLT3 inhibitors in this 

malignancy. 
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INTRODUCTION 

Often the efficacy and side-effects of drugs do not only reflect the biochemical and 

pharmacodynamic properties of the parent molecule, but result from complex cooperative effects 

between the properties of the parent and its active metabolites. This aspect is often overlooked 

when attempts are made to assign class effects for both efficacy and adverse-events to a group 

of drugs, which is particularly the case for protein kinase inhibitors. The human kinome has a 

full complement 538 genes [http://kinase.com/web/current/], most  (≥478) of which encode 

protein kinases with catalytic domains whose sequences are closely-related.1,2 These protein 

kinases, which can be clustered into groups based upon sequence similarity and biochemical 

function, catalyse the transfer of the terminal phosphate group of adenosine triphosphate 

(ATP) onto the side-chain hydroxy groups of either serine, threonine or tyrosine residues in 

substrate proteins, thereby playing a crucial role in the multitude of signal transduction 

pathways that regulate the functions of all eukaryotic cells. Drugs designed to target one or 

more particular protein kinases in order to elicit a desired pharmacological effect are rarely 

specific, but have distinct inhibition profiles both within and across the different groups of 

protein kinases. Consequently, it is extremely difficult to assign class effects to drugs acting 

upon protein kinases. 
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Figure 1. Structures of midostaurin (1), staurosporine (2) and the primary metabolites of 

midostaurin: CGP62221 (3), e1 (4) and e2 (5). Whereas the 1:1 mixture of e1 and e2 of was 

previously designated CGP52421, the definitive stereochemistry of the two epimeric C3-

hydroxylated compounds has been established in the present study. 

This situation applies to midostaurin (1; Rydapt®; Figure 1), a drug recently approved by 

health authorities for the treatment of two malignancies: (i) acute myeloid leukemia (AML) in 

newly diagnosed patients who are FMS-like tyrosine kinase 3 (FLT3) mutation-positive, in 

combination with chemotherapy;3 (ii) as monotherapy in advanced systemic mastocytosis 

(SM), which includes aggressive systemic mastocytosis, systemic mastocytosis with 

associated haematological neoplasm and mast cell leukemia.4 Although the activity of 

midostaurin in SM most likely results from targeting the oncogenic D816V mutant form of 

the stem cell factor receptor tyrosine kinase (KIT),5  as will be discussed in this article, the 

efficacy of midostaurin in AML patients is probably a consequence of the inhibition of 

multiple kinases including FLT3, by both the parent compound and several of its metabolites. 

Among the first natural products to be discovered as inhibitors of protein kinases,6-9  the 

bacterial alkaloid staurosporine (2; Figure 1) was initially found to be a potent inhibitor of the 

PKC family of phospholipase-dependent kinases,10 although it was later shown to inhibit 

and/or bind to many members of the human kinome.9,11,12  With this knowledge staurosporine 

served as a lead compound for a drug discovery programme for PKC inhibitors,13 which 

culminated in 1986 with the discovery of midostaurin.14 Based upon the then known 

biochemical and pharmacological profile of the drug as both an anti-tumour and anti-

angiogenic agent,15,16 midostaurin was advanced into Phase 1 clinical trials as an anti-cancer 

agent and as a treatment for diabetic macular edema.17,18  

During the course of these studies it was recognised that the presence of mutant forms of the 

FLT3 transmembrane receptor kinase in the leukemic cells of AML patients was associated 
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with poor prognosis.19-25 These mutations comprise of either internal tandem duplications 

(ITD) at various positions and of varying length (up to 100 amino-acids) within the 

juxtamembrane domain that compromise the autoregulatory mechanism of FLT3,25 or of 

amino-acid substitutions of the activation loop Asp835 residue that destabilise the inactive 

conformation of the kinase domain.26. These mutations render the receptor kinase 

constitutively active, such that it is no longer dependent upon extracellular engagement of the 

FLT3L growth factor to drive the cell cycle progression and proliferation of the transformed 

haematopoietic cells.24 These findings prompted the search for FLT3 kinase inhibitors as 

potential therapies for AML.27,28 Midostaurin was duly found to be a potent inhibitor of wild-

type as well as ITD and D835Y mutant forms of FLT3, and this activity translated into 

efficacy in FLT3-dependent myeloproliferative disease models in mice.29 Based upon these 

findings, midostaurin was advanced into clinical trials in both AML and myelodysplastic 

syndrome (MDS) patients who harboured either wild-type or mutated FLT3, where it was 

demonstrated to have single agent activity.30 Subsequently a Phase 3 trial in patients aged 18-

60 years having AML harbouring activating FLT3 mutations, showed that addition of 

midostaurin (50 mg, BID) to standard chemotherapy significantly improved event-free 

survival and overall survival compared to standard chemotherapy,3,31  thereby leading to 

health authority approvals of the drug in 2017. 

From clinical studies it has now been established that midostaurin undergoes extensive 

metabolism by the hepatic CYP3A4 enzyme into three primary metabolites: the 10-O-

demethylated compound CGP62221 (3) and two epimeric C3-hydroxylated compounds, e1 

(4) and e2 (5) (Figure 1), with the definitive stereochemistry of these being established in the 

present study (previously the e1 + e2 mixture of was designated CGP52421). Thus, following 

the administration of a single 50 mg dose of [14C]-labelled drug to fasted, healthy adults (n = 

6), midostaurin, CGP62221, e1 and e2 accounted for 22%, 28%, 5.3% and 33% of the total 

drug-related mean plasma AUC0-96hr respectively,32 and in diabetes patients (n = 9), following 
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50 mg BID the mean plasma trough levels on day 28 of midostaurin, CGP62221 and e2 were 

0.82, 1.48 and 6.73 µM.33 These findings have been further substantiated in AML patients, 

where following 50 mg BID the mean steady-state plasma trough levels of midostaurin, 

CGP62221 and [e1 + e2] were 1.25 ± 0.35, 2.08 ± 0.29 and 9.61 ± 1.16 µM, confirming 

substantial accumulation of e2  but, as indicated from a single patient, not e1.29,34  

In addition to midostaurin, other indolocarbazole-type pan-kinase inhibitors, as well as 

structurally diverse agents with varying degrees of selectivity towards FLT3 have been 

evaluated in clinical trials (Figure 2), and these have been found to elicit quite disparate 

effects.35-37  Therefore it is important to investigate the potential mechanisms of actions of 

midostaurin that contribute to its efficacy in AML. In this study we compare the kinase profile 

of midostaurin with that of its predominant metabolites and discuss our findings. 
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Figure 2. Structures of investigational ATP-competitive FLT3 kinase inhibitors studied in 

AML patients. Like midostaurin, UCN-01, lestauritinib and crenolanib are type-1 inhibitors 

binding to the active conformation of FLT3,38 whereas quizartinib, pexidartinib and sorafenib 

bind to an inactive conformation in a type-2 fashion. 

EXPERIMENTAL DETAILS 

Preparation and characterization of compounds:  

N-[(9S,10R,11R,13R)-2,3,10,11,12,13-hexahydro-10-methoxy-9-methyl-1-oxo-9,13-epoxy-

1H,9H-diindolo[1,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-11-yl]-N-

methylbenzamide (1; midostaurin) was prepared as an amorphous solid by benzoylation of 2 

as described;39 1H NMR (600 MHz, DMSO-d6) δ 1.98 (br s, 1H), 2.41 (br s, 1H), 2.29 - 2.44 

(m, 1H), 2.46 (br s, 1H), 2.51 - 2.62 (m, 1H), 2.75 (br s, 2H), 2.82 (br s, 2H), 2.83 - 2.90 (m, 

2H), 4.51 (br s, 1H), 5.00 (br s, 2H), 7.08 - 7.12 (m, 1H), 7.30 (t, J=7.76 Hz, 1H), 7.37 (t, 

J=7.62 Hz, 1H), 7.43 (br s, 1H), 7.47 (br s, 1H), 7.47 - 7.57 (m, 3H), 7.63 (br s, 2H), 7.69 (br 

s, 1H), 8.07 (d, J=7.89 Hz, 2H), 8.63 (s, 1H), 9.29 (d, J=8.04 Hz, 1H). Solubility (shake-flask 

method) at pH 1.0 and 6.8 (25oC): 0.3 and 0.1 µg/L respectively. 

N-[(9S,10R,11R,13R)-2,3,10,11,12,13-hexahydro-10-hydroxy-9-methyl-1-oxo-9,13-epoxy-

1H,9H-diindolo[1,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-11-yl]-N-

methylbenzamide (3; CGP62221). A mixture of (9S,10R,11R,13R)-2,3,10,11,12,13-

hexahydro-10-hydroxy-9-methyl-11-(methylamino)-9,13-epoxy-1H,9H-diindolo[1,2,3-gh:3',

2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-1-one40 (2.47 g, 5.4 mmol) and benzoic anhydride 

(1.22 g, 5.4 mmol) in EtOH (65 mL of 95%) stirred at 70oC for 45 min. The solvent was 

evaporated off under reduced pressure and the residue was dissolved in EtOAc. The solution 

was washed with HCl (1 M), water, saturated aq. NaHCO3 and saturated aq. NaCl, dried 

(Na2SO4) and the solvent was evaporated off under reduced pressure. The crude product was 
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purified by column chromatography (silica gel, 5% EtOH in CH2Cl2) and recrystallised from 

EtOH-CH2Cl2 to afford 3 as a colourless crystalline solid (1.41 g, 33%): m.p. 246-257oC 

(decomp.); 1H NMR (600 MHz, DMSO-d6) δ 9.27 (d, J=8.0 Hz, 1H), 8.60 (s, 1H), 8.04 (d, 

J=7.5 Hz, 1H), 7.97 (s, 1H), 7.75 (s, 1H), 7.60 (s, 2H), 7.52 – 7.42 (m, 5H), 7.34 (t, J=7.3 Hz, 

1H), 7.29 (t, J=7.2 Hz, 1H), 7.12 (s, 1H), 5.78 (d, J=6.9 Hz, 1H), 4.99 (s, 3H), 4.80 (s, 1H), 

2.72 (d, J=29.6 Hz, 4H), 2.38 (s, 1H), 2.26 (s, 3H). Anal. Cald. for C34H28N4O4.0.5H2O: C, 

72.20; H, 5.17; N, 9.90. Found: C, 72.00; H, 5.48; N, 9.62. 

N-[(3S,9S,10R,11R,13R)-2,3,10,11,12,13-hexahydro-3-hydroxy-10-methoxy-9-methyl-1-

oxo-9,13-epoxy-1H,9H-diindolo[1,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-11-

yl]-N-methylbenzamide (4). A solution of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone 

(DDQ; 0.406 g, 1.75 mmol) in CH3CN – H20 (3.5 mL of 1:1) was added to a solution of 1 

(1.00 g, 0.75 mmol) in CH2Cl2 (23 mL) at 20oC in the dark. The resulting green solution was 

stirred for 10 min and then extracted with CH2Cl2. The combined extracts were dried 

(Na2SO4) and solvent was evaporated off under reduced pressure. The crude mixture was 

purified by column chromatography (silica gel, 0-3% EtOH in EtOAc) and crystallized from 

dioxane-toluene to afford the less polar epimer, 4 as a colourless crystalline solid (0.32 g, 

42%): m.p. 298-301oC; 1H NMR (600 MHz, DMSO-d6) δ 9.25 (dd, J=7.9, 1.1 Hz, 1H), 8.91 

– 8.81 (m, 1H), 8.47 (dd, J=7.9, 1.2 Hz, 1H), 8.00 (s, 1H), 7.76 – 7.40 (m, 8H), 7.35 (t, J=7.5 

Hz, 1H), 7.32 (t, J=7.8 Hz, 1H), 7.09 (s, 1H), 6.84 (s, 0H), 6.52 – 6.39 (m, 2H), 5.10 (d, 

J=58.7 Hz, 1H), 4.52 (s, 1H), 4.27 (d, J=90.8 Hz, 1H), 3.03 – 2.67 (m, 6H), 2.64 – 2.21 (m, 

5H), 1.98 (s, 1H).  

Attempts to isolate the more polar epimer, 5 resulted in epimerisation and / or formation of 

the 3-methoxy-derivative.  

Crystal structure determination and refinement of compound 4: Diffraction data were 

collected with a Bruker AXS SMART 6000 CCD detector on a three-circle platform 
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goniometer with Cu(Ka) radiation (λ = 1.54178 Å) from a rotating anode generator equipped 

with Helios multilayer mirrors. A semi-empirical absorption correction (SADABS) was 

applied, based on the intensities of symmetry-related reflections measured at different angular 

settings (maximum and minimum transmission 0.6495 and 0.7531). The structure was solved 

by dual-space recycling methods and refined on F2 with the SHELXTL suite of programs. 

Anisotropic displacement parameters were used for all non-hydrogen atoms. All hydrogen 

atoms were calculated in idealized positions and refined using a riding model. The final cif 

file was generated with shelxl 2013/4.41 The absolute structure was determined to be C2R, 

C4R, C5R, C6S, C21S; Flack x = 0.06(8), based on 2479 quotients.42  

Compound 4 crystallized in the hexagonal space group P61 with one ordered equivalent of 

dioxane. Additional residual electron density in a channel parallel to the crystallographic c 

axis (0, 0, z) could not be interpreted unambiguously. The contribution of the disordered 

solvent to the scattering factors was taken into account with PLATON/SQUEEZE.43 A total 

of 145 electrons was found in the cell, corresponding to approximately three molecules of 

dioxane or toluene. The compound 4 to solvent ratio could then be assumed to be 

approximately 1:1.5. Where relevant, the crystal data reported (chemical formula, formula 

weight Mr, absorption coefficient µ, F(000), and density Dx) are given without the 

contribution of the disordered solvent. 

Final data: C35H30N4O5·C4H8O2; Mr = 674.73, crystal size 0.36·0.03·0.02 mm3, hexagonal, 

space group P 61 (No. 169) with a = 19.342(5), c = 16.050(5) Å, V = 5200(3) Å3, Z = 6, Dc =  

1.293 g·cm-3, µ = 0.733 mm-1, F(000) = 2136, 78990 reflections measured, 6061 independent, 

Rint = 0.0324, 2.64º < θ < 66.53º, T = 100(2) K, 455 parameters, 1 restraint, R1 = 0.0311, wR2 

= 0.0696 for 5640 reflections with I > 2σ(I), R1= 0.0351, wR2 =  0.0709 for all 6061 data, 

GoF = 1.051, restrained GoF = 1.051, res. el. dens. = +0.12 / -0.14 e·Å3. 
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Structure assignment of midostaurin metabolites e1 and e2. Midostaurin was incubated with 

thawed, cryopreserved human hepatocytes and the incubate was characterised by ultra-high 

performance liquid chromatography, coupled with time-of-flight mass spectrometry (UHPLC-

MS). Briefly, vials containing cryopreserved, mixed gender hepatocytes (BiorecalmationIVT, 

Baltimore, MD) were thawed at 37°C for 1.5 min and the contents were suspended in 48 mL of 

buffer (InVitroGRO HT, cat. #Z99019; BiorecalmationIVT). The cells were recovered by 

centrifugation (80 × g for 10 min) and resuspended in a 2% mixture of modified Krebs-

Henseleit buffer for hepatocyte incubation (In VitroGRO KHB, cat. # Z99074; 

BiorecalmationIVT) in fetal calf serum (FCS; Invitrogen, Walkersville, MD). An aliquot of the 

final suspension was removed for cell counting and for cell viability estimation (Nucleoconuter 

NC-3000). A 500 µL aliquot of the final cell suspension (~2 × 106 cells/mL) was added to one 

well of a 12-well plate predispensed with 0.5 mL of In VitroGRO KHB containing 2% FCS and 

midostaurin (10 µM) and incubated for 24 h without shaking, at 37°C in a humidified cell culture 

incubator (5% CO2, 95% air). The well was emptied and washed with CH3CN (2 mL). Aliquots 

(1 mL) of the combined contents and washings were centrifuged (13500 rpm for 10 min) at 10°C 

and evaporated to dryness (GeneVac, LTD Ipswich, UK) at 30°C. The residues were 

reconstituted in aqueous MeOH (200 µL of 50%) and 10 µL aliquots of the cell lysate mixture 

were injected into the UHPLC-MS system for analysis. 
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Figure 3. Ultra-high performance liquid chromatography coupled with time-of-flight mass 

spectrometry (UPLC-MS) evidence confirming that the less polar midostaurin metabolite e1, 

formed from human hepatocytes, has 3-(R)-stereochemistry. Top panel: Product ion mass 

spectra of midostaurin metabolite  e2, which eluted at 24.9 minute, characterized by m/z 569 

(corresponding to loss of H2O). Middle panel: Product ion mass spectra of midostaurin 

metabolite  e1, which eluted at 22.5 minute. Bottom panel: product ion mas spectrum 

synthesised standard sample of 3-(S)-hydroxylated compound (4). 

The hydroxylated epimer e1 of the CGP52421 mixture eluted at 22.5 minute and epimer e2 

eluted at 24.9 minute. Consistent with the ease of methoxylation discussed above, under the 

UPLC-MS conditions, source fragmentation (loss of water) was pronounced for e2 (Figure 3). 

The authentic C3-hydroxylated compound 4 had a retention time and product ion mass spectrum 

which exactly matched that previously identified as epimer e1 (Figure 3).  

Biochemical evaluation of effects on kinase activity: The kinase profiles of compounds were 

determined at ProQinase GmbH (Freiburg, Germany). All kinases were produced from human 

cDNAs either as full-length or enzymatically active fragments, expressed in Sf9 insect cells or in 
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Escherichia coli as recombinant glutathione S-transferase (GST) fusion proteins or His-tagged 

proteins, and purified by either GSH affinity chromatography or immobilized metal affinity 

chromatography (affinity tags were removed from a number of kinases during purification). The 

purity and identity of each kinase was checked by SDS-PAGE/silver staining and by western 

blot analysis with specific antibodies or, in the case of lipid kinases by mass spectrometry. 

Kinases provided by vendors (Carna Biosciences, Inc.; Invitrogen Corp.; Millipore Corp.) were 

expressed, purified and quality controlled based on vendor-supplied information.   

The effects of compounds on human protein kinases were assessed in radiometric assays 

(33PanQinase®), performed using a BeckmanCoulter Biomek 2000/SL robotic system, with 

96-well FlashPlates (Perkin-Elmer, Boston,MA) in a 50 µL reaction volume. The reaction 

cocktail was pipetted in four steps: (i) 10 µL of non-radioactive ATP solution (in H2O); (ii) 25 

µL of assay buffer–[γ-33P]ATP mixture; (iii) 5 µL of test compound in 10% DMSO; (iv) 10 µL 

of enzyme-substrate mixture. The assay for all enzymes contained 70 mM HEPES-NaOH (pH 

7.5), 3 mM MgCl2, 3 µM sodium orthovanadate, 1.2 mM dithiothreitol, ATP–[ γ-33P]-ATP 

(variable amounts, corresponding to the apparent ATP Km of the respective kinase; ≈ 8 x 105 

cpm/well), and purified protein kinase and substrate (both variable amounts). The concentrations 

of ATP, enzymes and substrates employed are shown in Supplementary Table 1. Additional 

chemicals incorporated in specific assays were as follows: All PKC assays (except for PKC-µ 

and -ν) also contained 1mM CaCl2, 4 mM EDTA, 5 µg/mL phosphatidylserine and 1 µg/mL 1,2-

dioleyl-glycerol; the CAMK-1D, -2A, -2B, -2D, -4, -K1, -K2, DAPK2, EEF2K, MYLK, 

MYLK2 and MYLK3 assays included 1 µg/mL calmodulin and 0.5 mM CaCl2; the PRKG-1 and 

-2 assays contained 1 µM cGMP; the DNA pharmacokinetic (PK) assay contained 2.5 µg/mL 

DNA. The reaction cocktails were incubated at 30°C for 60 min and reactions then stopped by 

adding 50 µL of 2 % (v/v) H3PO4. Plates were then aspirated, washed with NaCl (2 x 200 µL 

0.9 % w/v) and the incorporation of 33Pi (counting of ‘cpm’) was determined with a 

microplate scintillation counter (Microbeta, Wallac). For each kinase, the median value of the 
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cpm of three wells was defined as ‘low control’ (n=3), which reflected unspecific binding of 

radioactivity to the plate in the absence of enzyme, but in the presence of substrate. In addition, 

the median value of the cpm of three other wells was taken as the ‘high control’, corresponding 

to full activity in the absence of any inhibitor (n=3). The difference between high and low control 

of each enzyme was taken as 100% activity. For data evaluation, the low control of each kinase 

was subtracted from the high control value as well as from their corresponding ‘compound 

values’ and the residual activity (in %) for each compound well was calculated by using the 

formula: Residual Activity (%) = 100 x [(signal of compound – low control) / (high control – 

low control)]. To measure IC50 values against selected enzymes, 10 concentrations of each 

compound in the 0.3 nM - 10 µM range were used and values were calculated using Quattro 

Workflow V3.1.1 (Quattro Research GmbH, Munich, Germany). The fitting method was a 

least-squares fit based upon the ‘sigmoidal response (variable slope)’ with parameters ‘top’ 

fixed at 100% and ‘bottom’ at 0%.   

Effects on lipid kinase activity were assessed using a non-radiometric ADP-Glo™ Assay 

(Promega, Madison, Wi, USA) performed in 96-well half-area microtiter plates (Greiner Bio-

One, Frickenhausen, Germany) in a 25 µL reaction volume. The reaction cocktail was 

pipetted sequentially: (i)10 µL of ATP solution (variable concentrations, corresponding to the 

apparent ATP-Km of the respective kinase) in assay buffer (50 mM HEPES-NaOH, pH 7.5, 1 

mM EGTA, 100 mM NaCl, 0.03% CHAPS, 2 mM DTT; assays for PI4KB, PIK3C2A, 

PIK3C2B, PIK3C3, PIK3CA/PIK3R1, PIK3CD/PIK3R1 and PIK3CG additionally contained 

3 mM MgCl2); (ii) 5 µL of test compound (10 µM) in 10% DMSO; (iii) 10 µL of variable 

amounts of enzyme-substrate mixtures; the concentrations of ATP, enzymes and substrates 

employed are shown in Supplementary Table 1. After incubation at 30°C for 40 min, 

reactions were stopped with 25 µL ADP-Glo reagent per well. Plates were then incubated for 

40 min at room temperature, followed by addition of 50 µL kinase detection reagent per well 

and incubated for a further 60 min at room temperature. Signals were measured as ‘counts per 
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second’ (cps), using a Victor2 microplate multilabel reader (Perkin Elmer, Boston, Ma, USA) 

in luminescence mode. For each kinase, the median cps value of three wells with complete 

reaction cocktails, but without kinase, was defined as ‘low control’. Additionally, for each 

kinase the median value of the cps of three other wells with the complete reaction cocktail, 

but without any compound, was taken as the ‘high control’, i.e. full activity in the absence of 

any inhibitor. The difference between high and low control of was taken as 100% activity for 

each kinase. As part of the data evaluation the low control of each kinase was subtracted from 

the high control value as well as from their corresponding ‘compound values’. The residual 

activity (in %) for each compound well was calculated by using the formula: Residual 

Activity (%) = 100 x [(cps of compound – low control) / (high control – low control)]. 

Evaluation of effects on proliferation / viability of human cancer cell lines: The cellular 

effects of  midostaurin were determined on 469 commercially available human cancer cell 

lines (including 69 hematologic) using the cancer cell line encyclopoedia (CCLE) screen.44 

Cell-line identities were confirmed by single-nucleotide polymorphism genotyping and they 

were all shown to be free of mycoplasma by PCR. The screen employed the CellTiter-Glo® 

Luminescent Cell Viability Assay (Promega, Madison, USA) based upon quantitation of ATP 

as an indicator of metabolically active cells according to the published method,44 to assess the 

number of viable cells in culture (appropriate media supplemented with 10% FCS) following 

72 h incubation with drug in a 1536-well format. The maximum effect level (Amax) and the 

inflection point were taken from 8-point dose-response curves, several of which are illustrated 

in Supplemental Figure S1, and the results are summarised in Figure 4.  

Evaluation of effects on proliferation / viability of kinase dependent cell lines: The 

potential for compounds to inhibit particular kinases in a cellular context was further 

quantified in the BaF3 assay system consisting of wild-type IL-3-dependent hematopoietic 

BaF3 cell models rendered IL-3 independent by transduction with various constitutively 
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active tyrosine kinases,45 and in human cell lines carrying oncogenic kinases. BaF3-BCR-

ABL1 cells were obtained by transfecting the interleukin-3-dependent murine hematopoietic 

BaF3 cell line with a pGD vector containing wild-type (p210 kD) BCR-ABL1 (B2A2) 

cDNA.26,61,62 BALB/c 3T3 A31 mouse embryonic fibroblasts (ATCC Cat. CCL-163), 

expressing PDGFR-A and -B were obtained from B. J. Druker (Oregon Health and Science 

University, Portland, Oregon). BaF3-Tel-PDGFRβ,28 transduced with a fusion protein 

comprised of the dimerising portion of TEL and the transmembrane and kinase domain of the 

PDGFRβ, were provided by D. G. Gilliland (Brigham and Women’s Hospital and Harvard 

Medical School, Boston, Massachusetts). GIST882, a human gastrointestinal stromal tumour 

(GIST) cell line expressing an activating KIT mutation (exon 13, K642E) was provided by J. 

Fletcher (MIT Cancer Center and Department of Biology, Cambridge, Massachusetts).  

MOLM13 were obtained from Yoshinobu Matsuo, Fujisaki cell center, Hayashibara 

Biochemical Labs Inc. 675-14 Fujisaki, Okayama 702-8006, Japan. MV4-11 were obtained 

from J. D. Griffin, Dana-Farber Cancer Institute, Boston, Massachusetts.  

Cells were cultured in RPMI-1640 (Amimed cat. # 1-14F01-I) supplemented with 2% L-

glutamine (Amimed cat. # 5-10K50-H) and 10% FCS (Amimed cat. # 2-01F16-I). Wild-type, 

parental BaF3 cells were maintained in the above medium plus 10 U/mL recombinant mouse 

IL-3 (Roche # 1380745). The resazurin sodium salt dye reduction assay kit (Alamar Blue™; 

cat. # DAL1100, BioSource International Inc.) was generally used to measure cell 

proliferation according to supplier instructions. Briefly, 15000 cells were seeded in 190 µL 

fresh medium into 96-well plates, followed by addition of 10 µL medium containing 

compound dilutions at 20-fold their final intended concentration. Cells treated with vehicle 

(DMSO, 0.1% FCS) only served as controls. Dose-response effects were determined by 3-

fold serial dilutions of the test compound, starting at 10 µM. Following incubation of the cells 

for 48 h at 37°C and 5% CO2, the effect of inhibitors on cell viability was assessed following 

addition of 20 µL resazurin sodium salt solution (130 µg/mL PBS) and incubated for an 
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additional 6 h at 37°C and 5% CO2. The levels of resorufin,46 were quantified using a 

SaphireII 96-well fluorometer (TECAN, Männedorf, Switzerland) with excitation and 

emission wavelengths set at 544 and 590 nm, respectively. In addition, a plate blank value 

was determined in a well containing only 100 µL of medium and no cells. Acquired raw data 

were exported to Excel-file format. For data analysis, the plate blank value was subtracted 

from all data points. The effect of a particular test compound concentration on cell 

proliferation and viability was then expressed as percentage of the corrected fluorescence 

reading obtained for cells treated with vehicle only, which was set as 100%. GI50 values were 

determined using XLfit (V4.2) curve-fitting software, applying standard four parameter 

logistic model #205 (IDBS, Guilford, UK). The luminescent ATP detection assay kit, 

ATPLite™ (Perkin Elmer Life Sciences; cat. # 6016947), based upon the production of light 

(luminescence) caused by the reaction of ATP with added luciferase and D-luciferin, was 

used to measure the proliferation of GIST882 cells following 70 h incubation with 

midostaurin according to our published method.47 

RESULTS 

Biochemistry. Kinase inhibition was determined using recombinant enzymes in 

transphosphorylation assays. Initially the effects of compounds (two determinations in all cases) 

at a fixed concentration of 10 µM (solubility became limiting at higher concentrations) was 

assessed against 320 wild-type protein kinases and 13 phospatidyl-inositol lipid kinases. In this 

preliminary screen, midostaurin, 3 and 4 gave residual activity of <50% (n = 2) for 159, 178 and 

103 protein kinases respectively (corresponding to selectivity scores at 10 µM of 0.534, 0.575 

and 0.347),12 whereas none of the lipid kinases were substantially inhibited (Table 1). 

Table 1: Comparison of the overall selectivity profiles of midostaurin and major metabolites 

against 94 wild-type protein kinases. 

Compound 
Number of protein kinases inhibited 

IC50 ≤ 10 μM IC50 ≤ 1.0 μM IC50 ≤ 0.1 μM IC50 ≤ 0.01 μM 

Midostaurin (1) 93 81 22 0 
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CGP62221 (3) 94 75 16 1 

4 (e1) 85 24 1 0 

4 + 5 (e1 + e2)
1
 86 27 2 0 

 

Based upon the extent of percentage residual phosphorylation activity compared to control in the 

full panel and the pharmacological importance of the target, dose-response curves were then 

generated and IC50 values determined for midostaurin and the metabolites 3, 4 (e1) and 

CGP52421 (a 1:1 mixture of e1 + e2) against 94 wild-type enzymes, together with two mutant 

forms of FLT3 and nine mutant forms of KIT (Tables 1 and 2). In all cases investigated, where 

the residual activity was >50% in the preliminary screen, the measured  IC50 value was >5 µM. 

Most of the wild-type kinases showing substantial sensitivity (IC50 < 3 µM) to the four 

compounds were members of the tyrosine kinase (TK) group (40 of 76 evaluated; full 

complement 90), although  at a concentration of 10 µM none of the compounds reduced the 

residual activity of any of the ephrin TKs by >50%. Many serine-threonine kinases of the AGC 

(protein kinase A, G and C kinases), CAMK (Ca- and calmodulin-regulated kinases) and STE 

(homologues of the yeast sterile kinases) families were also potently inhibited, although those of 

the CMGC (cyclin-dependent kinases, MAP kinases, glycogen synthase kinases, casein kinase 2) 

and CK1 (casein kinase) groups were insensitive at concentrations < 10 µM.  

Table 2: Comparison of the concentrations of midostaurin and major metabolites required to 

inhibit the transphosphorylation activity of selected protein kinases (IC50 values in µM). 

Kinases are tabulated according to group.1,2 
  

Kinase  

(listed by group)
 Midostaurin 

3 

(CGP62221) 

4 

(e1) 

4 + 5 

(e1 + e2)
1
 

TK: Tyrosine kinase group
 

ACK1 0.079 0.143 0.227 0.259 

ALK (GST-HIS-tag) 0.645 0.846 2.25 0.879 

BLK 0.183 0.576 0.100 0.344 

BMX 0.578 0.240 1.37 0.929 

BTK 0.669 1.39 2.17 2.60 

CSF1R 0.190 0.192 0.523 0.668 

CSK 0.708 1.30 1.28 1.38 

DDR2 0.566 0.670 0.976 1.72 

EGFR 0.687 1.48 1.69 1.43 

FER 0.253 0.056 1.78 0.878 

FES 0.989 1.01 4.75 2.90 
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FGFR2 0.225 0.241 1.87 0.554 

FLT3 wild-type 0.048 0.062 1.19 1.66 

FLT3 ITD 0.026 0.024 0.337 0.361 

FLT3 D835Y 0.014 0.014 0.186 0.277 

FYN 0.263 0.858 0.863 1.24 

HCK 0.392 1.54 1.28 1.04 

IGF-1R 0.220 0.179 0.154 0.130 

INSR 6.32 2.93 7.58 6.48 

INSR-R 2.05 1.37 4.47 3.96 

JAK2 0.229 0.415 1.80 1.71 

JAK3 0.056 0.062 0.459 0.300 

KIT wild-type 2.17  4.46  3.79  6.23 

KIT A829P 0.533 1.38 2.54 2.55 

KIT D816H 0.045 0.084 0.229 0.663 

KIT D816V 0.066  0.080  0.197 0.615 

KIT T670I 0.058 0.115 2.42 2.21 

KIT V559D 0.392 0.673 0.920 1.39 

KIT V559D / T670I 0.083 0.218 1.66 1.84 

KIT V559D / V454A 0.432 1.21 2.15 3.21 

KIT V560G 0.101 0.110 0.426 0.392 

KIT V654A 1.21 1.23 4.21 4.18 

LCK 0.144 2.22 1.09 0.968 

LTK 0.180 0.292 2.00 0.307 

LYN 0.210 0.810 0.383 0.429 

MERTK 1.07 0.691 5.22 4.69 

MUSK 0.275 0.330 3.05 2.77 

PDGFR-α 0.304 0.335 0.811 1.04 

PDGFR-β 0.081 0.107 0.300 0.451 

RET 0.026 0.068 0.940 1.39 

ROS 0.128 0.044 1.62 3.45 

SRC (GST-HIS-tag) 0.469 1.94 2.82 2.07 

SYK (aa1-635) 0.194 0.126 1.87 0.983 

TNK1 0.074 0.224 1.18 1.56 

TRK-A 0.050 0.016 1.20 0.489 

TRK-B 0.123 0.047 1.71 0.489 

TRK-C 0.055 0.079 1.22 1.43 

TYK2 0.357 0.568 3.27 4.53 

VEGFR-2 0.015  0.029 0.057 0.062 

ZAP70 0.683 0.577 3.02 2.11 

AGC: Protein kinase A, G and C family of serine-threonine kinases 

GRK7 0.187 0.080 2.06 2.09 

PDPK1 0.078 0.071 0.385 0.097 

PKA 0.409 0.896 1.11 1.79 

PKC-α 0.220 0.646 4.38 1.53 

PKC-β1 0.419 0.944 7.67 2.71 

PKC-β2 0.210 0.454 4.60 1.44 

PKC-γ 0.225 0.692 3.50 1.07 

PKC-δ 0.109 1.49 3.32 1.70 

PKC-ε 0.223 2.13 7.95 7.16 

PRK1 0.100 0.333 0.908 1.15 

PRK2 0.048 0.296 1.56 1.86 
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PRKG1 0.181 0.214 1.25 1.56 

PRKG2 0.018 0.007 0.118 0.174 

PRKX 0.878 1.00 6.87 9.13 

RPS6KA2 0.051 0.043 1.05 0.969 

RPS6KA3 (alias RSK2) 0.070 0.070 0.898 1.04 

RPS6KA6 0.033 0.044 0.974 1.02 

CAMK: Calcium and calmodulin-regulated group of serine-threonine kinases 

BRSK2 1.66 0.780 > 10 > 10 

CAMK2A 0.445 0.820 8.58 6.99 

CAMK2D 0.170 0.251 5.18 4.85 

CAMK2G 0.681 1.56 8.89 8.90 

CAMKK2 0.136 1.08 1.90 1.31 

CHK1 1.80 0.261 8.76 2.31 

DAPK1 8.60 1.94 > 10 > 10 

DAPK3 5.16 1.14 > 10 > 10 

MELK 0.563 0.341 9.11 > 10 

MYLK 1.18 0.593 6.49 8.50 

PHKG1 0.056 0.120 1.23 2.20 

PHKG2 2.30 0.315 > 10 > 10 

PIM1 0.388 0.281 1.44 1.17 

PIM3 0.704 0.294 > 10 4.64 

SIK1 0.235 0.675 0.787 1.08 

SIK2 0.111 0.125 0.296 0.700 

SNRK 0.294 0.598 3.85 5.07 

STK17A 1.78 0.914 5.34 7.38 

STK33 0.385 0.521 5.60 6.92 

STE: Homologues of the yeast sterile kinase family of serine-threonine kinase 

MAP3K7 / MAP3K71P1 0.355 1.31 3.32 2.81 

MAP3K9 (alias MLK1) 0.073 0.224 0.527 0.221 

MAP3K10 0.063 0.361 0.902 0.425 

MAP3K11 0.029 0.195 0.484 0.278 

MAP4K2 0.290 0.966 2.84 3.03 

MAP4K5 0.470 1.76 > 10  > 10 

MST1 (alias STK4) 0.032 0.137 0.648 0.602 

MST2 0.256 0.978 2.11 2.48 

SLK 0.309 0.959 7.36 6.36 

TKL: Tyrosine kinase-like family 

LRRK2 0.102 0.163 4.17 5.11 

Other     

AURK-A 0.164 0.247 2.08 3.78 

AURK-B 0.247 0.192 0.757 0.992 

AURK-C 0.305 0.459 4.65 8.51 

GSG2 7.86 0.863 > 10 > 10 

IKK-ε 0.100 0.587 1.82 1.07 

SAK (alias PLK4) 0.157 0.662 2.27 8.38 

TKB1 0.135 0.630 1.63 0.896 

TSF1 0.436 0.358 > 10  > 10 

WEE1 > 10 1.99 > 10 8.96 

 
1 Apparent IC50 for 1:1 mixture. 
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Midostaurin, in addition to potently inhibiting wild-type FLT3, as well as mutant forms of FLT3 

and KIT, inhibited 21 additional kinases with IC50 values ≤ 100 nM and a total of 81 wild-type 

kinases with IC50 values ≤ 1000 nM. CGP62221 (3) showed a similar pattern of selectivity 

against the 320 protein kinases, as well as similar degrees of potency to that of midostaurin, 

although it was slightly more potent (≈ 3-fold) against CHK1, FER, PRKG2, ROS, TRK-A / –B, 

and markedly less active (> 6-fold) against LCK, PKC-δ / -ε, PRK2, CAMKK2 and MAPK11.  

Both 4 (e1) and e2 maintained potency against VEGFR2 (neither midostaurin nor the 

metabolites inhibited VEGFR1 by >50% at 10 µM), but in general the presence of a hydroxyl-

group in the lactam-ring resulted in reduced activity. Metabolite e1 (4) only inhibited 13 kinases 

with IC50 values < 400 nM, all of which were potently inhibited by both midostaurin and 

CGP62221. In comparison to e1 (4), e2 (5) was apparently more active (IC50 [e1+e2] ≤ 3-fold 

IC50 [e1]) against FGFR2, LTK, TRKB and PDPK1, and clearly much less active (IC50 [e1+e2] 

≥ 3-fold IC50 [e1]) against BLK and the D816 mutant forms of KIT. 

 

Cell proliferation /viability assays 
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Figure 4. Antiproliferative profile of midostaurin across a large panel of human cancer cell 

lines. The scatter plot shows the maximun effect level, Amax (%), versus inflection point (µM) 

of midostaurin in cell viability assays assessed on 469 cell lines. Cell lines with Amax ≤30% 

are typically classified as non-responding. Cells carrying mutated FLT3 (MOLM13 and 

MONOMAC1) are depicted as red triangles, with 65 other hematopoietic cell lines depicted 

as yellow triangles and solid tumor cell lines as blue circles. 

Although midostaurin impacted the viability of many cell lines in the CCLE screen at 

concentrations > 400 nM (Figure 4), it showed considerable selectivity at lower 

concentrations (Amax levels < 30% were not regarded as being of significance). The greatest 

activity was seen towards the human AML cell lines MOLM13 and MONOMAC1, the 

viability of which was substantially curtailed at concentrations ≤ 100 nM (due to the curve 

fitting algorithm employed the MOLM13 Amax is underestimated and should be ≈70%; 

Supplemental Figure S1). The proliferation of OCI-AML2 AML, MOLP-8 multiple myeloma 
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and LN-405 glioma cell lines were also substantially impacted at concentrations in the range 

of 300-400 nM.  

Table 3: Comparison of the effects of midostaurin, CGP62221 and [4 + 5] (the CGP524211:1 

mixture of e1 and e2) on cell lines dependent and independent upon midostaurin-sensitive 

(IC50 < 500 nM; no fill) and –insensitive kinases (grey fill) and untransduced BaF3 cells 

(mean GI50 nM ± SEM; n ≥ 3).  
 

Kinase Cell line 
Effect on cell proliferation 

1 

Midostaurin CGP62221 (3) 4 + 5 

FLT3-ITD BaF3-FLT3-ITD 39 ± 2 28 ± 6 656 ± 155 

FLT3-ITD MOLM13 (heterozygous)   48.4 ± 6.9 n.d. 
2
 n.d. 

FLT3-ITD MV4-11 (homozygous) 26.3 ± 7.1 n.d. n.d. 

IGF-1R BaF3-Tel-IGF-1R 319 ± 38 189 ± 31 1315 ± 269 

KIT (D816V) BaF3-KIT-D816V 88 ± 6 50 ± 7 319 ± 28 

PDGFRβ BaF3-Tel-PDGFRβ 19 ± 3 < 12 
3
 63 ± 9 

RET BaF3-PTC3-RET 96 ± 7 167 ± 27 1216 ± 180 

ABL1 
4
 BaF3-BCR-ABL1 655 ± 91 1218 ± 85 > 10000 

ALK BaF3-NPM-ALK 364 ± 8 196 ± 54 2316 ± 630 

FGFR3 BaF3-Tel-FGFR3 373 ± 41 497 ± 82 5071 ± 323 

INSR BaF3-Tel-INSR 253 ± 25 152 ± 15 1046 ± 201 

KIT (K642E) GIST882 399 ± 171 
5
 n.d. n.d. 

Untransduced BaF3 wild-type 388 ± 11 327 ± 89 3657 ± 459 

 
1 The Alamar Blue™ assay was used for all cell lines with the exception of GIST882, where 

the ATPLite™ assay was employed (see Experimental section for details); 2 n.d.: not 

determined; 3 three determinations gave IC50 values of 12, < 5 and < 5 nM; 4 none of the 

compounds reduced the residual transphosphorylation activity of ABL1 by >35% at 10 µM; 5 

midostaurin inhibited K642E KIT autophosphorylation with an IC50 value of 4523 ± 1805 

(n=5) in GIST882 cells as determined by capture ELISA48 (J. Mestan, unpublished results).  

The effects of compounds on cell viability was further tested on a small panel of human cancer 

cells and engineered murine hematopoietic cell lines. Murine interleukin (IL)-3-dependent pro-

B lymphoma cells (wild-type BaF3) were used to generate sub-lines whose proliferation and 

survival was rendered IL-3 independent by stable transduction with individual tyrosine 

kinases either activated by mutation or fusion with a dimerizing protein partner.45,48 The 

effects of compounds on cell viability were generally assessed using the resazurin assay in 

which viable cells reduce resazurin to the highly fluorescent resorufin, whereas non-viable 

cells rapidly lose their reductive capacity and fail to produce a fluorescent signal,46 although 

in the case of GIST882 the ATPLite™ assay was employed to measure ATP concentrations 
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which rapidly decline when cells undergo necrosis or apoptosis.47 The effects on cell viability 

are compared in Table 3. In general, biochemical kinase inhibition translated into 

antiproliferative activity. Midostaurin and CGP62221 (3) potently inhibited (GI50 < 100 nM) 

the proliferation of those cell lines driven by FLT3, D816V KIT, PDGFRβ and RET. 

However both compounds, also inhibited the viability of wild-type BaF3 cells (GI50 300-400 

nM), and midostaurin in particular reduced the viability of BaF3-BCR-ABL1, BaF3-Tel-

INSR and human gastrointestinal stromal GIST882 cells. In contrast, the epimeric mixture of 

metabolites [e1+e2] substantially inhibited the proliferation of only the Tel-PDGFRβ (GI50 63 

nM), D816V KIT (GI50 320 nM) and FLT3-ITD (GI50 650 nM)  BaF3 cell lines, while the 

wild-type cells were relatively insensitive. 

 

DISCUSSION  

Collectively AML is the most common form of adult leukemia, having an incidence of 4.2 per 

100,000 population with an overall 5-year survival rate of 27% in the U.S.A. in the period 

2007-2013.49 However, AML is a heterogeneous malignancy that arises from hematopoietic 

progenitor cells which progressively acquire large, diverse sets of coexisting cytogenetic and 

epigenetic lesions leading to the activation of pro-proliferative pathways and impaired normal 

hematopoietic differentiation.50,51 Consequently, as suitable targeted therapies become 

available, different AML genotypes should mandate different therapeutic interventions.37 

Gain-of-function mutations in the FLT3 gene are detected in about 30% of AML patients, 

with the majority (≈ 66%) of these being ITD mutations that confer an adverse prognosis 

compared to FLT3 kinase domain mutations, or mutations in other genes. Consequently, 

much hope has been engendered that inhibiting aberrant FLT3 signalling in leukemic cells 

will provide therapeutic benefit to some groups of AML patients. However, assessing the 

potential for kinase inhibitors that target FLT3 was confounded in early clinical trials, because 

the different drugs investigated (Figure 2) had very different target profiles which made 
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attributing therapeutic effects to biochemical mechanisms problematic.35 Midostaurin 

(Rydapt®) has been developed as an FLT3 inhibitor and is the first targeted therapy to receive 

Health Authority approval for the treatment of AML,31 but as presented here its efficacy is 

probably the result of a complex interplay between the kinase activities of the drug and its 

metabolites. 

In order to compare the kinase profiles of midostaurin with that of the three major 

metabolites, in addition to CGP62221 (3) which was readily prepared by benzoylation of the 

methylamine precursor available from the fermentation broth of a mutant strain of 

Streptomyces longisporoflavus,40 it was necessary to have a discrete sample of at least one of 

the two epimers of the CGP52421 mixture (Figure 1). Using the method of Kasai and co-

workers,52 oxidation of 1 with DDQ afforded a 1:1 mixture of the two epimeric C3-hydroxylated 

derivatives, e1 and e2, as detected in midostaurin-treated patients. Whereas the more lipophilic 

epimer, e1 was sufficiently soluble to be purified by column chromatography, epimer e2 defied 

attempts at purification and, when dissolved in protic solvents, such as methanol afforded an 

epimeric mixture of 3-methoxy derivatives. Single-crystal X-ray diffraction studies of e1 

showed it to correspond to 4, having (3S,9S,10R,11R,13R) absolute stereochemistry, thus 

inferring that e2 had (R)-stereochemistry at the corresponding 3-position of 5. The instability 

of 5 is analogous to that reported for the hydroxylated staurosporine,53 UCN-01 (Figure 2) 

and such epimerisations probably stem from the ease of formation of an intermediate 1H-

isoindolin-1-one.54-56 Liquid chromatography - mass spectroscopy studies unambiguously 

confirmed that 4 corresponds to epimer e1, thus allowing in vitro characterization of the 

metabolites. 

Weisberg and coworkers29 first reported that midostaurin and the epimeric 1:1 mixture of 

metabolites [e1 + e2] (CGP52421), inhibited the transphosphorylation activity of recombinant 

GST-FLT3 in a radiometric assay (8 µM ATP; substrate: poly{GluTyr}4:1) with IC50 values 
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of 528 and 643 nM respectively. Without invoking intracellular drug accumulation, this 

relatively weak activity was inconsistent with their findings in murine BaF3 cells transfected 

to express either ITD- or D835Y-mutant FLT, where midostaurin abbrogated FLT3 

autophosphorylation at concentrations substantially below 1 µM. The BaF3 results were 

subsequently supported by studies employing FTL3-dependent human leukemia cell lines, 

where midostaurin potently inhibited the autophosphorylation of wild-type (RS4;11 cells) and 

ITD FLT3 (MV4-11 cells) with IC50 values of 15 and 13 nM respectively.57 This 

autophosphorylation data is consistent with results from the present biochemical study, where 

midostaurin potently inhibited the transphosphorylation activity of the wild-type, as well as 

the ITD- and D835Y-mutant forms of FLT3 with IC50 values of 48, 26 and 14 nM 

respectively, and was further corroborated using the InVitrogen SelectScreen™,58  where the 

drug inhibited wild-type and D835Y FLT3 with IC50 values of 20 and 3.6 nM respectively. 

Here we show that the major metabolites also inhibit the kinase activity of FLT3, with 

CGP62221 (3) possessing activities comparable to those of the parent drug, while e1 (4) and 

e2 (5) have IC50 values in the range of 200-400 nM against the ITD and D835Y mutants, and 

low micromolar activity against the wild-type enzyme. However, when taking into 

consideration that following chronic dosing, steady-state plasma trough levels of CGP62221 

(3) are slightly higher than those of midostaurin and those of e2 (5) are about 8-fold higher, it 

is expected both metabolites make important contributions to the inhibition of FLT3-catalysed 

phosphorylation in the leukemic cells of AML patients. 

In addition to targeting FLT3, together with kinases such as those of the PKC family and 

VEGFR2 which had supported the initial clinical development of midostaurin,15,31 here we 

show that midosaurin inhibits a large number of additional tyrosine and serine-threonine 

kinases, with IC50 values substantially below 1 µM. The major metabolite CGP62221 (3) is 

also a multitargeted-kinase inhibitor, possessing a similar potency and selectivity profile to 

that of midostaurin, although the 4-fold greater inhibition of FER is perhaps of significance. 
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The activities of midostaurin and CGP62221 against the mutant forms of KIT are of particular 

relevance since in addition to being involved in SM,5 a high expression level of this proto-

oncogene is a poor prognostic marker in AML and activating KIT mutations, which mainly 

occur in the activation loop of the kinase domain (exon 17) resulting in Asp816Val and 

Asn822Lys substitutions, are found in 25 - 30% of cases of core-binding factor (CBF)-

AML.59,60  

In contrast to CGP62221 (3), the 3-hydroxylated metabolites 4 and 5 are generally less active 

and have somewhat different selectivity profiles, resulting in an increased selectivity towards 

VEGFR2. Since 4 is only a minor metabolite, given its kinase profile it is unlikely to play a 

substantial contribution to the pharmacology of midostaurin in patients. However, because 5 

accumulates to become the major circulating component, the kinase targets of this metabolite, 

and PDPK1 in particular, considering that it is over-expressed in AML and promotes PKC-

mediated survival of leukemic blasts,61,62 are likely to contribute to the pharmacology of the 

parent drug.  

 

Figure 5. Representations of (a) midostaurin docked into a homology model of an active 

conformation of FLT3 (based upon the staurosporine-LCK cocrystal structure;65 pdb# 1QPJ) 

and (b) epimer e2 (5) docked into PDPK1 (based upon the UCN-01 - PDPK1 cocrystal 

structure; 64 pdb# 1OKZ). The carbon atoms of ligands and kinases are depicted in green and 
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grey respectively, with nitrogens, oxygens and sulphurs shown in blue, red and yellow 

respectively; H-bonds are depicted as dotted black lines. The lactam moieties of both ligands 

make bidentate H-bond interactions with backbone amides of the hinge region of the kinase 

SH1 domains, mimicking the amidine group of ATP. The selectivity of midostaurin over 

staurosporine can be attributed to (i) the absence of a basic MeNH-group capable of 

interacting with acidic residues (e.g. Glu91 in CHK1) in the ribose-pocket,64 and (ii) the bulky 

benzoyl group impeding binding, except to kinases where it can make favourable 

hydrophobic contacts with the hydrocarbon part of the side-chains of adjacent residues: FLT3 

(Arg815), JAK3 (Arg953), RET (Arg624), VEGFR2 (Arg1030) and PDPK1 (Glu209; 

analogous to that with Glu291 reported between midostaurin and DYRK1A.62 Although 4 and 

5 are generally a much less potent kinase inhibitors, 5 maintains activity against PDPK1, 

which is attributable to the 3-R-hydroxy group H-bonding to Thr222, analogous to that 

observed with UCN-01. 

Although co-crystallization studies with midostaurin are impeded by the poor solubility of the 

ligand, modelling studies based upon the only available co-crystal structure with DYRK1A,63 

can in part explain the observed kinase selectivities (Figure 5). In general, the 3-hydroxy 

groups of 4 and 5 lead to reduced kinase activity due to the lack of favorable interactions to 

overcome desolvation, although the potent inhibition of PDPK1 by 5 can be rationalised by an 

interaction between the 3-R-hydroxy group and the side-chain hydroxyl of the Thr222 residue 

(DFG-1), analogous to that observed with the hydroxystaurosporine UCN-01.64 However, 

unlike UCN-01 which also potently inhibits CHK1, the benzoyl groups of midostaurin and its 

metabolites  make electrostatically  and sterically  unfavorable contact with the Glu91 residue 

of this kinase.  

To investigate the effects of inhibiting many kinases in cells, midostaurin was profiled against 

a large panel of human cancer cell lines in the CCLE. The drug showed greatest 
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antiproliferative activity against the MOLM13 and MONOMAC1 AML cells which harbour 

ITD and V592A FLT3 mutations respectively.66,67 It also substantially reduced the viability of 

the OCI-AML2 AML and the MOLP-8 multiple myeloma cell lines. The effect on OCI-

AML2 cells (Supplementary Figure S1) is notable since these cells carry a point mutation in 

the DNMT3A gene, which encodes an R635W amino-acid replacement in the DNA 

methyltransferase domain, and DNMT3A is frequently mutated in AML patients and is 

associated with a poor outcome.51,68-70 Also of possible relevance is the activity against the 

MOLP-8 cell-line (Supplementary Figure S2), the genotype of which shows loss of CDKN2A 

(a tumor suppressor gene), loss of PTEN, together with a gain-of-function mutation in NRAS. 

However, at present it is not known which target(s) of midostaurin underlie the 

antiproliferative effects of the drug in these two cell lines. 

Further insight into the cellular activity of the compounds against non-FLT3-dependent cells 

comes from a comparison of their effects on a panel of cells derived from either human 

tumors or murine hematopoietic BaF3 cells rendered growth-factor independent by 

transfection with constructs encoding constitutively active protein kinases (Table 3). The 

inhibition of FLT3-ITD kinase biochemical activity translated into potent antiproliferative 

activity in FLT3-ITD dependent BaF3, MOLM13 and MV4-11 cells, with potencies 

comparable  with those reported to inhibit the phosporylation of FLT3 and its signalling in a 

variety of FLT3-dependent AML cells.29,71,72 As expected, potent activity leading to a high 

degree of selectivity was also evident towards those cells dependent upon other kinases that 

were strongly inhibited in the biochemical screen (D816V KIT, PDGFRβ and RET). 

However, unlike 4 and 5 [e1+e2], both midostaurin and CGP62221 (3) also inhibited the 

proliferation of wild-type BaF3 cells (GI50 values 388 and 327 nM respectively), and 

midostaurin in particular reduced the viability of BaF3-BCR-ABL1 (GI50 655 nM), BaF3-Tel-

INSR (GI50 253 nM) and human gastrointestinal stromal GIST882 cells (GI50 399 nM) that 

are dependent upon constitutively activated kinases not targeted by the drug (ABL1, INSR 
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and K642E KIT). This pattern of activity is consistent with midostaurin and CGP62221 

inhibiting one or more elements of the IL-3 signalling pathway in wild-type BaF3 cells and 

elements downstream of the oncogenic kinases that drive the proliferation of the other cell 

lines.  

An effect on the IL-3 signalling pathway is potentially of particular relevance to the treatment 

of AML, since IL-3 regulates the production of hematopoietic cells and overexpression of the 

IL-3 receptor α-chain has been shown to provide a survival and growth advantage to leukemic 

cells, and is associated with poor prognosis.73 However, as for the OCI-AML2 and the 

MOLP-8 cells, deconvoluting the kinase target(s) responsible for inhibiting downstream 

signalling  and causing the general cytotoxicity seen in the CCLE screen at concentrations of 

≥4 µM is not straightforward. Several protein kinases have been reported to be elements in 

multiple IL-3 signal transduction pathways, including JAK-, MAPK- and SRC-family 

kinases,74 and a number of kinases (AURK-A, CAMK2D, FLT3, GRK7, LRRK2, PHKG1, 

PRKG2, RET, ROS, RPS6KA, TRK-A, TYK2) are shown in this study to be potently 

inhibited by midostaurin and CGP62221 with IC50 values <300 nM, while remaining 

relatively insensitive (≥10-fold less active) to 4 and 5 (Table 2). In addition to FLT3 and KIT, 

a number of other kinases including several of those mentioned above, have been implicated 

in playing a role in various genotypes of AML, either as elements of signaling pathways in 

AML cells or implicated by providing stromal support (Table 4). Several of these are 

substantially inhibited by midostaurin and its metabolites at physiologically relevant 

concentrations and consequently activity against these targets probably contributes to the 

pharmacological effects of the drug in AML patients carrying FLT3 mutations. 

Table 4: Kinases other than FLT3 or KIT that have been implicated as playing a role in AML 

and their sensitivity towards midostaurin and metabolites.  

 

Kinase Role Sensitivity
1 

AKT / PI3K FLT3-ITD in AML is associated with activation Insensitive 
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families of the PI3K/AKT pathway.
75
  

AURK-A / -B 
Regulate mitosis; inhibitors reduce viability of AML cells and have 

shown efficacy in patients.
76,77

  
100 – 300  

AXL 
Overexpressed in AML and associated with resistance to FLT3 

inhibitors.
78,79

  
Insensitive 

CHK1 Mediates AML cell proliferation downstream of ITD-FLT3.
80
  200 – 300 

FES 
Downstream signalling element of ITD-FLT3 in AML cells,

81
 and of 

D816V in neoplastic mast cells.
5 Insensitive 

HCK 
Required for proliferation of AML cells, controls CDK6 expression and 

overexpressed in LSCs.
82
  

Insensitive 

IGF1R IGF-1 autocriny plays a role in primary AML cells.
83,84

  100 – 300 

JAK family 
JAK kinases regulate STAT3, the activity of which is frequently 

increased in AML.
74,85

  
50 – 300 

LYN / SRC 

family 

LYN major active SRC family member expressed in AML cells.
74,86-88

  
200 - 300 

PDPK1 
Master kinase overexpressed in AML cells, promotes survival of blasts 

and associated with poor outcome.
61,62

  
<100 

PIM-1 
Overexpressed in AML cell which are highly sensitive to PIM inhibition; 

mediates FLT-3 inhibitor resistance.
89-91

 
200 – 300 

PLK1 
Overexpressed in AML; volasertib (inhibition (volasertib) shows some 

efficacy in AML.
92
  

Insensitive 

RET 

MLL-AFP AML cells dependent upon RET expression;
93
 RET-mTOR 

signaling promotes AML through protection of FLT3-ITD mutants from 

autophagic degradation.
94
  

<100  

SYK FLT3-ITD AML cells are sensitive to SYK suppression.
95
  100 – 200 

TRKA 
Overexpressed in AML and activating mutation detected in patients 

and targeted by lestauritinib.
96
   

<100 

VEGFR 
AML bone marrow highly vascularised and AML cells secrete VEGF 

and express VEGFRs.
97
  

<100 

 
1 IC50 range (nM). Kinases are considered to be sensitive to midostaurin, CGP62221 or 

[e1+e2] when IC50 < 300 nM. 

 

This notion finds some circumstantial support in the emergence of midostaurin resistance: A 

liability of cancer therapies targeting oncogenic tyrosine kinases is the emergence of drug 

resistance leading to patient relapse.98-101
 This is best exemplified by secondary resistance to 

imatinib in chronic myeloid leukemia patients which is frequently the result of mutant clones 

emerging that harbor amino-acid substitutions in the kinase domain of BCR-ABL1 that either 

directly impede drug binding or destabilise the inactive conformational of the oncogenic 

kinase to which the drug binds.98,101 Such reactivation of a kinase signalling pathway through 

mutations can therefore provide supportive evidence for the mechanism of action of the 
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targeting drug. The emergence of kinase inhibitor resistance can be recapitulated in vitro by a 

variety of methods,102 and several such studies have been performed with FLT3 inhibitors that 

have been investigated in AML patients. Thus on incubating randomly mutated ITD-FLT3 

transformed BaF3 cells with midostaurin, it was discovered that substitutions of Asn676, 

Gly697 and Phe691 (the most frequently detected Phe691Leu “gate-keeper” mutation 

remained sensitive) could confer resistance.103-105 However, upon prolonged incubation of 

human leukemic cell lines (MOLM or MV4-11) with sublethal concentrations of midostaurin 

none of the resistant clones that emerged expressed secondary FLT3 kinase mutations.106,107 

Furthermore there is only one report of the emergence of midostaurin resistance in a patient 

resulting from a secondary mutation in ITD-FLT3 (Asn676Lys).108 In contrast resistance is 

conferred to the investigational AML drug quizartinib (Figure 2) by Asn676, Phe691, Gly697, 

Asp835 and Tyr842 FLT3 kinase domain substitutions in ITD-FLT3 BaF3 cells,105,109,110 and 

of eight ITD-FLT3 AML patients who relapsed to quizartinib all harbored Asp836 or Phe691 

mutations.109 Quizartinib is a type-2 ATP-competitive kinase inhibitor,38 which selectively 

inhibits several receptor TKs (FLT3, CSF1R, KIT, PDGFR and RET)57,111 and as a 

consequence, unlike midostaurin it does not have the capability to effect cytosolic kinases that 

mediate downstream signaling from FLT3 or other pathways that might be involved in 

supporting the AML phenotype.  

In summary, through extensive kinase profiling we have shown that like midostaurin, the 

major metabolites CGP62221 (3) and 5 possess protein kinase inhibitory activities that 

probably contribute to the efficacy of midostaurin as a drug in the treatment of AML and 

engender the distinctive effects of midostaurin compared to other FLT3 inhibitors in this 

malignancy. 
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