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Several 2-anilino- and 2-benzylamino-3-deaza-6-oxopurines [3-deazaguanines] and selected 8-methyl
and 8-aza analogs have been synthesized. 7-Substituted N2-(3-ethyl-4-methylphenyl)-3-deazaguanines
were potent and selective inhibitors of Gram+ bacterial DNA polymerase (pol) IIIC, and 7-substituted
N2-(3,4-dichlorobenzyl)-3-deazaguanines were potent inhibitors of both pol IIIC and pol IIIE from Gram+
bacteria, but weakly inhibited pol IIIE from Gram� bacteria. Potent enzyme inhibitors in both classes
inhibited the growth of Gram+ bacteria (MICs 2.5–10 lg/ml), and were inactive against the Gram� organ-
ism Escherichia coli. Several derivatives had moderate protective activity in Staphylococcus aureus-infected
mice.

� 2011 Elsevier Ltd. All rights reserved.
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The resurgence of infectious diseases caused by drug-resistant
Gram+ organisms such as Staphylococcus aureus, Enterococcus faecal-
is/faecium and Streptococcus pneumoniae has stimulated discovery
and development of new chemotherapeutic agents that selectively
attack new bacterial targets. One new target has been validated re-
cently in the low G:C family of Gram+ organisms, that is, DNA poly-
merase IIIC (pol IIIC), a DNA-dependent DNA polymerase which is
specifically required for replicative DNA synthesis in these organ-
isms. Inhibition of its activity prevents replicative DNA synthesis
and, as a consequence, the host cell dies. Another recently described
DNA polymerase in low G:C Gram+ eubacteria, DNA polymerase IIIE,
bears close homology to its Gram� counterpart, also termed pol IIIE.
The latter is the sole replicative enzyme in Gram�bacteria.1,2 Gram+
pol IIICs share a unique capacity to bind a family of ‘AU/PG’ inhibitor
compounds, via a guanine-like ‘base-pairing domain’ and an en-
zyme-specific ‘aryl domain’. Early pol IIIC inhibitors were simple
AU (6-anilinouracil) derivatives, which have two key structural fea-
tures: (a) a substituted pyrimidine ring that permits base pairing to a
pyrimidine in the DNA template; (b) a planar aryl ring at the 6-NH
group.3,4 Through its base-pairing domain, an AU molecule forms
Watson–Crick-like hydrogen bonds with an unapposed cytosine
residue in the template strand just distal to the DNA primer termi-
nus; consequently its action is competitive with dGTP. Simulta-
neously, the aryl domain binds an aryl-specific ‘receptor’ near the
ll rights reserved.
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enzyme’s active site, causing the formation of an inactive ternary
complex of inhibitor, DNA and pol IIIC (Fig. 1).5,6 Subsequent studies
have shown that 3-(substituted-alkyl) groups in AU compounds, for
example, HB-EMAU (1), can greatly enhance the antibacterial activ-
ity in vitro, and compounds with antibacterial activity in vivo have
been described.7

Recently, we reported that novel 7-substituted N2-(3-ethyl-
4-methylphenyl)guanines (EMPGs, e.g., 2a–4a) and 7-substituted
Figure 1. Mechanism of active site directed inhibition of bacterial DNA polymerase
IIIs. Base-pairing with cytosine residues and hydrophobic (specificity) domains are
illustrated for interaction of 3-substituted 6-anilinouracils (left) and 7-substituted
guanines (right).
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N2-(3,4-dichlorobenzyl)guanines (DCBGs, e.g., 5a–7a) were potent
inhibitors of pol IIIC, and that the DCBGs were also active against
pol IIIE species from both Gram+ and, with lower potency, Gram�
bacteria.8 Importantly, both classes inhibited the enzymes by the
same active site-directed, competitive mechanism previously
established for ‘classical’ AU inhibitors.8 Based on the similarity
of the structures of the AU and PG inhibitors bound to a cytosine
residue in DNA (Fig. 1), we expanded our exploration into other
heterocycles, such as 3-deazapurines and their 8-substituted deriv-
atives. Such compounds would be expected to be DNA polymerase
inhibitors and possess antibacterial activity. In this paper, we re-
port the synthesis, structure determination, and in vitro biological
activity of these compounds. Modest antibacterial activity of sev-
eral compounds was observed in a S. aureus infection model in
mice.
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Compd. X Ar 7 or 9 n R

19a CH EMPa 7 4 OMe
19b ‘ EMP 9 4 OMe
20a ‘ EMP 7 5 OMe
21a ‘ EMP 7 4 N-Morpholinyl
21b ‘ EMP 9 4 N-Morpholinyl
22a ‘ DCBb 7 4 OMe
22b ‘ DCB 9 4 OMe
23a ‘ DCB 7 5 OMe
24a ‘ DCB 7 4 N-Morpholinyl
24b ‘ DCB 9 4 N-Morpholinyl
25a ‘ DCB 7 5 N-Morpholinyl
30a CMe DCB 7 4 OMe
30b ‘ DCB 9 4 OMe
35a N DCB 7 5 OMe

a 3-Ethyl-4-methylphenyl.
b 3,4-Dichlorobenzyl.
Structure–activity studies of pol III inhibition by substituted
guanines has shown that the hydrogen bonding groups at positions
1, 2, and 6 are required for activity.8 Additionally, the 3-ethyl-
4-methylphenyl or 3,4-dichlorobenzyl groups provided optimal
hydrophobic groups for binding to pol IIIC and pol IIIC/E, respec-
tively. Substituents at the 7-position were preferable to the 9 posi-
tion in both cases (cf. compds. 2a vs 2b and 7a vs 7b) for optimal
pol affinity (Table 2).8 Thus, we decided to evaluate isosteric
analogs by removing the 3-N atom of the guanine ring to create
3-deazapurines and the analogous 8-methyl-3-deazapurines and
8-aza-3-deazapurines (Table 1). The synthesis and comparative
enzyme and bacterial inhibition activity of these modified
compounds are presented here.

Two approaches were considered to synthesize 3-deazaguanine
pol inhibitors: start from the imidazole B and build the pyridine
ring (Route 1),9 which gave little flexibility in modifying the imid-
azole ring structure, or start from the pyridine A and build the
imidazole ring (Route 2).10
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We chose the latter approach, starting with 3,4-diamino-2,
6-dichloropyridine (Scheme 1).11 This compound was cyclized to
4,6-dichloropyrido[4,5-c]imidazole (11), and the latter compound
was treated with sodium benzoxide to afford 2-benzyloxy-
7-chloropyrido[4,5-c]imidazole (12). Alkylation of 9 separately
with 1,4-dibromobutane and 1,5-dibromopentane gave mixtures
of the 7-alkylated products 13a and 14a and 9-alkylated products
13b and 14b, respectively. The mixtures were treated with sodium
methoxide or other nucleophiles such as morpholine to give easily
separable isomers 15a–18a and 15b–18b. To confirm the isomeric
structures NOESY 1H NMR was applied to a pair of products. The
spectrum of 15a revealed a crosspeak between N–CH2 and
O6–CH2 protons, but 15b did not. In addition, the N–CH2 chemical
shift of the 3-isomer 15a was greater than that of the 5-isomer 15b,
consistent with findings for analogous 7 and 9 substituted purine
nucleosides.12 Thus, the 3-alkylated intermediate was assigned as
the major isomer in all cases, in a ratio a:b of ca. 2.5:1 (from 1H
NMR). Fusion of the purified 7-chloro compounds with 3-ethyl-
4-methylaniline or 3,4-dichlorobenzylamine simultaneously
displaced the 7-chloro group and removed the 2-benzyl group
to afford 3- and 5-alkyl-7-(substituted-amino)-2-oxopyrido[4,5-c]
imidazoles (i.e., 7- and 9-alkyl-2-(N-substituted)-3-deazagua-
nines) 19a–25a and 19b–25b, respectively (Scheme 1).13

A similar approach was used to prepare 8-methyl-3-deazagua-
nines (Scheme 2). 3,4-Diamino-2,6-dichloropyridine was treated
with acetic acid and polyphosphoric acid14 to afford 4,6-dichloro-
8-methylimidazo[4,5-c]pyridine (26), and treatment of 26 with so-
dium benzoxide gave the intermediate 27. Alkylation of 27 with
1,4-dibromobutane gave a 2.1:1 mixture of 7 and 9 bromobutyl
isomers 28a and 28b. Methanolysis of the latter compounds gave
the methoxybutyl derivatives 29a and 29b, and fusion of these
with 3,4-dichlorobenzylamine gave, after concomitant debenzyla-
tion, the candidate inhibitors 30a and 30b.

To access the 8-aza-3-deaza series 3,4-diamino-2,6-dichloro-
pyridine was cyclized with sodium nitrite in dilute hydrochloric
acid to afford the key intermediate 8-aza-2,6-dichloroimi-
dazo[4,5-c]pyridine (31) (Scheme 3). The latter compound was
subjected to a sequence similar to that in Scheme 2, that is,
conversion to the 6-methoxy intermediate 32, alkylation to the
7/9 isomer mixture 33a/33b, and methanolysis to give the



 95%

N

OBn

N

N

Cl

(CH2)nBr
N

OBn

N

N

Cl
(CH2)nBr

+

a. Na/MeOH, 45 oC (Y = OMe)

N

OBn

N

N

Cl

(CH2)nY

N

OBn

N

N

Cl
(CH2)nY

Ar*NH2, 155 oC, 24 h
HN

O

N

N

ArHN

(CH2)nY

HN

O

N

N

ArHN
(CH2)nY

120 oC, O/N
    85%

b. Morpholine/CH2Cl2, rt (Y = N-morpholinyl)

Na/BnOH

Br(CH2)nBr, K2CO3

13a (n=4)
14a (n=5)

13b (n=4)
14b (n=5)

HC(OEt)3 /Ac2O

145 oC, 0.5 h
      90%

TBAI, DMF, rt

13b,14b ArNH2, 155 oC, 24 h

a or b

a or b

N

Cl

Cl

NH2

NH2

2HCl N

N
H

N

Cl

Cl
11

N

N
H

N
OBn

Cl
12

13a,14a

15a-18a 19a-25a

15b-18b 19b-25b

1 2 3

4

567

* Ar = 3-ethyl-4-methylphenyl (EMP),
          3,4-dichlorobenzyl (DCB)

Scheme 1.

AcOH, (H3PO4)n

Br(CH2)4Br,K2CO3

TBAI, DMF, rt

95%

N

OBn

N

N

Cl

(CH2)4Br
N

OBn

N

N

Cl
(CH2)4Br

+

(2.1: 1)

Na/MeOH,
45 oC
 88%

80 oC, 16 h

N

OBn

N

N

Cl

(CH2)4OMe

N

OBn

N

N

Cl
(CH2)4OMe

155 oC, 24 h
HN

O

N

N

N
H

(CH2)4OMe

HN

O

N

N

N
H (CH2)4OMe

DCB

DCB

Na/BnOH

120 oC

26

28a 28b

b92a92

30a

30b

72% 85%

DCBA

60%

155 oC, 24 h

DCBA

75%

N

N
H

N
Cl

Cl

27

N

N
H

N
OBn

Cl

+

N

Cl

Cl

NH2

NH2
2HCl

29a

29b

28a + 28b

Scheme 2.

W. Xu et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4197–4202 4199



0-5 oC N

NH
NN

Cl Cl

NaOMe/MeOH

N

NH
NN

Cl OMe

N

N
NN

Cl OMe

(CH2)5Br

155 oC, 24 h
N
H

N
NN

N
H

O

(CH2)5OMe

DCB

NaOMe/MeOH

40 oC, 6h N

N
NN

Cl OMe

(CH2)5OMe

65%

32

Br(CH2)5Br, K2CO3

  TBAI/DMF, rt, 6 h

33a 33b

34a

35a

NaNO2/HCl

115 oC, 3h

%47%59

+

N

N
NN

Cl OMe

Br(CH2)5

90%

+

N

N
NN

Cl OMe

34b

MeO(CH2)5

DCBA

50%

N

Cl

Cl

NH2

NH2

2HCl

31

34a

Scheme 3.

Table 2
Pol IIIC and pol IIIE inhibition

Compd. Ki (lM)a

B. s. pol IIIC B. s. pol IIIE E. c. pol IIIE

1b 0.063 117 inc

EMPGs:b

2a 0.47 in ntd

2b in in nt
3a 0.28 318 nt
4a 0.26 394 nt

3-deazaEMPGs:
19a 1.5 in nt
19b in in nt
20a 0.69 490 in
21a 1.1 in nt
21b 50 in nt

DCBGs:b

5a 0.19 0.063 86
6a 0.052 0.091 27
7a 0.19 0.37 56
7b in in in
8a 0.07 0.088 47
9a 0.052 0.058 13.8
10a 0.051 0.047 26

3-deazaDCBGs:
22a 0.19 0.37 56
23a 0.16 0.42 81
24a 0.094 0.2 nt
24b 50 54 nt
30a 1.25 2.5 426
3a 0.96 1.05 444

a Ki values were determined by measuring incorporation of [3H]TMP into activated DNA incubated with dATP, dCTP and [3H]TTP, that
is, lacking the competitor dGTP (see Wright and Brown in Ref. 15).

b From Ref. 8.
c Inactive (<10% inhibition) at highest conc. tested.
d Not tested.
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Table 3
Antibacterial activity (MICs)

Compd. MIC (lg/ml)a

B. subtilis S. aureus S. a. (Smith) MRSA1090 E. fecalis E. fecium VRE E. coli J53

1 <1.25 5 5 5 5 5 5 >80

EMPGs:
2a 15 30 40 30 20 20 10 >80
2b >80 >80 >80 >80 >80 >80 >80 >80
3a 20 20 20 20 10 10 5 >80
4a 1.25 5 5 2.5 5 10 5 >80

3-deazaEMPGs:
19a 2.5 10 10 10 10 10 10 >80
19b >80 >80 >80 >80 >80 >80 >80 >80
20a 1.25 2.5 2.5 2.5 >80 2.5 >80 >80
21a 10 40 40 30 >80 20 >80 >80
21b >80 >80 >80 >80 >80 >80 >80 >80

DCBGs:
5a 15 30 25 30 10 7.5 3.75 >80
6a 10 20 5 10 5 10 5 >80
7a 1.4 3.7 3.7 1.25 2.5 2.5 2.5 >80
7b >80 >80 >80 >80 >80 >80 >80 >80
8a 1.4 3.7 3.7 1.25 2.5 2.5 2.5 >80
9a 1.25 2.5 1.25 1.25 1.25 1.25 5 >80
10a 10 20 40 40 10 10 5 >80

3-deazaDCBGs:
22a 0.625 5 3.75 2.5 5 5 2.5 >80
23a 1.25 2.5 1.25 2.5 5 1.25 5 >80
24a 7.5 20 10 20 20 15 10 >80
24b >40 >40 >40 >40 >40 >40 >40 >40
25a 10 20 20 20 20 20 15 >80
30a 6.25 60 20 5 80 80 20 80
30b >80 >80 >80 >80 >80 >80 >80 >80
35a 2.5 10 7.5 7.5 10 10 10 >80
Ciprofloxacin 0.078 0.156 0.078 >20 0.625 5 20 0.313
Vancomycin 0.313 0.313 0.313 0.625 0.625 1.25 >20 >20
Linezolid 0.625 1.25 2.5 1.25 1.25 2.5 1.25 >80

a Minimum Inhibitory Concentration; averages of at least two independent experiments.
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methoxybutyl derivatives 34a and 34b. Fusion of 34a with 3,4-
dichlorobenzylamine afforded the 8-aza-3-deaza compound 35a.

Evaluation of the isosteres for enzyme inhibition and antibacte-
rial activity in vitro and in vivo was carried out.15 Results of assays
of the isosteres against bacterial DNA polymerases are summarized
in Table 2, where they are compared with activity of the corre-
sponding guanine derivatives. All 7-substituted guanines and isos-
teric compounds, EMP and DCB types alike, were potent inhibitors
of Gram+ pol IIIC, with Ki values of 1 lM or less, several com-
pounds being as active as the prototype HB-EMAU (1). All of the
9-isomers were much less active or inactive (only representative
ones are reported in Table 2). Among the active isosteres, DCB
compounds were also potently active against Gram+ pol IIIE. In
addition, several 7-substituted DCB compounds were weakly ac-
tive against Gram� pol IIIE, a result consistent with weak inhibi-
tion of this enzyme by DCBG-related compounds (see Table 2).8

Results of antibacterial assays in culture of the 7-substituted
isosteres and their guanine counterparts vs. a panel of Gram+
organisms and one Gram� organism (Escherichia coli) are summa-
rized in Table 3. As reference compounds, HB-EMAU (1) and the
antibiotics ciprofloxacin, vancomycin and linezolid are included.
The sources of bacterial strains and methods for determination of
minimum inhibitory concentrations (MIC) in 96-well plates were
as previously described.7 HB-EMAU (1) is an effective Gram+
antibacterial with MIC values of 2.5-5 lg/ml against various
organisms, but inactive against the Gram� bacterium E. coli.4,7

Ciprofloxacin potently inhibited growth of all organisms with the
exception of MRSA 1090, a methicillin-resistant strain of S. aureus
with cross-resistance to the fluoroquinolones. Vancomycin
was active against all Gram+ organisms except VRE, the
vancomycin-resistant strain of E. faecalis, and linezolid was active
against all Gram+ organisms.

Antibacterial activity of isosteric 3-deaza compounds against
Gram+ organisms generally paralleled the potency of 7 versus 9
substituted derivatives against the DNA polymerases, consistent
with the activity of corresponding 7 and 9 substituted EMPGs and
DCBGs (Table 2). The 7-methoxyalkyl side chains of 4a, 7a and 8a
imparted ca. eight-fold increased activity compared with the
7-hydroxyalkyl compounds 2a, 3a, 5a and 6a. The 7-acetoxypentyl
compound 9a was a potent antibacterial, but the corresponding
7-morpholinylpentyl compound 10a was weak. 3-Deaza isosteres
of DCBGs had activities similar to those of the DCBGs and 1. Substi-
tutions at the 8-position with nitrogen or a methyl group resulted in
2- to 10-fold loss of activity compared with the 8-H counterparts.

Several analogs were tested by the intraperitoneal (IP) route for
efficacy in protecting mice from IP infection with S. aureus (Smith).
The results of Table 4 show that, with the exception of 8a, all the
analogs had moderate activity, and the control drug daptomycin
had highest activity. There was no obvious difference between
activity of the purines 4a and 8a and their 3-deaza analogs 20a
and 23a. A clear dose-response was observed with 9a (7-acetoxy-
pentyl-DCBG), consistent with its potent antibacterial activity
in vitro (Table 3).

We have synthesized and identified 7 and 9 regioisomers of
isosteric analogs of antibacterial 2-substituted guanines, specifi-
cally 3-deaza, 8-methyl-3-deaza and 8-aza-3-deazaguanines.
Isosteres of both the EMP and DCB classes with substitution exclu-
sively at the 7-position of the heterocycle were potent inhibitors of
bacterial DNA polymerase IIIC, an enzyme unique to Gram+ bacte-
ria. DCB analogs also were potent inhibitors of DNA polymerase IIIE



Table 4
Antibacterial activity in micea

Treatment, IP 10 ml/kg IP dose, mg/kg % Survivors at 24 h

Vehicleb — 0
Daptomycinc 10 100
1 100 80
4a 30 20
‘ 100 40
20a 30 40
8a 30 20
9a 10 30
‘ 30 50
‘ 60 80
23a 100 40

a Groups of 10 mice were infected IP with S. a. (Smith) and treated IP 15 min post-
infection as described.

b 10% DMSO/peanut oil.
c 5% dextrose/water.
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from Gram+ bacteria, but weak inhibitors of the DNA polymerase
IIIE from the Gram� E. coli (Table 2). Some isosteric compounds
were potent antibacterials against Gram+ bacteria (Table 3), gener-
ally paralleling their activity against the Gram+ DNA polymerases,
but weaker than the corresponding guanines. However, the isoster-
es showed weak activity against experimental S. aureus infection in
mice (Table 4), consistent with their moderate in vitro potencies
and low solubilities.
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and the colony forming units (CFU) were determined using a nomogram
relating CFU to optical density at 600 nm. Bacteria were washed in fresh cold
broth, and given by intraperitoneal (IP) injection to mice as a suspension in
0.5 mL of broth. Groups of five or ten mice were treated via the IP route 15 min
post-infection with vehicle, test compound in vehicle, or daptomycin
(Cubicin�, Cubist) in saline at 30 mg/Kg. Mice were returned to their cages
and monitored for mortality for 24 h.
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