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Staurosporine was first isolated by Omura and colleagues 
from Streptomyces staurosporeus.' Its configuration was 
recently revealed to be that shown in structure L2 Previously, 
structure 2, now known to be ent-staurosporine, had been 
assigned to staur~sporine.~ (See Chart 1.) 

Interest in staurosporine at the biological level springs from 
its nanomolar inhibition of protein kinase C(PKC).4 Given the 
central role of protein phosphorylation in orchestrating the cell 
cycle, powerful inhibitors of PKC might be useful as antipro- 
liferative  agent^.^ Needless to say, high levels of tissue 
specificity in the delivery of a PKC inhibitor would be critical 
for its development as a drug. 

The most obvious chemical challenge posed by a total 
synthesis of 1 6 s 7  is the fashioning of glycosidic bonds to each 
of the indolic nitrogens. Provision must also be made for the 
introduction of properly configured methoxy and methylamino 
groups. A further complication is the daunting issue of 
regioselectivity in the formation of a lactam from a nearly 
symmetric imide precursor (cf. 25 ). Herein we report the first 
total synthesis of staurosporine (1) and ent-staurosporine (2). 

Our strategy called for containment of the future N-methyl 
and 0-methyl moieties in a cyclic framework which would 
provide chemical protection and offer stereochemical guidance 
for the intermolecular indole glycosylation. Specifically, we 
identified oxazolidinone glycal10 to serve as the glycosyl donor 
and bis(indoly1) maleimide 5 to function as the aglycon acceptor. 
(See Scheme 1.) 

Aglycon 5 was synthesized from benzyloxymethyl (BOM) 
dibromomaleimide 3 in the modular fashion shown. Triiso- 
propylsilyl-L-glucal6 (TIPS-L-glucal) was converted to its bis- 
(trichloroacetimidate) and thence to oxazoline 7 by an apparent 
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Chart 1 

NHMe NHMe 
1 staurosporine 2 ent-staurosporine 

vinylogous Schmidt glycosylation.8 The oxazolidinone, fash- 
ioned from the derived 8, was protected as its BOM derivative 
9. The TIPS protecting group was cleaved, and a p-methoxy- 
benzyl ether (PMB) was installed (see compound 10). 

The stage was now set for the intermolecular indole glyco- 
sylation. Previous experience had demonstrated that the 1,2 
anhydro-sugar coupling method represents, to date, the best 
available tactic for the glycosylation of complex indoles with 
complex donorsg Accordingly, glycal 10 was oxidized with 
2,2-dimethyldioxirane. The mixture of epoxides (11 and 12) 
was treated with the sodium salt of 5.1° Indole glycoside 13 
was obtained in 47% yield." In the next step, the C i  hydroxyl 
function was removed by Barton deoxygenation, yielding 14.12 

Deprotection of the C( PMB and the indolic SEM groups 
provided seco-system 15. Photolytic oxidative cyclization led 
to 16.13 The exo-glycal, needed for the critical intramolecular 
glycosylation, was fashioned by iodination of 16 followed by 
elimination. Treatment of 17 with potassium tert-butoxide and 
iodine indeed yielded 18, and after treatment with tri-n-butyltin 
hydride and deprotection of the BOM groups, compound 20 
was in hand. (See Scheme 2.) 

A BOC group was installed specifically on the oxazolidinone 
ring (see compound 21). This group was to play a crucial role. 
Its presence would facilitate disconnection of the oxazolidi- 
none.14 When opening had been accomplished the BOC group 
would guard against dimethylation of the amine. To shield the 
imide sector during operations which would generate the 
N-methyl and 0-methyl functions, compound 21 was converted 
into 22. Treatment of 22 with cesium carbonate in methanol 
gave 23.15 It was here that the plan for introduction of the 
0-methyl and single N-methyl groups was implemented and 
24 was secured. Subsequent deprotection was accomplished 
as shown to provide 7-oxostaurosporine (25), identical with an 
authentic sample. l6 

A protocol was developed to convert the 7-oxo compound 
25 to staurosporine i t~e1f.l~ It started with a precedented 
reduction with sodium borohydride.18 Not easily achieved or 
precedented was the capacity to deoxygenate the carbanolamide 
linkage. However, this was eventually smoothly accomplished 
via the action of benzeneselenol. When this two step sequence 
was carried out on 25, there was obtained a 1:l mixture of 
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(a) (i) Indole Grignard, PhH, 0 "C - room temperature, overnight, 82% (P1 = H). (ii) NaH, THF, room temperature, then SEMC1, 91% (PI 
= SEMI. (b) Indole Grignard, PhH, 0 "C - room temperature, overnight, 75%. (c) NaH, CH2C12,O "C, then CljCCN, 0 'C - room temperature, 
(R = CNHCC~S), then BF30Et2, -78 "C, 78%. (d) cat. TsOH, HzO, pyr, 80 "C, 80%. (e) (i) NaH, CHzCb, 0 "C - room temperature, 92% of 9 (Pz 
= TIPS, PJ = H). (ii) NaH, DMF, then BOMCl, 40 "C, 65% (Pz = TIPS, P3 = BOM) and 22% of 9. (iii) TBAF, THF, 0 "C, 95% (Pz = H, P3 = 
BOM). (iv) NaH, DMF, 0 "C -room temperature, then PMBC1,O "C-rc" temperature, 92% of 10 (Pz = PMB, P3 = BOM). ( f )  Dimethyldioxirane, 
CHzC12,O "C, 100% of a-epoxide 11 and p-epoxide 12. (g) (i) 5, NaH, THF, room temperature, then 11 and 12, room temperature - reflux, 47% 
of 13 (P2 = PMB, RZ = SEM, R3 = OH). (ii) Thiophosgene, DMAP, pyr, CHZC12, reflux, then C&OH, reflux, 79% (Pz = PMB, RZ = SEM, RJ 
= OCSOCsF5). (iii) n-BusSnH, AIBN, PhH, reflux, 74% 14 (Pz = PMB, R2 = SEM, RJ = H). (iv) DDQ, CHZC12, H20, 0 "C - room temperature, 
97% (Pz = H, R2 = SEM, R3 = H). (v) TBAF, THF, reflux, 91% of 15 (Pz = H, R2 = H, R3 = H). (h) (i) hv, cat. 12, air, PhH, room temperature, 
73% of 16 (R4 = OH). (ii) 12, P(Ph),, imidazole, CHzC12, 0 "C - room temperature, 84% (& = I). 

a - 
18, 19, 20 
21,22 

NHCBOC 
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16 (& = I), THF, DBU, room temperature, 89% of 17. (a) (i) 
r-BuOK, 12, THF, MeOH, room temperature, 65% of 18 (RI = I, Rz, 
R3 = BOM) and 15% of recovered 17. (ii) n-Bu,SnH, AIBN, PhH, 
reflux, 99% of 19 (R1= H, Rz, R3 = BOM). (iii) H2, Pd(OH)2, EtOAc, 
MeOH, room temperature, then NaOMe in MeOH, 92% of 20 (R1, R2, 
R3 = H). (iv) (BOC)zO, THF, cat. DMAP, room temperature, 81% of 
21(R1, RZ = H, R3 = BOC). (v) NaH, DMF, room temperature, then 

MeOH, room temperature, 93%. (c) (i) NaH, (CH3)2S0dr THF, DMF, 
room temperature, 86% of 24 (X, Y = 0, Rz = BOM, R3 = BOC). 
(ii) Hz, Pd(OH)z, EtOAc, MeOH, room temperature, then NaOMe in 
MeOH, 84% (X, Y = 0, RZ = H, R3 = BOC). (iii) F A ,  CHzC12, 
room temperature, 97% of 25 (X, Y = 0, R2, R3 = H). (iv) NaBH4, 
EtOH, room temperature, workup (X,Y = 0, OH, Rz, R3 = H), then 
PhSeH, cat. TsOH, CHzClz, room temperature, 39% of 1 (X = H2, Y 

of 25. 

isostaurosporine (26) and staurosporine (1). After separation, 
homogeneous fully synthetic staurosporine (1) was isolated. l9 
The total synthesis of staurosporine (1) has thus been completed. 

BOMCl, 82% of 22 (Ri = H, R2 = BOM, R3 = BOC). (b) C S ~ C O ~ ,  

= 0, Rz, R3 = H), 39% of 26 (X = 0, Y = Hi, R2, R3 = H), and 15% 

During the late stages of the synthesis, the absolute configu- 
ration of natural staurosporine was revealed to be that shown 
in structure 1 rather than 2. Operating under the prevailing 
misconception, we had initially carried out the same steps 
described herein with D-glucal as our starting material. This 
identical sequence led to ent-staurosporine (2) and to ent is0 
compound 27 (the enantiomer of 26).20 The biological evalu- 
ation of these compounds, which is currently underway, should 
provide unique insights into the interactive roles of the 
carbohydrate, indolocarbazole, and lactam (or imide) domains 
in this extraordinary class of PKC inhibitors. 
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