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We have realized that N-formylations of free amines of some drug leads can improve PK/PD property of
parent molecules without decreasing their biological activities. In order to selectively formylate primary
amines of polyfunctional molecules, we have sought a mild and convenient formylation reaction. In our
screening of N-formylation of an a-amino acid, L-phenylalanine, none of formylation conditions reported
to date yielded the desired HCO-L-Phe-OH with satisfactory yield. N-formylations of amino acids with
HCO2H require a water-containing media and suppress polymerization reactions due to the competitive
reactions among carboxylic acids. We found that N-formylations of a-amino acids could be achieved with
a water-soluble peptide coupling additive, an Oxyma derivative, (2,2-dimethyl-1,3-dioxolan-4-
yl)methyl-2-cyano-2-(hydroxyimino)acetate (2), EDCI, and NaHCO3 in water or a mixture of water and
DMF system, yielding N-formylated a-amino acids with excellent yields. Moreover, these conditions
could selectively formylate primary amines over secondary amines at a controlled temperature. A useful-
ness of these conditions was demonstrated by selective formylation of daptomycin antibiotic which con-
tains three different amino groups.

� 2013 Elsevier Ltd. All rights reserved.
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Introduction

In our SAR studies of antibacterial agents, we have realized that
N-formylations of free amines of some antibiotics do not signifi-
cantly decrease their bioactivities and can be applied to improve
PK/PD property of parental molecules. Because of necessity of
selective formylation reactions of antibiotics and antibacterial
agents in our ongoing programs, we have sought a mild and conve-
nient N-formylation reaction condition that can be applied to a
wide range of complex natural products, oligo- to poly-peptides,
and amino acids. To date, the numerous formylating agents and
conditions have been reported.1 Although several formylating
agents can be applicable for the formylations of C-protected amino
acids, it is not possible to achieve effective formylation reactions
for non-protected amino acids with reported reagents and condi-
tions.2 In addition, many formylating agents are hygroscopic and
are not tolerated in appropriate solvents for the reactions for ami-
no acids and oligo-peptides (e.g., water-containing solvents). In our
recent finding of amide-forming reactions with the ethyl 2-cyano-
2-(hydroxyimino)acetate (Oxyma, 1) derivative, glyceroacetonide-
Oxyma 2 in water media (Fig. 1),3 it was observed that formylation
of H-L-Phe-OH could be achieved with HCO2H (5 equiv), 2
(2 equiv), EDCI (2 equiv), and NaHCO3 (10 equiv) in water (0.2–
0.3 M) to yield the corresponding HCO-L-Phe-OH in greater than
90% yield. On the other hand, the same reaction in the absence of
ll rights reserved.

: +1 901 448 6940.
glyceroacetonide-Oxyma 2 did not furnish the desired HCO-L-
Phe-OH. Thus, effectiveness of glyceroacetonide-Oxyma 2 in the
formylation of amino acid in water was unambiguously deter-
mined. Herein, we report mild and convenient N-formylations in
water or water-containing solvent systems, and selective N-formy-
lations of primary amines.

Results and discussion

Formylation of H-L-Phe-OH with HCO2H, glyceroacetonide-
Oxyma 2, EDCI, and NaHCO3 in water seems to undergo through
the well-known reaction mechanism with EDCI,4 however, in this
reaction several interesting chemical observations are worth men-
tioning. HCO2H reacts with EDCI faster than H-L-Phe-OH; 5 equiv of
HCO2H could completely suppress the undesired competitive reac-
tion with H-L-Phe-OH. Due to the fact that formylation of H-L-
Phe-OH with EDCI in water did not proceed in the absence of 2,
the initial intermediate, carbamimidic formic anhydride 3 may
have a relatively short half-life or not be a good electrophile as a
formylating agent in water. However, the intermediate 3 reacts
3
CH3

2: Glyceroacetonide-Oxyma

CN

1: Oxyma

Figure 1. Structures of Oxyma 1 and glyceroacetonide-Oxyma 2.
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a The condition A was also effective.
b The same reaction under the condition B yielded the product in 30–60% yield.
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Figure 2. The reaction kinetic curves of formylations of H-L-Val-OMe and N-Me-L-
Val-OMe in H2O at rt and 0 �C.
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Scheme 1. Formylation of H-L-Phe-OH in water and a plausible reaction
mechanism.
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Scheme 2. Selective formylation of daptomycin.

2080 B. A. Aleiwi et al. / Tetrahedron Letters 54 (2013) 2077–2081
with the glyceroacetonide-Oxyma 2-sodium salt5 to furnish the ac-
tive ester 4 which has a relatively long half-life and serves as N-
formylating agent in water (Scheme 1). It is important to note that
formylation of H-L-Phe-OH with Oxyma 1 in water furnished the
desired product in very low yield (<10%). As observed in peptide-
forming reactions, formylation using 1 could be improved dramat-
ically when the reaction was performed in a mixture of DMF–H2O
(9/1).3b Thus, 1 and 2 can efficiently be utilized for formylation of
H-L-Phe-OH by using water or a mixture of water and DMF. How-
ever, glyceroacetonide-Oxyma 2 has a significant advantage over 1
in that 2 can be removed completely after the reactions via an
acidic water work-up, thus, only formylated-products can be ex-
tracted from reaction mixtures after a simple work-up.

In order to examine the scope and limitations of N-formylation
reactions with HCO2H, 2 (or 1), EDCI, and NaHCO3 in H2O (condi-
tion A) or in DMF–H2O (9/1, condition B), we have applied these
conditions to a wide variety of primary and secondary amines,
and a-amino acids. As observed for H-L-Phe-OH, formylations of
all a-amino acids tested in this program provided the correspond-
ing N-formylated products in H2O. Representative data are sum-
marized in Table 1 (entries 15–18). In all cases N-formylations of
a-amino acids with condition A furnished the desired products in
better yield than those with condition B (85–95 vs 30–60% yield).
We have demonstrated N-formylation of an oligopeptide in water;
N-formylation of the pentapeptide with condition A yielded the
corresponding formylation product in 90% (entry 19). N-
formylation of C-protected a-amino acids could be achieved effi-
ciently either with condition A or B without a noticeable difference
in yield of the products (entries 8–10). Thus, formylations of ali-
phatic and aromatic amines were performed with Oxyma 1 in
DMF–H2O (condition B); N-formylations of benzylamine, octyl-
amine, and aniline provided the corresponding products in quanti-
tative yield (entries 1, 2, and 5). N-formylation reactions of a
mono-protected 1,3-diamine and an amino-alcohol provided the
N-formylated products in excellent yields (entries 3 and 4). On
the other hand, N-formylations of 2-aminobenzoic acid and 2-ami-
nophenol gave rise to the desired products in 30% and 25% yield,
respectively (entries 6 and 7).6 Formylations of secondary amines,
piperidine, morpholine, L-Pro-OMe, and N-Me-L-Val-OMe were
completed within 3 h to yield the corresponding products in good
yields (entries 11–14). Interestingly, formylation of a secondary
amine, N-Me-L-Val-OMe provided the formylated-product in less
than 5% yield at 0 �C, whereas a primary amine H-L-Val-OCH3 was
formylated at 0 �C to rt. The rate of the reaction progress of formy-
lations of N-Me-L-Val-OMe and H-L-Val-OCH3 in H2O (condition A)
was monitored over time and their reaction kinetic curves are
shown in Figure 2. The striking difference in reaction rate for
formylations of primary and secondary amines was observed when



B. A. Aleiwi et al. / Tetrahedron Letters 54 (2013) 2077–2081 2081
the reactions were performed in water or in water-containing sol-
vents (see Scheme 1).

We have applied these formylation reaction conditions to sev-
eral antibacterial natural products. Selective N-formylation of
kanamycin A could be achieved at the primary amine, yielding
the 60-formylated kanamycin A in 30% isolation yield (65% yield
based on LC–MS) (entry 20 in Table 1).7 Formylation of spectino-
mycin in H2O at rt furnished the mono-formylated product in
50% yield (entry 21).8 Daptomycin is a cyclic lipopeptide antibiotic
used in the treatment of certain community-associated methicillin
resistant Staphylococcus aureus (CA-MRSA) and healthcare-
associated-MRSA (HA-MRSA) infections.9 Daptomycin possesses
stereoelectronically different three free amines, four carboxylic
acids, a free alcohol in the molecule, however, shows limited water
solubility. Selective N-formylation of daptomycin was achieved at
the primary amine of the lysine residue in DMF–H2O (2/1) to pro-
vide the expected N-formylation product in 65% isolation yield
after a reverse HPLC purification (90% yield based on analysis of
the crude product via 1H NMR and LC–MS) (Scheme 2).10

In summary, we have demonstrated selective N-formylation
reactions using HCO2H, Oxyma 1 or glyceroacetonide-Oxyma 2,
EDCI, and NaHCO3 in DMF–H2O system or in H2O.11 The N-formy-
lation reaction conditions described here do not require strict
anhydrous conditions necessary for ordinal formylation reac-
tions.1,2 To the best of our knowledge, N-formylation reactions of
a-amino acids have never been achieved efficiently without a suit-
able C-protection. We demonstrated that high yielding N-formyla-
tions of a-amino acids could readily be accomplished with the
described conditions. Glyceroacetonide-Oxyma 2 displays remark-
able physico-chemical properties as an additive of N-formylation
reactions with EDCI in water media. Importantly, simple aqueous
work-up procedures can remove all reagents utilized in the reac-
tions to afford N-formylation products in high yield with excellent
purity.
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11. General procedure for N-formylations: To a solution of amine (1 equiv), formic
acid (5 equiv), sodium bicarbonate (10 equiv), and glyceroacetonide-Oxyma 1
(2 equiv) in H2O (0.2–0.3 M) solution was added EDCI (2 equiv) The reaction
mixture was stirred for 3 h and quenched with 1% aq HCl. The aqueous phase
was extracted with EtOAc (or CHCl3 or CHCl3–MeOH (10/1). The combined
organic extracts were dried over Na2SO4 and evaporated in vacuo. Purification
by a silica gel chromatography (or sephadex LH20) afforded the desired
compound (yields were given in Table 1). Similarly, N-formylations were
performed with Oxyma 1 in DMF–H2O (9/1).
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