

Available online at www.sciencedirect.com

Tetrahedron: *Asymmetry*

Tetrahedron: Asymmetry 18 (2007) 115-122

Synthesis of C-glycosidically linked ADP *glycero*-β-D-*manno*-heptose analogues

Andrea Graziani, Hassan Amer, Alla Zamyatina, Andreas Hofinger and Paul Kosma*

Department of Chemistry, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Wien, Austria

Received 5 December 2006; accepted 19 December 2006 Available online 16 January 2007

Abstract—C-Glycosides of L-glycero-D-manno- and D-glycero-D-manno-heptose containing either (S)- or (R)-2-hydroxypropyl aglycons are easily accessible compounds via condensation of reducing heptoses with pentane-2,4-dione. 2',3'-Di-O-acetyl adenosine was transformed into the corresponding 5'-O-cyanoethyl N,N-diisopropylaminophosphoramidite derivative, which was coupled in fair yields to the O-acetylated diastereoisomeric C-glycosidic alcohols. Oxidation of the phosphite triesters followed by deprotection furnished four ADP-heptose analogues, wherein the heptosyl phosphate moiety had been replaced by a three carbon-skeleton. The compounds serving as substrate analogues will be used for co-crystallization experiments with ADP heptosyl transferases.

1. Introduction

Lipopolysaccharides (LPS) are structurally complex amphipathic glycolipids which are essential constituents of the outer membrane of Gram-negative bacteria.¹ In general, LPS are composed of lipid A and a core region containing 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), heptose of the L-glycero-D-manno- and—less frequently heptose of the D-glycero-D-manno- configuration.² Since these higher-carbon sugars do not occur in mammalian systems, the inhibition of their biosynthesis may be regarded as an attractive target for the design of novel antibiotics. The biosynthesis of the nucleotide-activated heptoses of the D-glycero- and L-glycero-D-manno- configurations has recently been fully elucidated.^{3,4} Heptoses are transferred to the inner core of enterobacterial LPS via glycosyl transferases acting upon the corresponding ADP-linked sugars.^{5,6} The L-configured ADP heptosyl substrate results from an epimerase reaction, inverting the stereochemistry at carbon 6 of the precursor ADP D-glycero- β -D-mannoheptose.^{7,8} (Fig. 1). In contrast to the α -anomeric GDP heptose counterpart, ADP heptopyranoses of the β -anomeric configuration are labile compounds due to neighbouring group participation of the axial 2-OH group inducing the formation of a cyclic 1,2-heptosyl phosphate and release of AMP.^{9,10} To overcome the inherent

Figure 1. Structure of ADP-heptoses and enzymes involved in heptose activation and heptosyl transfer reactions. HldE: Heptose 1-phosphate adenylyltransferase; HldD: ADP D-glycero- β -D-manno-heptose epimerase; WaaC, WaaF, WaaQ: inner core ADP-heptosyl transferases. Boxes illustrate the replacement of the heptosyl phosphate entity by a 2-hydroxypropyl residue.

^{*} Corresponding author. Tel.: +43 1 36006 6055; fax: +43 1 36006 6059; e-mail: paul.kosma@boku.ac.at

^{0957-4166/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2006.12.015

hydrolytic lability of the ADP heptoses, we have started to synthesize stable C-glycosides in the β -anomeric configuration to be used for the synthesis of substrate analogues. Previously, we have reported on the straightforward conversion of reducing heptoses into β -2-carbonylalkyl glycosides, which were elaborated into (*S*)- and (*R*)-configured 2-hydroxypropyl glycosides.¹¹ Herein, we report on the further transformation into the corresponding sugar nucleotide analogues.

2. Results and discussion

The chemical synthesis of C-glycosides has considerably expanded over the past decade.¹² In addition, numerous modifications of the diphosphate backbone in nucleotidelinked sugars have been introduced, in order to generate glycosyl transferase inhibitors. While most of these analogues have been derived from anomeric C-phosphonates, as well as C-glycosidic hydroxymethyl or hydroxyethyl phosphates,^{13,14} noncharged phosphate surrogates have also been described.¹⁵ Thus, we set out to replace the anomeric phosphate moiety by a noncharged, hydrolytically stable, three-carbon skeleton, while keeping the second, 5'-O-phosphate unit intact (Fig. 1). This group may thus be regarded as a mimic of the diphosphate bridge and, although lacking the charged moiety of the glycosyl phosphate, could provide a proper formal distance to fit into the binding site of the glycosyl transferases.^{14a}

The previously described 1,3-dideoxy-L-lyxo-L-manno-decitol derivative 1, as well as diastereoisomer 5, are readily available via reaction of the unprotected sugar with pentane-2,4-dione, subsequent enrichment of the β -anomeric form, followed by acetylation and reduction of the keto group.^{11,16} In order to test for potential interference of the bulky methyl terminus in the binding, both diastereoisomers were prepared. Reaction of 1 and 5 with dibenzyl-N,N-diisopropylphosphoramidite/1H-tetrazole and subsequent oxidation with tert-BuOOH furnished the phosphate triester derivatives 2 and 6 in 71% and 77% yield, respectively (Scheme 1). Deprotection was accomplished in two steps via hydrogenolysis of the benzyl groups with 10% Pd-carbon, followed by removal of the acetyl groups with ammonia in aqueous MeOH to give the phosphates 4 and 8 in 88% and 86% yield for two steps, respectively. Both phosphate derivatives 4 and 8 serve as L-glycero-D-manno heptose 1-phosphate analogues.

For the assembly of the phosphodiester linkage of the target ADP-Hep analogues, the phosphoramidite approach was applied. Synthons **1**, **5**, **14** and **17** were coupled with the base-unprotected 5'-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite of di-O-acetyladenosine **9** in the presence of 1*H*-tetrazole as a weak acid catalyst. Phosphoramidite **9** was prepared by reaction of 2',3'-di-O-acetyladenosine with 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphoramidite, catalyzed by diisopropylammonium tetrazolide and was used as a crude mixture (60–70% purity of **9**) after partial purification by flash chromatography on silica gel.¹⁷ The resulting phosphite triesters were subsequently oxidized with *tert*-BuOOH to

Scheme 1. Synthesis of L-glycero-D-manno-heptopyranosyl phosphate analogues. Reagents and conditions: (a) *i*-Pr₂NP(OBn)₂, 1*H*-tetrazole, MeCN–CH₂Cl₂, then *t*-BuOOH, 71% for **2**, 77% for **6**; (b) H₂/Pd–C, MeOH, 92% for **3**, 92% for **7**; (c) 7:3:1 MeOH–water–25% aq NH₄OH, 96% for **4**, 93% for **8**.

afford phosphate triesters 10, 12, 15 and 18, respectively (Schemes 2 and 3).

Starting from the L-glycero- β -D-manno-heptosyl analogues 1 and 5 (Scheme 2), an intermediate purification (prior to oxidation with *tert*-BuOOH) of the higher-running phosphite triesters (TLC mobility with respect to the products of the side reactions of crude 9) was performed. Subsequent oxidation with *tert*-BuOOH afforded the phosphate triesters 10 and 12 as diastereomeric mixtures on phosphorus in 87% and 83% yield, respectively.

Subsequent deprotection of **10** and **12** with Et_3N –MeOH– water and purification on silica gel afforded the target ADP-Hep analogues **11** and **13** in 84% and 72% yield (based on starting *C*-heptosyl analogues **1** and **5**).

Phosphate triesters 15 and 18, obtained from D-glycero- β -D-manno-precursors 14 and 17 (Scheme 3), could not be isolated in chemically pure form, because of the presence of several by-products with similar R_f values, resulting from side reactions of the crude mixture of base-unprotected 9, which, apart from unreactive H-phosphonates contained traces of diacetyladenosine. The products were finally isolated by silica gel chromatography in 30% yield (with respect to starting C-heptosyl analogues 14 and 17) as phosphodiesters 16 and 19 after treatment with triethylamine in aqueous MeOH, which removed both acetyl and 2-cyanoethyl protecting groups.

The ¹H and ¹³C NMR spectra of all four target compounds **11, 13, 16** and **19** could be fully assigned, since the chemical shifts of the ribose and heptosyl moiety were well separated (Fig. 2). Comparison of the chemical shifts of the ADP β -heptoses shows that the adenosine moiety presents no significant differences, whereas the heptosyl moiety is influenced by the presence of the aglycone rather than by the diphosphate bridge. In addition, the heteronuclear $J_{C,P}$ coupling constants observed for carbon C-2 ($J_{C,P} = 5.7$ Hz for **11**, $J_{C,P} = 5.8$ Hz for **12** and **15**, $J_{C,P} = 5.6$ Hz for **19**)

Scheme 2. Synthesis of ADP L-glycero-D-manno-heptopyranosyl analogues. Reagents and conditions: (a) 1*H*-tetrazole, MeCN–CH₂Cl₂, then *t*-BuOOH, 87% for 10, 83% for 12; (b) MeOH–H₂O–Et₄N, 7:3:1, 97% for 11, 87% for 13.

Scheme 3. Synthesis of ADP D-glycero-D-manno-heptopyranosyl analogues. Reagents and conditions: (a) 1*H*-tetrazole, MeCN–CH₂Cl₂, then *t*-BuOOH, 60% for 15, 60% for 18; (b) MeOH–Et₃N–H₂O, 53% for 16, 52% for 19.

and C-5_{Rib} ($J_{C,P} = 5.3$ Hz for 11 and 15, $J_{C,P} = 5.2$ Hz for 13 and $J_{C,P} = 4.8$ Hz for 19) as well as the ³¹P chemical shifts (δ 0.77 for 11, -0.76 for 13, 0.04 for 16 and 0.06 for 19) substantiate the structural assignments as phosphodiester derivatives. Finally, the values recorded for the specific rotation of target compounds 11, 13, 16 and 19 are in agreement with the previously made stereochemical assignments of C-2 of the 2-hydroxypropyl entity.¹¹

The analogues are being used for co-crystallization experiments and inhibition studies with ADP D-glycero- β -D-man-

Figure 2. 300 MHz HSQC spectrum of compound 19.

no-heptose epimerase as well as ADP heptosyl transferases. The results of the crystallographic studies will be reported in due course.

3. Conclusion

The coupling of easily available fully acetylated C-glycosidic alcohols of *glycero-D-manno*-heptose with 2-cyanoethyl-protected adenosine 5'-O-phosphoramidite provides a straightforward access to sugar nucleotide analogues.

4. Experimental

4.1. General methods

Column chromatography was performed on silica gel 60 (230-400 mesh, Merck). Reactions were monitored by TLC on silica gel 60 F_{254} precoated glass plates (Merck) or on silica gel 60 F₂₅₄ HPTLC precoated glass plates with 2.5 cm concentration zone (Merck); spots were visualized by spraying with anisaldehyde $-H_2SO_4$; phosphorus-containing compounds were additionally detected with a molybdate solution [0.02 M solution of ammonium cerium(IV)sulfate dihydrate and ammonium molybdate(VI)tetra-hydrate in aqueous H₂SO₄], adenosine-containing compounds were detected by examination under UV light. Di-O-acetyl adenosine was purchased from SIG-MA. Triethylamine and CH₂Cl₂ were dried by refluxing with CaH_2 (5 g/L) for 16 h, distilled and stored under argon. Toluene and acetonitrile were distilled from phosphorus pentaoxide and redistilled from CaH₂. The liquids were stored over molecular sieves 0.4 nm. DMF was stirred with CaH₂ (5 g/L) for 16 h at 20 °C, distilled under reduced pressure and stored over molecular sieves 0.3 nm. Concentration of solutions was performed at reduced pressure at temperatures <25 °C. Optical rotations were measured with a Perkin–Elmer 243 B polarimeter. $[\alpha]_D^{20}$ -Values are given in units of $10^{-1} \text{ deg cm}^3 \text{ g}^{-1}$. NMR spectra were recorded at 297 K in CDCl₃ (unless stated otherwise) with a Bruker DPX 300 spectrometer (¹H at 300.13 MHz, ¹³C at 75.47 MHz and ³¹P at 121.50 MHz) using standard Bruker NMR software. ¹H NMR spectra were referenced to tetramethylsilane or 2,2-dimethyl-2-silapentane-5-sulfonic acid. ¹³C NMR spectra were referenced to chloroform (δ 77.00) or external 1,4-dioxane (δ 67.40). ³¹P NMR spectra were referenced externally to 85% ag H₃PO₄ (δ 0.0). Elemental analyses were provided by Dr. J. Theiner, Mikroanalytisches Laboratorium, Institut für Physikalische Chemie, Universität Wien. TOF-ES-MS spectra were recorded on a Waters Micromass Q-TOF Ultima Global instrument.

4.1.1. 5,6,7,9,10-Penta-O-acetyl-4,8-anhydro-2-O-[bis(benzyloxy)|phosphoryl]-1,3-dideoxy-L-lyxo-L-manno-decitol 2. A solution of 1 (50 mg, 0.11 mmol) and dibenzyl-N,N-diisopropylphosphoramidite (0.09 mL, 0.26 mmol) was repeatedly evaporated with dry toluene $(3 \times 10 \text{ mL})$ and then dried under reduced pressure for 5 h. Then the flask was charged with CH₂Cl₂ (3 mL), a solution of 1H-tetrazole (30 mg, 0.43 mmol) in dry CH₃CN (1 mL) was added and the mixture was stirred at rt for 1 h under Ar. Monitoring of the reaction by TLC showed the formation of intermediate diastereomeric phosphite triesters ($R_{\rm f}$ 0.54 and 0.56; 1:1, n-hexane/EtOAc). The reaction mixture was cooled to -20 °C and a solution of tert-BuOOH (40 µL of an 80% solution in di-tert-butyl peroxide) in CH₂Cl₂ (2 mL) was gradually added (~30 min). The reaction mixture was warmed to rt and stirred for 12 h. The solvent was concentrated, the residue redissolved in CH₂Cl₂ (50 mL) and washed sequentially with saturated aq NaH-CO₃, water and brine. The organic phase was dried over Na₂SO₄ and concentrated. The residue was purified by chromatography on silica gel $(1:4\rightarrow 1:1 \text{ EtOAc/}n\text{-hexane})$ to give **2** (55 mg, 71%) as a colourless syrup; $[\alpha]_{\rm D}^{20} = -31$ (*c* 0.8, CHCl₃); ¹H NMR: δ 7.40–7.30 (m, 10H, Ph), 5.31 (dd, 1H, ³J_{5,6} = 3.5, ³J_{5,4} = 0.9 Hz, H-5), 5.23 (t, 1H, ³J_{7,8} = ³J_{7,6} = 10.0 Hz, H-7), 5.22 (ddd, 1H, ³J_{8,9} = 2.5, ³J_{9,10a} = 4.9, ³J_{9,10b} = 7.9 Hz, H-9), 5.10–4.96 (m, 4H, 2×CH₂Ph), 4.98 (dd, 1H, H-6), 4.63–4.50 (m, 1H, H-2), 4.29 (dd, 1H, ²J_{10a,10b} = 11.5 Hz, H-10a), 4.12 (dd, 1H, H-10b), 3.67 (m, 1H, H-4), 3.57 (dd, 1H, H-8), 2.14, 2.10, 2.02, 1.99, 1.96 (5s, each 3H, 5Ac), 1.98 (m, 1H, H-3a), 1.64–1.55 (m, H-3b), 1.27 (d, 3H, ³J_{1,2} = 6.3 Hz, CH₃); ¹³C NMR: δ 170.41, 170.35, 170.32, 169.86, 169.49 (5C, CO, Ac), 135.88, 135.79 (2C, Ph), 128.56, 128.51, 128.44, 128.03, 127.91 (10C, Ph), 76.52 (C-8), 74.18 (C-4), 72.90 (1C, ³J_{2,P} = 5.8 Hz, C-2), 72.31 (C-6), 69.75 (C-5), 69.31 (1C, ²J_{C,P} = 5.7 Hz, CH₂Ph), 69.21 (1C, ²J_{C,P} = 5.7 Hz, CH₂Ph), 69.21 (1C, ³J_{C,P} = 5.9 Hz, C-3), 21.13 (1C, ³J_{C,P} = 2.3 Hz, C-1), 20.70, 20.62, 20.56 and 20.51 (5C, 5Ac); ³¹P NMR (CDCl₃): δ –0.9; TOF-ES-MS: m/z =723.182 [M+H⁺]; calcd 723.24 [M+H⁺].

4.1.2. (4,8-Anhydro-1,3-dideoxy-L-lyxo-L-manno-decit-2yl)phosphate 4 (ammonium salt). A solution of 2 (55 mg, 0.076 mmol) in dry MeOH (20 mL) was hydrogenated at rt in the presence of 10% Pd/C (25 mg) for 12 h at atmospheric pressure. After the completion of the reaction, the catalyst was removed by filtration through a pad of Celite and washed with MeOH. The combined filtrates were neutralized by the addition of Et_3N (15 µL) and concentrated. The residue was lyophilized from water (10 mL) to give the monotriethylammonium salt of 5,6,7,9,10-penta-O-acetyl-4,8-anhydro-1,3-dideoxy-L-lyxo-L-manno-decitol 2-phosphate **3** (45 mg, 92%) as an amorphous solid; ¹H NMR (MeOD): δ 5.39 (d, 1H, ³ $J_{5,6} = 3.5$ Hz, H-5), 5.25 (ddd, 1H, H-9), 5.22 (t, 1H, ³ $J_{7,8} = {}^{3}J_{6,7} = 9.7$ Hz, H-7), 5.16 (dd, 1H, H-6), 4.40–4.31 (m, 1H, H-2), 4.35 (dd, 1H, H-6), 4.40–4.31 (m, 1H, H-2), 4.40–4.31 (m, 1H, H-2), 4.35 (dd, 1H, H-6), 4.40–4.31 (m, 1H, 1H, 1H), 4.40–4.31 (m, 1H, 1H), 4.40–4.31 (m, 1H, 1H), 4.40–4.31 (m, 1H, 1H), 4.40–4.31 (m, 1H), 4.40–4.31 (m, 1H), 4.40–4. ${}^{3}J_{10a,9} = 4.2, {}^{2}J_{10a,10b} = 11.5 \text{ Hz}, \text{ H-10a}), 4.18 \text{ (dd, 1H,}$ ${}^{3}J_{10b,9} = 8.4$ Hz, H-10b), 4.05–4.00 (m, 1H, H-4), 3.85 (dd, 1H, ${}^{3}J_{8,9} = 2.5$ Hz, H-8), 3.00 (q, ~6H, CH₂, Et₃N), 2.16, 2.06, 2.00, 1.97, 1.92 (5s, each 3H, 5Ac), 2.04-1.93 (m, 1H, H-3a), 1.64–1.56 (m, H-3b), 1.24 (t, ~9H, CH₃, Et₃N), 1.22 (d, 3H, ${}^{3}J_{1,2} = 7.2$ Hz, CH₃); 13 C NMR (MeOD): δ 172.38, 172.24, 172.21, 171.49, 171.44 (5C, (MeOD): b 172.38, 172.24, 172.21, 171.49, 171.44 (3C, CO, Ac), 77.63 (C-8), 75.50 (C-4), 73.99 (C-6), 71.77 (C-5), 69.65 (1C, ${}^{3}J_{2,P} = 5.4$ Hz, C-2), 68.84 (C-9), 66.59 (C-7), 64.23 (C-10), 47.50 (CH₂, Et₃N), 39.40 (1C, ${}^{3}J_{C,P} = 5.3$ Hz, C-3), 22.00 (C-1), 20.85, 20.78, 20.67, 20.67 20.63, 20.56 (5C, 5Ac), 9.17 (CH₃, Et₃N); 31 P NMR (MeOD): δ 1.69.

A solution of **3** (30 mg, 0.047 mmol) in 7:3:1 MeOH– water–aq 25% NH₄OH (3 mL, pH 12) was stirred at rt for 12 h. The reaction mixture was diluted with water (20 mL), concentrated to 10 mL volume and lyophilized. The residue was purified on a prepacked Pd-10 column (Sephadex G-25, Amersham Pharmacia) by elution with water. The appropriate fractions were collected and lyophilized to give ammonium salt of **4** (15.5 mg, 96%) as a white fluffy solid; $[\alpha]_D^{20} = -29$ (*c* 0.7, H₂O); ¹H NMR (D₂O): δ 4.30–4.17 (m, 1H, H-2), 3.85 (ddd, 1H, ³J_{8,9} = 1.6, ³J_{10a,9} = 6.6, ³J_{10b,9} = 7.9 Hz, H-9), 3.83 (d, 1H, ³J_{5,6} = 3.2 Hz, H-5), 3.68 (dd, 1H, ³J_{6,7} = 9.6, ³J_{8,7} = 9.5 Hz, H-

119

7), 3.65–3.56 (m, 4H, H-4, H-6, H-10a, H-10b), 3.18 (dd, 1H, H-8), 1.93–1.83 (m, 1H, H-3a), 1.66–1.58 (m, 1H, H-3b), 1.22 (d, 3H, ${}^{3}J_{1,2} = 6.3$ Hz, CH₃); 13 C NMR (D₂O): δ 78.63 (C-8), 75.47 (C-4), 74.89 (C-6), 71.46 (C-5), 69.43 (C-9), 69.12 (1C, ${}^{3}J_{2,P} = 4.9$ Hz, C-2), 66.87 (C-7), 63.36 (C-10), 37.99 (1C, ${}^{3}J_{C,P} = 4.7$ Hz, C-3), 21.27 (C-1, ${}^{3}J_{2,P} = 2.9$ Hz); 31 P NMR (D₂O): δ 2.74; TOF-ES-MS: m/z = 333.079 [M+H]⁺; calcd 333.095 [M+H]⁺.

4.1.3. 5,6,7,9,10-Penta-O-acetyl-4,8-anhydro-2-O-[bis(benzyloxy)|phosphoryl]-1,3-dideoxy-L-lyxo-L-gluco-decitol 6. Compound 6 as prepared from 5 (50 mg, 0.11 mmol) and dibenzyl-N,N-diisopropylphosphoramidite (0.09 mL, 0.26 mmol) in the presence of 1*H*-tetrazole (30 mg, 0.43 mmol) in the same manner as described for the synthesis of 2. Yield for **6**: 60 mg, 77% (colourless syrup); $[\alpha]_D^{20} = -49$ (*c* (m, 4H, $2 \times CH_2$ Ph), 4.87 (dd, 1H, H-6), 4.67–4.55 (m, 1H, H-2), 4.48 (dd, 1H, ${}^{2}J_{10a,10b} = 12.2$, ${}^{'3}J_{10a,9} = 3.1$ Hz, H-10a), 4.12 (dd, 1H, ${}^{3}J_{10b,9} = 8.8$ Hz, H-10b), 3.67 (br d, 1H, H-4), 3.36 (dd, 1H, ${}^{3}J_{8,9} = 2.5$ Hz, H-8), 2.16, 2.09, 2.02, 1.99 and 1.96 (5s, each 3H, 5Ac), 1.80-1.70 (m, 1H, H-3a), 1.50–1.41 (m, H-3b), 1.26 (d, 3H, ${}^{3}J_{1,2} = 6.3$ Hz, CH₃); ¹³C NMR: δ 170.63, 170.43, 169.96, 169.55 (5C, CO, Ac), 135.88 (2C, Ph), 128.70, 128.65, 128.59, 128.56, CO, AC), 135.86 (2C, FII), 126.70, 128.05, 128.39, 126.30, 128.01 (10C, Ph), 76.58 (C-8), 73.31 (C-4), 72.43 (C-6), 72.23 (1C, ${}^{3}J_{2,P} = 5.8$ Hz, C-2), 70.31 (C-5), 69.38 (1C, CH₂Ph), 69.21 (1C, CH₂Ph), 67.64 (C-9), 64.66 (C-7), 63.61 (C-10), 38.74 (1C, ${}^{3}J_{C,P} = 6.2$ Hz, C-3), 22.13 (1C, ${}^{3}J_{C,P} = 2.6$ Hz, C-1), 20.78, 20.60, 20.55 (5C, 5Ac); ${}^{31}P$ NMR (CDCl₃): δ 0.06. Anal. Calcd for C₃₄H₄₃O₁₅P (722.67): C, 56.51; H, 6.00. Found: C, 56.54; H, 6.23.

4.1.4. (4,8-Anhydro-1,3-dideoxy-L-lyxo-L-gluco-decit-2-yl)phosphate 8 (ammonium salt). A solution of 6 (55 mg, 0.076 mmol) in dry MeOH (20 mL) was hydrogenated at rt in the presence of 10% Pd/C (25 mg) for 12 h at atmospheric pressure. The catalyst was removed by filtration through a pad of Celite, and washed with MeOH $(3 \times 5 \text{ mL})$. The combined filtrates were neutralized by the addition of Et₃N (15 μ L) and concentrated. The residue was lyophilized from water (10 mL) to give the monotriethylammonium salt of 5,6,7,9,10-penta-O-acetyl-4,8-anhydro-1,3-dideoxy-L-*lyxo*-L-*gluco*-decitol 2-phosphate 7 (45 mg, 92%) as an amorphous solid; ¹H NMR (MeOD): δ 5.29 (m, 1H, H-9), 5.26 (d, 1H, ³J_{5,6} = 3.4 Hz, H-5), 5.21 (dd, 1H, ${}^{3}J_{7,8} = 9.6$, ${}^{3}J_{6,7} = 10.1$ Hz, H-7), 5.12 (dd, 1H, ${}^{4}J_{7,8} = 9.6$, ${}^{3}J_{6,7} = 10.1$ Hz, H-7), 5.12 (dd, 1H, H-6), 4.54 (dd, 1H, ${}^{3}J_{10a,9} = 2.8$, ${}^{2}J_{10a,10b} = 12.2$ Hz, H-10a), 4.44–4.33 (m, 1H, H-2), 4.36 (dd, 1H, ${}^{3}J_{10a,9} = 2.8$, ${}^{2}J_{10a,10b} = 12.2$ Hz, H-10a), 4.44–4.33 (m, 1H, H-2), 4.36 (dd, 1H, H-2), 4 ${}^{3}J_{10b,9} = 9.1$ Hz, H-10b), 4.09 (br d, 1H, H-4), 3.85 (dd, 1H, ${}^{3}J_{8,9} = 2.0$ Hz, H-8), 3.18 (q, ~6H, CH₂, Et₃N), 2.16, 2.06, 1.97, 1.96 and 1.92 (5s, each 3H, 5Ac), 1.76-1.65 (m, 1H, H-3a), 1.50–1.40 (m, H-3b), 1.31 (t, \sim 9H, CH₃, Et₃N), 1.29 (d, 3H, $^{3}J_{1,2} = 7.5$ Hz, CH₃); 13 C NMR (MeOD): δ 172.64, 172.40, 172.26, 171.55, 171.48 (5C, CO, Ac), 77.38 (C-8), 74.97 (C-4), 74.12 (C-6), 72.52 (C-5), 69.70 (1C, ${}^{3}J_{2,P} = 5.2$ Hz, C-2), 69.35 (C-9), 66.49 (C-7), 65.31 (C-10), 47.52 (CH₂, Et₃N), 41.01 (1C, ${}^{3}J_{C,P} = 6.0$ Hz, C-3), 23.06 (C-1), 20.83, 20.72, 20.67 and 20.55 (5C, 5Ac), 9.12 (CH₃, Et₃N); ³¹P NMR (MeOD): δ 1.03.

A solution of 7 (50 mg, 0.078 mmol) in 7:3:1 MeOH– water–aq 25% NH₄OH (3 mL, pH 12) was stirred at rt for 12 h. The reaction mixture was diluted with water (20 mL), concentrated to 10 mL volume and lyophilized. The residue was purified on a prepacked PD-10 column (Sephadex G-25, Amersham Pharmacia) by elution with water. The appropriate fractions were collected and lyophilized to give **8** (25 mg, 93%) as white fluffy solid; $[\alpha]_D^{20} = -50$ (*c* 0.7, H₂O); ¹H NMR (D₂O): δ 4.34–4.22 (m, 1H, H-2), 3.84 (ddd, 1H, ³J_{8,9} = 1.3, ³J_{10a,9} = 5.8 Hz, H-9), 3.72 (dd, 1H, ³J_{5,6} = 3.5 Hz, H-5), 3.65 (t, 1H, ³J_{7,8} = ³J_{7,6} = 9.3 Hz, H-7), 3.68–3.57 (m, 3H, H-4, H-6, H-10a), 3.55 (dd, 1H, ²J_{10a,10b} = 11.4, ³J_{9,10b} = 6.7 Hz, H-10b), 3.24 (dd, 1H, H-8), 1.75–1.65 (m, 1H, H-3a), 1.58– 1.50 (m, 1H, H-3b), 1.18 (d, 3H, ³J_{1,2} = 6.2 Hz, H-1); ¹³C NMR (D₂O): δ 77.58 (C-8), 74.64, 74.59 (C-4, C-6), 71.75 (C-5), 69.52 (1C, ³J_{2,P} = 5.4 Hz, C-2), 68.74 (C-9), 66.51 (C-7), 62.20 (C-10), 39.11 (1C, ³J_{C,P} = 6.2 Hz, C-3), 21.94 (C-1); ³¹P NMR (D₂O): δ 1.85; TOF-ES-MS: m/z = 333.086 [M+H]⁺; calcd 333.095 [M+H]⁺.

4.1.5. 2-Cyanoethyl-[5'-O-(2',3'-di-O-acetyl)-adenosine]-*N*,*N*-diisopropylaminophosphine **9.** 2',3'-Di-O-acetyladenosine (350 mg, 0.99 mmol) was dried by repeated co-evaporations with toluene $(3 \times 10 \text{ mL})$, then under diminished pressure and dissolved in DMF/CH₂Cl₂ (1:1, v/v, 4 mL) under Ar. A solution of 2-cyanoethyl-N, N, N', N'-tetraisopropylphosphoramidite (500 µL, 1.57 mmol) in CH₂Cl₂ (2 mL) along with a solution of diisopropylammonium tetrazolide (100 mg, 0.59 mmol) in dry DMF (2 mL) was added to this solution. The mixture was stirred for 4 h under Ar. Solvents were removed, the residue was redissolved in ethyl acetate (100 mL) and washed respectively with water and brine. The organic phase was dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel (20:1:0.2 CH₂Cl₂/MeOH/Et₃N). Appropriate fractions were concentrated, dried by repeated co-evaporations with toluene $(3 \times 10 \text{ mL})$ to give a crude diastereomeric mixture of **9** (500 mg, purity ~70%). $R_{\rm f}$ 0.64 and 0.62 (CH₂Cl₂/MeOH/Et₃N, 20:1:0.2); ³¹P NMR (CDCl₃): δ 150.28 and 149.77.

4.1.6. Adenosine 5'-(4,8-anhydro-1,3-dideoxy-L-lyxo-Lmanno-decit-2-yl)phosphate (triethylammonium salt) 11. A mixture of 1 (50 mg, 0.11 mmol) and crude 9 (300 mg, 0.11 mmol) $\sim 60\%$ purity, 0.32 mmol) was dried by repeated co-evaporations with toluene $(3 \times 10 \text{ mL})$ and then under diminished pressure for 12 h. The mixture was dissolved in $CH_3CN-CH_2Cl_2$ (1:1, 2 mL) and a solution of 1*H*-tetrazole (28 mg, 0.4 mmol) was added under Ar. The mixture was stirred for 1 h, diluted with CH₂Cl₂ (20 mL) and washed sequentially with saturated aq NaHCO₃, water and brine. The organic phase was dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel (40:1 \rightarrow 20:1 CH₂Cl₂–CH₃OH) to give the intermediate phosphite triester [R_f 0.62 (25:1 CHCl₃/MeOH)]. The appropriate fractions were collected and concentrated, the residue was transformed into the flask and dried under

diminished pressure for 5 h. The flask was charged with CH₂Cl₂ (2 mL), cooled to $-15 \,^{\circ}$ C and a solution of t-BuOOH (30 µL of 80% solution in di-tert-butyl peroxide) in CH₂Cl₂ (2 mL) was gradually added (~30 min). The reaction mixture was warmed to rt and stirred for 2 h. The solvent was concentrated, the residue dissolved in CH_2Cl_2 (50 mL) and washed sequentially with saturated aq NaHCO₃, water and brine. The organic phase was dried over Na₂SO₄, concentrated and the residue purified by flash chromatography on silica gel $(20:1\rightarrow 10:1 \text{ CH}_2\text{Cl}_2)$ CH₃OH) to give 2',3'-di-O-acetyl-adenosine 5'-(5,6,7,9,10penta-O-acetyl-4,8-anhydro-1,3-dideoxy-L-lyxo-L-mannodecit-2-yl) 2-cyanoethylphosphate 10 as a diastereomeric mixture on phosphorus as a syrup (73 mg, 87%). ¹H MRUTE on phosphorus as a symp (75 mg, 87%). H NMR: δ 8.36 and 8.35 (s, 1H, H-8_{Ade}), 8.13 and 8.12 (s, 1H, H-2_{Ade}), 6.30 and 6.28 (d, 1H, ${}^{3}J_{1,2} = 6.0$ Hz, H-1_{Rib}), 5.95 and 5.90 (br s, 2H, NH), 5.85 and 5.81 (t, ${}^{3}J_{2,3} = 5.7$ Hz, H-2_{Rib}), 5.69 and 5.686 (m, 1H, H-3_{Rib}), 5.395 (br d, 1H, ${}^{3}J_{5,6} = 3.5$ Hz, H-5), 5.27 (t, 1H, ${}^{3}J_{2,3} = 5.7$ Hz, H-7 (b), 5.20 5.23 (m, 1H, H-9), 5.16 ${}^{3}J_{7.8} = {}^{3}J_{7.6} = 9.7$ Hz, H-7), 5.30–5.23 (m, 1H, H-9), 5.16 and 5.00 (dd, 1H, H-6), 4.69-4.55 (m, 1H, H-2), 4.44-4.36 (m, 4H, H-10a, H-5a_{Rib}, H-5b_{Rib}, H-4_{Rib}), 4.32–4.22 (m, 2H, OCH₂), 4.17-4.08 (dd, 1H, H-10b), 3.89 (m, 1H, H-4), 3.76 and 3.64 (dd, 1H, ${}^{3}J_{8,9} = 2.0$ Hz, H-8), 2.82– 2.75 (m, 2H, CH₂CN), 2.17, 2.15, 2.11, 2.10, 2.06, 2.05, 2.03, 2.01, 2.00 and 1.95 (10s, total 15H, 5Ac), 2.00 (m, 1H, H-3a), 1.83–1.71 (m, 1H, H-3b), 1.38 and 1.37 (d, 1H, ${}^{3}J_{1,2} = 6.2$ Hz, H-1); ${}^{13}C$ NMR (CDCl₃): δ 170.71, (C-8_{Ade}), 119.83 and 116.55 (C-5_{Ade}), 85.43 and 85.34 (C-1_{Rib}), 81.19 (C-4_{Rib}, ${}^{3}J_{4,P} = 7.6$ Hz), 77.15 (C-8), 74.08 (C-2_{Rib}), 73.89 and 73.80 (C-4), 73.35 and 73.16 (C-2), 72.51 and 72.42 (C-6), 70.58 (C-3_{Rib}), 69.74 and 69.58 (C-5), 67.19 and 67.07 (C-9), 66.67 (C-5_{Rib}), 64.75 and 64.67 (C-7), 62.88 and 62.72 (C-10), 62.78 and 62.48 (OCH₂, ${}^{3}J_{C,P} = 5.0 \text{ Hz}$, 37.69 and 37.60 (C-3), 21.43 and 21.30 (C-1), 20.78, 20.62, 20.34, 19.76, 19.56, 19.45 (CO, Ac); ³¹P NMR (CDCl₃): δ –1.69 and –1.75. TOF-ES-MS: m/ $z = 929.294 [M+H]^+$; calcd 929.281 [M+H]⁺.

A solution of 10 (35 mg, 0.040 mmol) in 7:3:1 MeOHwater-Et₃N (3 mL, pH 12) was stirred at rt for 4 h. The mixture was concentrated and the residue purified on silica gel (15:10:1:1, CHCl₃/MeOH/H₂O/Et₃N). Appropriate fractions were collected, concentrated, the residue redissolved in water (10 mL) and lyophilized to give 11 (25 mg, 97%) as a white fluffy solid. $[\alpha]_{D}^{20} = -34$ (c 0.8, H_2O ; ¹H NMR (D₂O): δ 8.39 (s, 1H, H-8_{Ade}), 8.14 (s, 11, H-2_{Ade}), 6.03 (d, 1H, ${}^{3}J_{1,2} = 5.7$ Hz, H-1_{Rib}), 4.68 (unresolved signal, H-2_{Rib}), 4.43 (t, 1H, ${}^{3}J_{3,4} = 4.0$, ${}^{3}J_{2,3} = 4.8$ Hz, H-3_{Rib}), 4.29–4.22 (m, 2H, H-2, H-4_{Rib}), 4.02–3.99 (m, 2H, H-5a_{Rib}, H-5b_{Rib}), 3.79 (br t, 1H, H-9), 3.74 (br d, 1H, ${}^{3}J_{5,6} = 3.7$ Hz, H-5), 3.65 (t, 1H, ${}^{3}J_{7,8} = {}^{3}J_{7,6} = 9.6$ Hz, H-7), 3.55–3.43 (m, 4H, H-4, H-6, H-10a, H-10b), 3.10 (q, ~6H, CH₂, Et₃N), 3.02 (dd, 1H, ${}^{3}J_{8,9} = \sim 2.0$ Hz, H-8), 1.90–1.80 (m, 1H, H-3a), 1.66–1.57 (m, 1H, H-3b), 1.83 (t, ~9H, CH₃, Et₃N), 1.10 (d, 3H, ${}^{3}J_{1,2} = 6.2$ Hz, H-1). ${}^{13}C$ NMR (D₂O): δ 155.24 (C-6_{Ade}), 152.48 (C-2_{Ade}), 149.02 (C-4_{Ade}), 139.60 (C- 8_{Ade} , 118.52 (C- 5_{Ade}), 86.98 (C- 1_{Rib}), 83.90 (C- 4_{Rib} , ${}^{3}J_{4,P} = 8.7$ Hz), 78.35 (C-8), 74.75, 74.46 (C-4, C-6), 74.28

(C-2_{Rib}), 71.05 (C-2, ${}^{3}J_{2,P} = 5.7$ Hz), 70.95 (C-5), 70.43 (C-3_{Rib}), 68.98 (C-9), 66.33 (C-7), 64.64 (C-5_{Rib}, ${}^{2}J_{5,P} = 5.3$ Hz), 63.05 (C-10), 46.67 (CH₂, Et₃N), 37.89 (C-3, ${}^{3}J_{3,P} = 5.5$ Hz), 20.64 (C-1, ${}^{3}J_{1,P} = 2.9$ Hz), 8.21 (CH₃, Et₃N); ${}^{31}P$ NMR (D₂O): δ 0.77; TOF-ES-MS: *m*/*z* = 582.133 [M+H]⁺; calcd 582.181 [M+H]⁺.

Adenosine 5'-(4,8-anhydro-1,3-dideoxy-L-lyxo-L-4.1.7. gluco-decit-2-vl)phosphate (triethvlammonium salt) 13. First, 2',3'-di-O-acetyl-adenosine 5'-(5,6,7,9,10-penta-O-acetyl-4,8-anhydro-1,3-dideoxy-L-lyxo-L-gluco-decit-2yl) 2-cyanoethylphosphate 12 was prepared from 5 (50 mg, 0.11 mmol) by treatment with crude 9 (300 mg, $\sim 60\%$ purity, 0.32 mmol) in the presence of 1*H*-tetrazole (28 mg, 0.4 mmol) in the same manner as described for the synthesis of 10. Yield for 12: 70 mg, 83% (syrup). ¹H NMR: δ 8.34 (s, 1H, H-8_{Ade}), 8.17 (s, 1H, H-2_{Ade}), 6.35 and 6.33 (d, 1H, ${}^{3}J_{1,2} = 6.4$ Hz, H-1_{Rib}), 6.13 (br s, 2H, NH), 5.80 and 5.78 (t, ${}^{3}J_{2,3} = 5.7$ Hz, H-2_{Rib}), 5.69 and 5.68 (m, 1H, H-3_{Rib}), 5.50 (br d, 1H, H-5), 5.39 and 5.34 (dt, 1H, ${}^{3}J_{9,8} = 9.0$ Hz, H-9), 5.27 (t, 1H, ${}^{3}J_{7,8} = {}^{3}J_{7,6} = 9.7$ Hz, H-7), 5.22 and 5.19 (dd, 1H, ${}^{3}J_{6,5} =$ 3.5 Hz, H-6), 4.77-4.66 (m, 1H, H-2), 4.59 and 4.53 (dd, 1H, ${}^{3}J_{10,9} = 3.1$, ${}^{2}J_{10a,10b} = 12.1$ Hz, H-10a), 4.44–4.22 (m, 6H, OCH₂, H-4, H-5a_{Rib}, H-5b_{Rib}, H-4_{Rib}), 4.25 and 4.19 (dd, 1H, ${}^{3}J_{10b,9} = 8.8$ Hz, H-10b), 4.03 and 3.96 (br d, 1H, H-4), 3.92-3.85 (m, 1H, H-8), 2.87-2.71 (m, 2H, CH₂CN), 2.20, 2.19, 2.16, 2.15, 2.05, 2.02, 2.01, 2.00 and 1.95 (9s, total 15H, 5Ac), 1.90-1.80 (m, 1H, H-3a), 1.70-1.57 (m, 1H, H-3b), 1.38 (d, 1H, ${}^{3}J_{1,2} = 6.3$ Hz, H-1); ${}^{13}C$ NMR: δ 171.02, 170.67, 170.42, 170.23, 170.18, 169.79, 169.72, 169.33 (5C, CO, Ac), 155.58 (C-6_{Ade}), 153.00 (C-2_{Ade}), 150.06 (C-4_{Ade}), 119.77 and 116.80 (C-5_{Ade}), 85.10 (C-1_{Rib}), 81.60 (C-4_{Rib}, ${}^{3}J_{4,P} = 7.3$ Hz), 76.86 and 76.77 (C-8), 73.88 and 73.80 (C-4), 73.51 and 73.27 (C-2, C-2_{Rib}), 72.76 and 72.53 (C-6), 71.03 and 70.79 (C-3_{Rib}), 70.54 and 70.44 (C-5), 67.80 and 67.60 (C-9), 67.30 and 67.02 (C-5_{Rib}, ${}^{3}J_{C,P} = 6.6 \text{ Hz}$), 65.03 and 64.89 (C-7), 64.36 and 63.82 (C-10), 62.78 and 62.48 (OCH₂, ${}^{3}J_{C,P} = 4.9$ Hz), 38.39 (C-3), 22.28 and 22.08 (C-1), 20.88, 20.84, 20.76, 20.70, 20.64, 20.57, 20.35, and 20.30 (5C, 5Ac), 19.90, 19.80, 19.73 and 19.64 (CH₂CN); ³¹P NMR (CDCl₃): δ -1.37 and -1.72. TOF-ES-MS: m/z =929.291; calcd 929.281 [M+H]⁺. A solution of **12** (50 mg, 0.054 mmol) in 7:3:1 MeOH-water-Et₃N (3 mL, pH 12) was stirred at rt for 20 h. The mixture was concentrated and the residue purified on silica gel (15:10:1:1, CHCl₃/ MeOH/H₂O/Et₃N). The appropriate fractions were collected and concentrated. The residue was redissolved in water (10 mL) and lyophilized to give 13 (32 mg, 87%) as a white fluffy solid. $[\alpha]_{D}^{20} = -45$ (c 0.7, H₂O); ¹H NMR (D₂O): δ 8.36 (s, 1H, H-8_{Ade}), 8.13 (s, 1H, H-2_{Ade}), 6.02 (d, 1H, ³J_{1,2} = 5.5 Hz, H-1_{Rib}), 4.65 (m, 1H, ³J_{2,3} = 5.1 Hz, H-2_{Rib}), 4.42 (dd, 1H, ³J_{3,4} = 4.1 Hz, H-3_{Rib}), 5.1 Hz, H²Z_{Rib}), 4.42 (dd, HI, $J_{3,4} = 4.1$ Hz, H²S_{Rib}), 4.35–4.23 (m, 2H, H-4_{Rib}, H-2), 4.07–3.95 (m, 2H, H-5a_{Rib}, H-5b_{Rib}), 3.81 (ddd, 1H, ${}^{3}J_{9,8} = 1.5$, ${}^{3}J_{9,10a} = 6.1$, ${}^{3}J_{9,10b} = 7.6$ Hz, H-9), 3.64 (t, 1H, ${}^{3}J_{7,6} = {}^{3}J_{7,8} = 9.8$ Hz, H-7), 3.60 (dd, 1H, ${}^{2}J_{10a,10b} = 11.5$ Hz, H-10a), 3.58 (dd, 1H, ${}^{3}J_{5,6} = 3.4$, ${}^{3}J_{4,5} < 1.0$ Hz, H-5), 3.53 (dd, 1H, H-10b), 3.54 (dd, 1H, H-10a), 3.43 (dd, 1H, H-6), 3.43-3.39 (m, 1H, H-4), 3.11 (q, 6H, CH₂, Et₃N), 3.09 (dd, 1H, H-1.75–1.65 (m, 1H, H-3a), 1.52 (ddd, 8), 1H.

² $J_{3a,3b}$ = 14.6 Hz, H-3b), 1.18 (t, 9H, CH₃, Et₃N), 1.13 (d, 3H, ³ $J_{1,2}$ = 6.3 Hz, H-1). ¹³C NMR (D₂O): δ 155.47 (C-6_{Ade}), 152.82 (C-2_{Ade}), 149.02 (C-4_{Ade}), 139.80 (C-8_{Ade}), 118.55 (C-5_{Ade}), 87.08 (C-1_{Rib}), 83.80 (C-4_{Rib}, ³ $J_{4,P}$ = 8.9 Hz), 77.89 (C-8), 74.69, 74.55 (C-4, C-6), 74.06 (C-2_{Rib}), 71.73 (C-5), 71.27 (C-2, ² $J_{2,P}$ = 5.8 Hz), 70.39 (C-3_{Rib}), 68.84 (C-9), 66.35 (C-7), 64.58 (C-5_{Rib}, ² $J_{5,P}$ = 5.2 Hz), 62.51 (C-10), 46.67 (CH₂, Et₃N), 39.00 (C-3, ³ $J_{3,P}$ = 6.6 Hz), 21.76 (C-1, ³ $J_{1,P}$ = 1.9 Hz), 8.21 (CH₃, Et₃N); ³¹P NMR (D₂O): δ -0.76; TOF-ES-MS: m/z = 582.143 [M+H]⁺; calcd 582.181 [M+H]⁺.

Adenosine 5'-(4,8-anhydro-1,3-dideoxy-D-ribo-L-4.1.8. *manno*-decit-2-yl)phosphate (triethvlammonium salt) 16. The mixture containing crude 9 (200 mg, \sim 70% purity, 0.42 mmol) and 14 (41 mg, 0.088 mmol) was repeatedly dried by co-evaporation with dry toluene $(3 \times 5 \text{ mL})$ and then kept under reduced pressure for 5 h. The mixture was dissolved in dry CH₂Cl₂ (2 mL) and a solution of 1H-tetrazole (32 mg, 0.44 mmol) in dry CH₃CN (1 mL) was added and the mixture was stirred at rt for 30 min under Ar. The reaction was monitored by TLC showing the formation of intermediate diastereomeric phosphite triesters ($R_{\rm f}$ 0.54, 9:1 CHCl₃/MeOH), that was also substantiated by ³¹P NMR (δ 141.52 and 140.66). The reaction mixture was cooled to -10 °C and a solution of tert-BuOOH (22 µL of 80% solution in di-*tert*-butyl peroxide) in CH₂Cl₂ (2 mL) was gradually added over 20 min. The reaction mixture was warmed to rt and stirred for 12 h. The solvent was concentrated, the residue dissolved in 1:1 diethyl ether/ethyl acetate (30 mL) and washed sequentially with saturated aq NaHCO₃, water and brine. The organic phase was dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography on silica gel (14:1 CHCl₃/MeOH) affording crude triphosphate (diastereomeric mixture on phosphorus) 15 (49 mg, \sim 60%) as a syrup. $R_{\rm f}$ 0.40; ¹H NMR: δ 8.36 and 8.35 (s, 1H, H-8_{Ade}), 8.18 and 8.15 (s, 1H, H-2_{Ade}), 6.33 (d, 1H, ³J_{1,2} = 6.0 Hz, Hand 0.15 (5, 11, 11 Z_{Ade}), 0.55 (d, 111, $J_{1,2} = 0.0$ Hz, H⁻ 1_{Rib}), 6.14 and 6.11 (br s, 2H, NH), 5.79 and 5.78 (t, ${}^{3}J_{2,3} = 5.7$ Hz, H- 2_{Rib}), 5.69 and 5.67 (m, 1H, H- 3_{Rib}), 5.50 and 5.37 (br d, 1H, ${}^{3}J_{5,6} = 3.5$ Hz, H-5), 5.24 (t, 1H, ${}^{3}J_{7,8} = {}^{3}J_{7,6} = 9.7$ Hz, H-7), 5.24–5.12 (m, 1H, H-9), 5.14 and 4.07 (dd 1H, H (c) 4.77 4.67 (m, 1H, H-9)), 5.14 and 4.97 (dd, 1H, H-6), 4.77-4.67 (m, 1H, H-2), 4.44-4.17 (m, 7H, H-10a, H-10b, H-5a_{Rib}, H-5b_{Rib}, H-4_{Rib}, OCH₂), 3.92–3.86 (m, H, H-4), 3.79 and 3.76 (dd, 1H, ${}^{3}J_{8,9} = 2.0$ Hz, H-8), 2.84–2.77 (m, 2H, CH₂CN), 2.17, 2.16, 2.15, 2.09, 2.07, 2.05, 1.97 and 1.96 (8s, total 15H, 5Ac), 2.00 (m, 1H, H-3a), 1.76-1.61 (m, 1H, H-3b), 1.38 (d, 1H, ${}^{3}J_{1,2} = 6.2$ Hz, H-1); ${}^{31}P$ NMR (CDCl₃): δ -1.65 and -1.88.

A solution of **15** (38 mg, 0.041 mmol) in 7:3:1 MeOH– water–Et₃N (2 mL, pH 12) was stirred at room temperature for 3 h. The reaction mixture was diluted with water (20 mL), concentrated to 10 mL volume and lyophilized. The residue was purified on silica gel (15:10:11; CHCl₃/ MeOH/H₂O/Et₃N) to give **16** (15 mg, 53%) as a white solid. $R_{\rm f}$ 0.35 (15:10:1:1 CHCl₃/MeOH/H₂O/Et₃N); [α]₂₀²⁰ = -19.8 (*c* 0.8, H₂O); ¹H NMR (D₂O): δ 8.47 (s, 1H, H-8_{Ade}), 8.23 (s, 1H, H-2_{Ade}), 6.13 (d, 1H, ${}^{3}J_{1,2} = 6.1$ Hz, H-1_{Rib}), 4.76 (m, ${}^{3}J_{2,3} = 5.7$ Hz, H-2_{Rib}), 4.52 (dd, 1H, ${}^{3}J_{3,4} = 3.7$, ${}^{3}J_{3,2} = 4.9$ Hz, H-3_{Rib}), 4.37 (m, 1H, H-4_{Rib}), 4.34 (m, 1H, H-2), 4.08 (m, 1H, H-5_{Rib}), 3.88 (m, 1H, H-9), 3.85 (m, 1H, H-5), 3.65 (dd, 1H, ${}^{3}J_{10a,9} = 6.1$, ${}^{2}J_{10a,10b} = 12.0$ Hz, H-10a), 3.71 (dd, 1H, ${}^{3}J_{7,6} = {}^{3}J_{7,8} = 9.5$ Hz, H-7), 3.56 (dd, 1H, ${}^{3}J_{10b,9} = 3.2$ Hz, H-10b), 3.57 (m, 2H, H-4, H-6), 3.17 (dd, 1H, ${}^{3}J_{8,9} = 3.2$ Hz, H-8), 3.17 (q, ~6H, CH₂, Et₃N), 1.96–1.85 (m, 1H, H-3a), 1.76–1.67 (m, H-3b), 1.27 (t, ~9H, CH₃, Et₃N), 1.18 (d, 1H, ${}^{3}J_{1,2} = 6.2$ Hz, H-1). ¹³C NMR (D₂O): δ 156.26 (C-6_{Ade}), 153.59 (C-2_{Ade}), 149.84 (C-4_{Ade}), 140.48 (C-8_{Ade}), 119.28 (C-5_{Ade}), 87.63 (C-1_{Rib}), 84.69 (C-4_{Rib}, ${}^{3}J_{4,P} = 8.7$ Hz), 80.64 (C-8), 75.85, 75.15 (C-4, C-6), 74.93 (C-2_{Rib}), 73.21 (C-9), 71.71 (C-2, ${}^{3}J_{2,P} = 5.8$ Hz), 71.22, 71.04 (C-3_{Rib}, C-5), 68.71 (C-7), 65.43 (C-5_{Rib}, ${}^{2}J_{5,P} = 5.3$ Hz), 62.71 (C-10), 47.42 (CH₂, Et₃N), 38.61 (C-3, ${}^{3}J_{3,P} = 6.1$ Hz), 21.63 (C-1, ${}^{3}J_{1,P} = 2.5$ Hz), 8.96 (CH₃, Et₃N); 31 P NMR (D₂O): δ 0.04; TOF-ES-MS: m/z = 582.180 [M+H]⁺; calcd 582.181 [M+H]⁺.

5'-(4,8-anhydro-1,3-dideoxy-D-ribo-L-4.1.9. Adenosine gluco-decit-2-yl)phosphate (triethylammonium salt) 19. First, intermediate triphosphate 18 was prepared from 17 (33 mg, 0.071 mmol) and **9** $(170 \text{ mg}, \sim 70\% \text{ purity})$ 0.36 mmol) in the presence of 1H-tetrazole (28 mg, 0.4 mmol) in the same manner as described for the synthesis of 16. Yield for 18: 40 mg (~60%). $R_{\rm f}$ 0.40; ¹H NMR: δ 8.36 and 8.35 (s, 1H, H-8_{Ade}), 8.16 and 8.13 (s, 1H, H-2_{Ade}), 6.32 and 6.31 (d, 1H, ${}^{3}J_{1,2} = 6.4$ Hz, H-1_{Rib}), 5.95 (br s, 2H, NH), 5.80 and 5.79 (t, ${}^{3}J_{2,3} = 5.7$ Hz, H-2_{Rib}), 5.69 and 5.68 (m, 1H, H-3_{Rib}), 5.50 and 5.37 (br d, 1H, H-5), 5.24 and 5.21 (dt, 1H, ${}^{3}J_{9,8} = 10.0$ Hz, H-9), 5.20– 4.95 (m, 2H, H-6, H-7), 4.77-4.69 (m, 1H, H-2), 4.59 and 4.53 (dd, 1H, ${}^{3}J_{10.9} = 3.1$, ${}^{2}J_{10a.10b} = 12.1$ Hz, H-10a), 4.43-4.17 (m, 7H, OCH₂, H-4, H-10b, H-5a_{Rib}, H-5b_{Rib}, H-4_{Rib}), 4.00 and 3.96 (br d, 1H, H-4), 3.92–3.77 (m, 1H, H-8), 2.83–2.77 (m, 2H, CH₂CN), 2.17, 2.16, 2.09, 2.08, 2.06, 2.04, 1.99, 1.97 and 1.96 (9s, 15H, 5Ac), 1.90-1.80 (m, 1H, H-3a), 1.77–1.59 (m, 1H, H-3b), 1.39 and 1.38 (d, 1H, ${}^{3}J_{1,2} = 6.3$ Hz, H-1); ${}^{31}P$ NMR (CDCl₃): δ –1.74 and -2.02. A solution of 18 (40 mg, 0.044 mmol) in 7:3:1 MeOH-water-Et₃N (2 mL, pH 12) was stirred at rt for 3 h. The reaction mixture was diluted with water (20 mL), concentrated to 10 mL volume and lyophilized. The residue was purified on silica gel (15:10:1:1 CHCl₃/ MeOH/H₂O/Et₃N) to give 19 (16 mg, 52%) as a white solid. $R_{\rm f}$ 0.35 (15:10:1:1 CHCl₃/MeOH/H₂O/Et₃N); solut: $R_{\rm f} = 0.55$ (15.10.1.1 Chicks McOn/ $n_20/$ Et314), $[\alpha]_{\rm D}^{20} = -31$ (c 0.8, H₂O); ¹H NMR (D₂O): δ 8.46 (s, 1H, H-8_{Ade}), 8.23 (s, 1H, H-2_{Ade}), 6.12 (d, 1H, ${}^{3}J_{1,2} = 5.5$ Hz, H-1_{Rib}), 4.78 (m, ${}^{3}J_{2,3} = 5.3$ Hz, H-2_{Rib}), 4.51 (t, 1H, ${}^{3}J_{3,4} = {}^{3}J_{3,2} = 4.5$ Hz, H-3_{Rib}), 4.40 (m, 1H, H-2), 4.37 (m, 1H, H-4_{Rib}), 4.10 (m, 2H, H-5a_{Rib}, H-5b_{Rib}), 3.89 (m, 1H, H-9), 3.68-3.66 (m, 2H, H-5, H-10), 3.64 (t, 1H, ${}^{3}J_{7,6} = {}^{3}J_{7,8} = 9.6$ Hz, H-7), 3.51 (m, 2H, H-4, H-6), 3.24 (dd, 1H, ${}^{3}J_{8,9} = 3.9$ Hz, H-8), 3.19 (q, ~6H, CH₂, Et₃N), 1.82–1.72 (m, 1H, H-3a), 1.69–1.60 (m, 1H, H-3b), 1.27 (t, ~9H, CH₃, Et₃N), 1.23 (d, 1H, ${}^{3}J_{1,2} = 6.5$ Hz, H-1). ${}^{13}C$ NMR (D₂O): δ 156.28 (C-6_{Ade}), 153.62 (C-2_{Ade}), 149.77 (C-4_{Ade}), 140.52 (C-8_{Ade}), 119.32 (C-5_{Ade}), 87.85 (C-1_{Rib}), 84.53 (C-4_{Rib}, ${}^{3}J_{4,P} = 8.8 \text{ Hz}$), 80.16 (C-8), 75.73, 75.16 (C-4, C-6), 74.85 (C-2_{Rib}), 73.39 (C-9), 72.06, (C-5), 71.93 (C-2, ${}^{2}J_{2,P} = 5.6 \text{ Hz}$), 71.11 (C-3_{Rib}), 69.13 (C-7), 65.33 (C-5_{Rib}, ${}^{2}J_{5,P} = 4.8 \text{ Hz}$), 62.71 (C-10), 47.42

(CH₂, Et₃N), 39.61 (C-3, ${}^{3}J_{3,P} = 6.6$ Hz), 22.47 (C-1, ${}^{3}J_{1,P} = 2.0$ Hz), 8.96 (CH₃, Et₃N); ${}^{31}P$ NMR (D₂O): δ 0.06; TOF-ES-MS: m/z = 582.180 [M+H]⁺; calcd 582.178 [M+H]⁺.

Acknowledgements

The authors thank Daniel Kolarich for recording MS spectra and Maria Hobel for technical assistance. Financial support of this work by a grant from FWF (P14978) and by Austrian Academic Exchange Office (ÖAD) is gratefully acknowledged.

References

- Raetz, C. R. H.; Whitfield, C. Annu. Rev. Biochem. 2002, 71, 635–700.
- Holst, O. In *Endotoxin in Health and Disease*; Brade, H., Opal, S. M., Vogel, S. N., Morrison, D. C., Eds.; Marcel Dekker: New York, Basel, USA, 1999; pp 115–154, and references cited therein.
- Kneidinger, B.; Marolda, C. L.; Graninger, M.; Zamyatina, A.; McArthur, F.; Kosma, P.; Valvano, M. A.; Messner, P. J. Bacteriol. 2002, 184, 363–369.
- Valvano, M. A.; Messner, P.; Kosma, P. Microbiology 2002, 148, 1979–1989.
- Eidels, L.; Osborn, M. J. Proc. Natl. Acad. Sci. U.S.A. 1971, 68, 1673–1677.
- Kocsis, B.; Kontrohr, T. J. Biol. Chem. 1984, 259, 11858– 11860.
- Ding, L.; Seto, B. L.; Ahmed, S. A.; Coleman, W. G., Jr. J. Biol. Chem. 1994, 269, 24384–24390.
- Gronow, S.; Oertelt, C.; Ervelä, E.; Zamyatina, A.; Kosma, P.: Skurnik, M.: Holst, O. J. Endotoxin Res. 2001, 7, 263–270.
- (a) Zamyatina, A.; Gronow, S.; Oertelt, C.; Puchberger, M.; Brade, H.; Kosma, P. Angew. Chem., Int. Ed. 2000, 39, 4150– 4153; (b) Zamyatina, A.; Gronow, S.; Puchberger, M.;

Graziani, A.; Hofinger, A.; Kosma, P. Carbohydr. Res. 2003, 338, 2571–2589.

- (a) Read, J. A.; Ahmed, R. A.; Tanner, M. E. Org. Lett. 2005,
 7, 2457–2460; (b) Morrison, J. P.; Read, J. A.; Coleman,
 W. G., Jr.; Tanner, M. E. Biochemistry 2005, 44, 5907–5915.
- 11. Graziani, A.; Amer, H.; Zamyatina, A.; Hofinger, A.; Kosma, P. *Tetrahedron: Asymmetry* **2005**, *16*, 167–175.
- (a) Du, Y.; Linhardt, R. J. Tetrahedron 1998, 54, 9913–9959;
 (b) Taillefumier, C.; Chapleur, Y. Chem. Rev. 2004, 104, 263–292;
 (c) Postema, M. C-Glycosides Synthesis; CRC Press: Boca Raton, USA, 1995;
 (d) Levy, D.; Tang, C. The Chemistry of C-Glycosides; Pergamon Press: Oxford, UK, 1995;
 (e) Beau, J.-M.; Vauzeilles, B.; Skydstrup, T. In Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G. W., Sinay, P., Eds.; The Chemistry of Saccharides; Wiley-VCH: New York, 2000; pp 495–530;
 (f) Dondoni, A.; Marra, A. Chem. Rev. 2000, 100, 4395–4422.
- (a) McGurk, P. M.; Chang, G. X.; Lowary, T. L.; McNeil, M.; Field, R. A. *Tetrahedron Lett.* **2001**, *42*, 2231–2234; (b) Compain, P.; Martin, O. R. *Bioorg. Med. Chem.* **2001**, *9*, 3077–3092.
- (a) Stolz, F.; Reiner, M.; Blume, A.; Reutter, W.; Schmidt, R. R. J. Org. Chem. 2004, 69, 665–679; (b) Chang, R.; Vo, T.-T.; Finney, N. S. Carbohydr. Res. 2006, 341, 1998–2004; (c) Schäfer, A.; Thiem, J. J. Org. Chem. 2000, 65, 24–29; (d) Luengo, J. I.; Gleason, J. G. Tetrahedron 1992, 33, 6911– 6914.
- (a) Carchon, G.; Chrétien, F.; Delaanoy, P.; Verbert, A.; Chapleur, Y. *Tetrahedron Lett.* 2001, 42, 8821–8824; (b) Grugier, J.; Xie, J.; Duarte, I.; Valéry, J.-M. J. Org. Chem. 2000, 65, 979–984.
- (a) Bragnier, N.; Scherrmann, M.-C. Synthesis 2005, 814–818;
 (b) Rodriguez, F.; Canac, Y.; Lubineau, A. Chem. Commun. 2000, 2049–2050;
 (c) Riemann, I.; Papadopoulos, M. A.; Knorst, M.; Fessner, W.-D. Aust. J. Chem. 2002, 55, 147–154;
 (d) Wang, Z.; Shao, H.; Lacroix, E.; Wu, S.-H.; Jennings, H.; Zou, W. J. Org. Chem. 2003, 68, 8097–8105.
- (a) Barone, A. D.; Tang, J.-Y.; Caruthers, M. H. Nucl. Acid Res. 1984, 12, 4051–4061; (b) Nielsen, J.; Taagaard, M.; Marugg, J. E.; van Boom, J. H.; Dahl, O. Nucl. Acid Res. 1986, 14, 7391–7404.