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ABSTRACT: We have developed a novel approach for the
synthesis of enantioenriched 3-boryl-tetrahydropyridines
via the copper(I)-catalyzed regio-, diastereo- and enanti-
oselective protoborylation of 1,2-dihydropyridines, which
were obtained by the partial reduction of the pyridine de-
rivatives. This dearomatization/enantioselective boryla-
tion stepwise strategy provides facile access to chiral pi-
peridines together with the stereospecific transformation
of a stereogenic C-B bond from readily available starting
materials. Furthermore, the utility of this method was
demonstrated for the concise synthesis of the antidepres-
sant drug (-)-paroxetine. A theoretical study of the reac-
tion mechanism has also been described.

Chiral piperidines are important structural motifs that
can be found in a wide variety of naturally occurring bioac-
tive molecules and pharmaceutical drugs.! Despite signifi-
cant progress towards the development of synthetic ap-
proaches capable of providing facile access to these mole-
cules, the development of a simple, mild and efficient
method for the direct preparation of chiral piperidines
remains highly desired. Based on the abundance of readily
available nitrogen-containing aromatic compounds, the
enantioselective dearomatization of pyridine derivatives
represents a powerful and efficient method for the for-
mation of chiral N-heterocyclic compounds. Furthermore,
the dearomatization of pyridine derivatives can provide
direct access to various saturated chiral N-heterocyclic
structures, making it particularly efficient.23 Recently, sev-
eral strategies have been developed for the dearomatiza-
tion of pyridines involving either the nucleophilic addition
of a suitable nucleophile to a pyridinium salt or the use of
stepwise reduction/enantioselective catalysis.3*

We recently reported the first C-B bond forming enan-
tioselective dearomatization of indoles under copper(l)
catalysis to give the corresponding chiral 3-boryl-indolines
with excellent regio-, diastereo- and enantioselectivity.>”
Transformations of this type have great numerous poten-
tial applications in synthetic and medicinal chemistry be-
cause chiral N-heterocyclic organoborons are amenable to
a wide variety of stereospecific functionalization reactions
through their stereogenic C-B bond.8® With this in mind,
we became interested in the development of an enantiose-
lective method for the conversion of pyridines to chiral
boryl-piperidines, which could be used as novel nucleo-
philes for the synthesis of piperidine-based bioactive com-
pounds.? Our initial efforts focused on the development of
a direct C-B bond forming method using an N-acyl pyri-
dinium salt as the substrate under copper(I) catalysis with
the concomitant dearomatization of the pyridine ring. Alt-

hough the 1,2-borylation reaction proceeded as anticipat-
ed, we failed to isolate the desired product because it de-
composed during purification. We subsequently investi-
gated the development of an alternative stepwise strategy
involving the combination of Fowler’s dearomative reduc-
tion of pyridines? with the copper(I)-catalyzed enantiose-
lective borylation of the resulting unstable 1,2-
dihydropyridines.* However, this novel method would be
very challenging because of the difficulties associated with
controlling the regio-, diastereo- and enantioselectivity for
nitrogen-containing conjugated diene substrates. Fur-
thermore, there have been no reports in the literature to
date pertaining to the selective borylation of such com-
pounds.!! Herein, we report the development of a novel
method for the enantioselective synthesis of chiral 3-boryl-
tetrahydropyridines via the chiral diphosphine/copper(I)-
catalyzed regio-, diastereo- and enantioselective proto-
borylation of 1,2-dihydropyridines, which were derived
from the dearomative reduction of readily available pyri-
dines (Scheme 1a). Notably, the subsequent derivatization
of the boryl group in these products, as well as the re-
maining enamine moiety, could provide facile access to
complex chiral piperidines bearing a C-3 stereocenter,
which are important components in various pharmaceuti-
cal drugs (Scheme 1b).! In actual fact, the antidepressant
drug (-)-paroxetine was successfully synthesized in this
study using our newly developed approach. A theoretical
study of the reaction mechanism has also been described.

Scheme 1. (a) Stepwise Dearomatization/Enantioselective
Borylation Strategy. (b) Representative Bioactive Chiral
Piperidines.

a) Dearomatization/enantioselective borylation sequence (This work)
hydride 1 cat. Cu(l) /L* 1
1 2 R 2 R JR
R' A~ R? source = R (pin)B—B(pin) “ N
‘ R N | _ > N
Ny R3-X RS alcohol, base RY B
pyridines conjugated dienes

« readily available « difficult to control regio-
starting materials and stereoselectivity

2

(pin)

boryl-tetrahydropyridines
« highly regio-, stereoselective
« novel chiral building block

b) Representative chiral plperldme -based bioactive molecules
Ph

Ph
)/ ibrutinib \\ 7 "NH,

(=)-preclamol
com (j/ zamufenacme
2l
e
U >
(-)-paroxetine

KDM2A inhibitor
The results of an extensive optimization process re-
vealed that the reaction of methoxycarbonyl-protected 1,2-
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dihydropyridine 2a (R = H), which was isolated from pyri-
dine 1a using Fowler’s reduction method!?, with
bis(pinacolato)diboron (3) (1.2 equiv) in the presence of
CuCl/(R,R)-QuinoxP* L1 (5 mol %), K(O-t-Bu) (20 mol %)
and MeOH (2.0 equiv) in THF at -10°C afforded the chiral
3-boryl-tetrahydropyridine (R)-4a in high yield with excel-
lent enantioselectivity (Table 1, entry 1).

Table 1. Optimization of the Reaction Conditions.?

. R
R deoke A" Benw o )
N MeOH Oy N” K(O-t-Bu) Y B(pin)
-78°C,1h  MeO alcohol MeO

R=H (1a) R=H(2a) _1g°c 2h R = H [(R)-4a]
R =Ph (1b) R = Ph (2b) R = Ph [(R,R)-4b]
entry R chiral Alcohol dr. yield ee

ligand (%) (%)
1 H (2a) (RR)-111 MeOH - 93 99
2 H(@2a) (RR)-L2 MeOH - 92 98
3 H (2a) (R,R)-L3 MeOH - 82 93
4 H (2a) (R)-L4 MeOH - <5 -
5 H (2a) (R)-L5 MeOH - <5 -
6 H (2a) (R,R)-L6 MeOH - 97 55
7 H (2a) (R,S)-L7 MeOH - 20 73
8 H (2a) (RR)-111 -BuOH - 92 79
9 H (2a) (RR)-111 PhOH - 40 55
104 H (2a) (RR)-111 MeOH - 92 93
11¢ H (2a) (RR)-11 MeOH - 96 99
12/¢ H (2a) (RR)-11 MeOH - 91 99

13"  Ph(2b) (RR-L1  MeOH 99:1 83 25
14"  Ph(2b) (R)-LS +-BuOH 97:3 94 92

Me
Me\ :\'Bu Me\ ffBu l/\ O
L O O oo,
_ .«Me PPh,
O i
'Bu/ Me Bu' Me )\

Me

(RR)-L1 (RR)-L2 (RR)-L3 (R)-L4
(¢}
1) (oo e
[e}
o PPh, e
I OO0 =
¢}

(R)-L5 (RR)-L6 (R.S)-LT

aConditions: CuCl (0.025 mmol), ligand (0.025 mmol), 2 (0.5 mmol),
bis(pinacolato)diboron 3 (0.6 mmol), alcohol (1.0 mmol) and K(O-t-
Bu) (0.1 mmol) in THF. 'NMR yield. <The ee values of (R)-4a were
determined by HPLC analysis of the corresponding benzoate ester.
4The reaction was carried out at 30 °C. ¢The reaction was carried out
on a 5 mmol scale. /1 mol % CuCl and ligand were used. ¢The reaction
time was 16 h. "'The reaction was carried out at 0 °C and the reaction
time was 1 h.

Notably, none of the other regioisomers were detected
by 'H NMR analysis of the crude reaction mixture. The use
of (R,R)-BenzP* L2 or (R,R)-Me-Duphos L3 also provided
high levels of enantioselectivity (Table 1, entries 2 and 3).
No product was observed when a triarylphosphine-type
ligand, such as (R)-BINAP L4 or (R)-SEGPHOS L5 was used
in the reaction (Table 1, entries 4 and 5). These results
suggested that the presence of electron-donating alkyl
substituents on the phosphine atoms of the ligand was
crucial for the success of the current reaction. Several oth-
er chiral ligands, including (R,R)-BDPP L6 and (R,S)-
Josiphos L7, were also screened in the reaction. Although
these ligands both provided access to the desired boryla-

tion product, they afforded poor enantioselectivities (Table
1, entries 6 and 7). The nature of the proton source was
also found to be important to the reactivity and enantiose-
lectivity of this transformation (Table 1, entries 8 and 9).
For example, the use of sterically hindered ¢-BuOH instead
of MeOH resulted in a lower enantioselectivity (Table 1,
entry 8). Furthermore, the use of PhOH as a proton source
provided a low yield and poor enantioselectivity (Table 1,
entry 9). Increasing the temperature led to a slight de-
crease in the enantioselectivity (Table 1, entry 10). Notably,
the reaction proceeded smoothly on a 5.0 mmol scale to
give gram quantities of the desired product with excellent
enantioselectivity (Table 1, entry 11). This enantioselec-
tive borylation reaction also proceeded efficiently with a 1
mol % loading of the copper(I) catalyst and showed high
enantioselectivity (99% ee), although a longer reaction
time was required (Table 1, entry 12). We then proceeded
to investigate the Dborylation of 4-phenyl-1,2-
dihydropyridine 2b in the presence of the QuinoxP* L1
complex catalyst (Table 1, entry 13). Unfortunately, how-
ever, we observed a much lower enantioselectivity (25%
ee) than that obtained for the reaction of 2a under the
same conditions, even though the regio- and diastereose-
lectivity were excellent (d.r. 99:1). Based on this result, we
conducted a series of optimization reactions using 2b as a
substrate (see the Supporting Information for details). The
results revealed that the use of the (R)-SEGPHOS chiral
ligand L5 with ¢t-BuOH in a toluene/DME/THF co-solvent
system gave the desired chiral 3-boryl-tetrahydropyridine
(R,R)-4b bearing consecutive stereogenic centers in good
yield (94%) with high diastereo- and enantioselectivity
(dr. 97:3, 92% ee) (Table 1, entry 14).12 The anti-
configuration of (R R)-4b was confirmed by NOE analysis
(see Supporting Information for details).

The optimized conditions were used for further evalua-
tion of the substrate scope (Table 2). The reactions of 1,2-
dihydropyridines bearing various carbamate-type protect-
ing groups (2a, 2c-2g) in the presence of the cop-
per(I)/(R,R)-QuinoxP* L1 catalyst system proceeded to
give the desired products [(R)-4a, (R)-4c-(R)-4g] with
high enantioselectivities (Table 2). The 6-substituted 1,2-
dipydropyridines (2h and 2i) were also borylated to afford
the corresponding chiral 3-boryl-tetrahydropyridines [(R)-
4h and (R)-4i] with excellent enantioselectivities without
any of the other undesired regioisomers being detected
(Table 2). The copper(I)/(R)-SEGPHOS complex catalyzed
the enantioselective borylation of various 4-aryl-1,2-
dihydropyridines (2b, 2j-21) to provide the corresponding
borylated products bearing consecutive stereogenic cen-
ters with high diastereo- and enantioselectivities (d.r.
96:4-98:2, 93-96% ee). However, the reactions of 2m and
2n in the presence of the copper(I)/(R)-SEGPHOS L5 cata-
lyst resulted in low yields (10%). Fortunately, however, we
found that the use of (R,R)-BDPP L6 allowed for the suc-
cessful synthesis of the corresponding products [(R,R)-4m
and (R,R)-4n], albeit with moderate enantioselectivities
(74% ee and 66% ee, respectively). Finally, the current
catalytic system failed to affect the borylation of the 3-
substituted 1,2-dihydropyridine 20.13

The borylation products could be used as versatile
building blocks for the preparation of chiral piperidines.
For example, the oxidation of (R)-4a with NaBOs, followed
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by the sequential acylation of the resulting alcohol and

1 reduction of the enamine moiety afford the chiral piperidi-
2 nol (R)-5 with high enantiomeric excess (Scheme 2). Fur-
3 thermore, the hydrogenation of (R)-4a gave (R)-6, which
4 was reacted with (3-methoxyphenyl)lithium under Ag-
arwal’s cross-coupling conditions o affor -)-
5 g Iy pling ditions'* t fford
6 preclamol precursor (S)-7 with excellent stereospecificity
7 (Scheme 2). The diastereoselective hydroboration of the
8 remaining enamine moiety, followed by an oxidation gave
9 the chiral piperidine (R,R,S)-9 bearing three consecutive
10 stereogenic centers (Scheme 3).
11 Table 2. Substrate Scope of the Copper(I)-Catalyzed Enan-
12 tioselective Borylation of 1,2-Dihydropyridines.
13
14 1 e " R _R? cat. Cul) /L* RT__~ R
15 Rl RecicoRe 0 T7 [ (imB-=B(pin) 3) @\
16 v eon cat KO-tBu) .1 B(pin)
-78°c  R°O alcohol
17 (R)-4, or (RR)-4
19 ; CL 9
-;9 N~ e(pin) B(pin) )VY B(pin)
0 Meo (R)-4a \( (R)-4c? (R)-4d?
21 90%, 99% ee 88%, 98% ee 90%, 97% ee
25 ’ L 9!
23 O No B(pin) OYN B(pin) OYN B(pin)
24 BnO PhO o
o5 (R-de* (R)-4f° 7 (Rrag
76%, 97% ee 84%, 93% ee 91%, 97% ee
27 " ol
28 OB ° Bein O~ B
MeO MeO MeO
29 (R)-4h? (R)-4i® (RR)-4b°
30 86%, 92% ee 67%, 96% ee 3237 d.r.97:3
31 Me > OMe nee F
|
33 O N~ain) O N~ B(pin) O N 8(pin)
34 MeO MeO MeO
(RR)-4 (R.R)-4k? (S,5)-a1be
35 91%, d.r. 98:2 82%, d.r. 96:4 91%, d.r. 97:3
95% ee 96% ee 96% ee
36
5 ol Q.
Ay Br =
38 o N L, CL SN
39 Y B(pin) B(pin) Y B(pin)
MeO
40 (R.R)-4m° (RR)-4n° (R)-407
41 93%, d.r. 90:10 79%, d.r. 87:13 no reaction
74% ee 66% ee
42
43 aConditions: CuCl (0.025 mmol), (R,R)-L1 (0.025 mmol), 2 (0.5
mmol), 3 (0.6 mmol), MeOH (1.0 mmol) and K(O-t-Bu) (0.1 mmol) in
44 THF at -10°C for 2 h. *Conditions: CuCl (0.025 mmol), (R)-L5 (0.025
45 mmol), 2 (0.5 mmol), 3 (0.6 mmol), t-BuOH (1.0 mmol) and K(O-t-Bu)
46 (0.1 mmol) in THF/toluene/DME (1:6:6 - v/v/v) at 0°C for 1 h. <Condi-
47 tions: CuCl (0.025 mmol), (R,R)-L6 (0.025 mmol), 2 (0.5 mmol), 3 (0.6
48 mmol), t-BuOH (1.0 mmol) and K(O-t-Bu) (0.1 mmol) in THF at 0°C
for 1 h. 12g was prepared by the treatment of 2f with K(O-¢t-Bu). ¢(S)-
49 L5 was used.
50 L .
51 To demonstrate the applicability of this newly devel-
50 oped methodology to the synthesis of bioactive molecules,
53 we completed the synthesis of the antidepressant drug (-)-
paroxetine (R,S)-12 using the borylated product (S,5)-41
o4 (Scheme 4).815 Briefly, the boryl group in (S,5)-41 was suc-
55 cessfully functionalized through a one carbon homologa-
56 tion reaction.1® Subsequent oxidation and mesyl protection
steps afforded the corresponding mesylate (R,5)-10, whic
57 teps afforded th ponding mesylate (R,S)-10, which
58 was subjected to sequential etherification and hydrogena-
59
60
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tion steps to give (R,S)-11 with high enantiomeric purity
(94% ee). Finally, the deprotection of the methyl carba-
mate moiety with KOH provided (-)-paroxetine (R,S)-12. It
is envisioned that these novel chiral boronates will find
further application in synthetic and medicinal chemistry.

Scheme 2. Derivatization Reactions of (R)-4a.

1. NaBOg+4H,0

@\ 2. (PhCO),0, pyridine (j\ o
DMAP, CH,CI

O._N ) 2Clo O._N

Y B(pin) ¥ OJ\Ph

3.PdIC, H,
MeO (R)-4a,99% ee  THF/MeOH MeO o

PdIC, H, 77%, 98% ee

THF/MeOH i<~ OMe

\
()\ U(LZ equiv) OYN\ OMe
S bt il
B(Pin) 5 NBS, MeOH, -78°C ~ MeO
MeO (S)7

51%, 98% ee
(-)-preclamol precursor

Scheme 3. Construction of Three Consecutive Stereocen-
ters via a Diastereoselective Hydroboration Reaction.

OAc
1. NaBOg Ph 1. BHz*SMe;, Ph
(R,R)-4b  *4H0 =y THF, 60 °C °
d.r.97:3 ON oO.__N
92% oa 2 TB%CI | Y OTBS 2.NaBO3#4H,0 Y OTBS
imidazole /.5 3. A0, Et;N MeO
(RR)-8 (RR.S)-9
75% (2 steps) 66% (3 steps)
d.r. 97:3 92% ee, d.r. 97:3
Scheme 4. Synthesis of (-)-Paroxetine.
F F 1. sesamol
1. LiCH,CI, -78 °C Cs,CO;
2. NaBOg+4H,0 90°C
EE—
O N pin) 3. MsCI, EtN o 2.Pd/C, H,
THF/MeOH
MeO  (s,5)-a MeO  (R,S)10 e

d.r. 97:3, 96% ee

84% (3 steps), d.r. 97:3

KOH

Y O o mon  HN. .0 )
MeO > H0 >
(RS)-1 O reflux (R.S)12, 61% o

67% (2 steps)
d.r. >95:5, 94% ee

(- )-paroxetine
antidepressant drug

A deuterium labeling experiment was conducted to
probe the reaction mechanism (see the Supporting Infor-
mation for further details). The borylation of 2e under the
optimized conditions using MeOD instead of MeOH gave
(R)-4€’, bearing a deuterium label at its 4-position (D
>95%), with high enantioselectivity (98% ee). The syn con-
figuration between the boryl group and the deuterium
atom at the 4-position was confirmed by NOE analysis.
These results therefore suggested that the current boryla-
tion proceeds via the regio- and enantioselective syn-4,3-
addition of an active borylcopper(I) to the substrate, fol-
lowed by the stereoretentive Sg2 protonation of the al-
lylcopper(I) intermediate by the alcohol additive.1”

Density functional theory calculations (B3PW91/cc-
pVDZ) were performed to understand the unprecedented
regioselectivity of this borylation process (Figure 1). This
reaction could potentially proceed via four different
borylcupration pathways (paths A-D, Figure 1). All of the
borylation pathways were calculated using the achiral
borylcopper(I)/Me:PCH=CHPMe2 model complex with 2a
as a substrate. The results showed that the activation en-
ergies for pathways A (4Grs:) and C (4Grss), leading to the
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corresponding stable allylcopper(I) intermediates, were
lower than those of pathways B and D. For pathway C, ste-
ric congestion between the B(pin) and carbamate moieties
would destabilize the complex during the borylcupration
process.18 The current borylation process would therefore
most likely proceed via a 4,3-borylcupration process (path
A) to form intermediate P1 with high selectivity. The simi-
lar calculations in the case of 2b also indicated that the
activation energy for the 4,3-addition was lower than tho-
se of other pathways.1?

R B(pln B(pln) B(pin)
path A J Cul K) cuL — > "

CuL
4,3-addition AGgy = +7.7 AGrsy = +19.0 AGpy =115
!
R cuL
R N CuL
e e M
| — ¥ Bpin) “B(pin) B(pin)
— AGCE =489 AGng =+218 AGPZ =73

+ ! path C

LCu— B(pln) O B- O - ‘
(pin)B 5 (pin) (pin)B
LCu
AGC3 +9.4 AGng +2o 4 Aepg =-80
path D ‘N
. \
L= Me,P PMez (pln) B(pln (pln)B
R =-CO,Me AGgy=+9.8 AGrss = +27.0 AGpy=-0.9

Figure 1. Density functional theory calculations for the
four regioisomeric pathways A-D (B3PW91/cc-pVDZ).
Relative G values (kcal/mol) at 298 K, 1.0 atom in the Gas
Phase.

In summary, we have developed a novel stepwise
dearomatization/enantioselective borylation strategy for
the preparation of chiral 3-boryl-tetrahydropyridines from
pyridines with excellent enantiomeric purity. This reaction
involves the unprecedented regio- and enantioselective
borylcupration of 1,2-dihydropyridines, followed by the
stereoretentive Sg2 protonation of the resulting al-
lylcopper(I) intermediates by an alcohol additive. The cur-
rent methodology represents a simple and direct method
for the synthesis of optically active piperidines bearing a
C3-stereocenter in combination with a stereospecific bo-
ron functionalization process.
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