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1 |  INTRODUCTION

The emergence of multidrug‐resistant and extensively drug‐
resistant strains of Mycobacterium tuberculosis (Mtb), to-
gether with various other challenges in the development 
of new antitubercular agents (Gagneux, 2018; Laurenzi, 
Ginsberg, & Spigelman, 2007), has flooded the drug dis-
covery pipeline with several antituberculosis drugs. Despite 
this, tuberculosis infection is the tenth leading cause of 
morbidity and mortality ranking above HIV/AIDS making 
it major health problem worldwide with a large number of 
MDR/RR‐TB incident cases being in India, China, and the 
Russian Federation. After more than 50 years, two new drugs 
bedaquiline and delamanid have recently been approved and 
released for drug‐resistant TB (World Health Organization, 
2018). This rising problem of resistance to antituberculosis 
agents and the current situation can be solved by designing of 
a new molecular scaffold with the novel mechanism of action 
and with the ease of tailoring to the medicinal chemist (Patil, 

Bagade, Bonde, Sharma, & Saraogi, 2018). The molecular 
hybridization strategy is a rational design of new ligands or 
prototypes with better efficacy and physicochemical proper-
ties (Viegas‐Junior, Danuello, da Silva Bolzani, Barreiro, & 
Fraga, 2007).

The antitubercular effects of free fatty acids on mam-
malian tubercle bacilli and various species of mycobacteria 
have been determined historically (Dubos, 1950; Kondo & 
Kanai, 1972). Before the advent of antibiotics, cod liver 
(a mixture of saturated and unsaturated fatty acids), chaul-
moogra (cyclopentyl alkanoic acids), palm kernel, and tur-
tle oil (10‐, 12‐, and 14‐carbon saturated fatty acids) were 
used as a remedy for the treatment of tuberculosis (Grad, 
2004; Nieman, 1954). Kondo and Kanai in 1972 reported 
that among saturated fatty acids, lauric and myristic acids 
were highly active in killing both H37Ra and H37Rv of Mtb 
at 20 μg/ml (Kondo & Kanai, 1972). Later, H Saito et al. 
established the cytotoxicity of a series of fatty acids against 
seventy‐one strains of rapidly growing mycobacteria. 
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Abstract
The discovery of antibiotics around the middle twentieth century led to a decrease in 
the interest in antimycobacterial fatty acids. In order to re‐establish the importance 
of naturally abundant fatty acid, a series of fatty acid‐thiadiazole derivatives were 
designed and synthesized based on molecular hybridization approach. In vitro an-
timycobacterial potential was established by a screening of synthesized compounds 
against Mycobacterium tuberculosis H37Rv strain. Among them, compounds 5a, 5d, 
5h, and 5j were the most active, with compound 5j exhibiting minimum inhibitory 
concentration of 2.34 μg/ml against M.tb H37Rv. Additionally, the compounds were 
docked to determine the probable binding interactions and understand the mecha-
nism of action of most active molecules on enoyl‐acyl carrier protein reductases 
(InhA), which is involved in the mycobacterium fatty acid biosynthetic pathway.
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Amidst saturated fatty acid, lauric acid (C12:0) showed the 
maximum MIC’s 6.25–25  μg/ml and capric acid (C10:0) 
was the next best active with MIC’s 50–100  μg/ml. The 
lethal effects of fatty acids were due to disorganization of 
the bacterial cell membrane culminating into the change 
in membrane permeability. Fatty acids are naturally abun-
dant, renewable, biodegradable, biocompatible, and cost‐
effective (Carballeira, 2008; Muniyan & Jayaraman, 2016; 
Saito, Tomioka, & Yoneyama, 1984).

These observations rekindled our interest in exploring fatty 
acids in tuberculosis infection. Fatty acids have high log P, 
and Rodrigues and Biava et al. demonstrated its importance 
that high values of log P represent an increase in drug perme-
ability through the lipid‐rich mycobacterial cell wall leading 
to increased antimycobacterial potency (Biava et al., 2006; 
Rodrigues et al., 2013). However, fatty acids are a less potent 
surface‐active agent as they ionize into anionic form at physi-
ological pH. Various authors have demonstrated the antituber-
cular effect of various fatty acids alone or in combination with 
the heterocyclic ring (Figure 1; Chatzipanagiotou et al., 2005; 
D’Oca et al., 2010; Menendez et al., 2012; Morbidoni et al., 
2006; Rodrigues et al., 2013; Venepally & Reddy Jala, 2017). 
The physicochemical and pharmacokinetic properties of fatty 
acids can be improved by merging it with heterocycles or any 
molecule with relatively lower lipophilicity. Azaheterocycle 
derivatives have been widely explored as antimycobacterial 
agents (Danac & Mangalagiu, 2014; Mantu, Luca, Moldoveanu, 
Zbancioc, & Mangalagiu, 2010; Olaru, Vasilache, Danac, & 
Mangalagiu, 2017). Out of them 1, 3, 4‐thiadiazoles are well‐
known privileged structures with remarkable pharmacological 
activities such as antimicrobial, antituberculosis (Figure 1), 

antioxidant, anti‐inflammatory, anticonvulsants, antidepres-
sant, anxiolytic, antihypertensive, anticancer, and antifungal 
activity. The biological activity of thiadiazoles is attributed to 
their meso‐ionic nature and liposolubility which makes them 
capable of crossing the cellular membranes (Haider, Alam, & 
Hamid, 2015; Hu, Li, Wang, Yang, & Zhu, 2014; Jain, Sharma, 
Vaidya, Ravichandran, & Agrawal, 2013; Krátký & Vinsova, 
2016). Keeping in perspective the promising antimycobac-
terial activity of 1, 3, 4‐thiadiazoles and fatty acids, we de-
signed novel series of mycobacterium inhibitors by merging 
medium (lauric acid) and long‐chain fatty acids (myristic acid) 
with 1, 3, 4‐thiadiazole through molecular hybridization tech-
nique and their antitubercular activity was evaluated against 
Mycobacterium tuberculosis H37Rv strain using resazurin mi-
crotiter plate assay (REMA; Figure 2). We speculated that fatty 
acid‐thiadiazole derivatives might inhibit fatty acid biosynthe-
sis, as mycolic acid, the major component of the cell wall of 
mycobacteria, is made from FabH (β‐ketoacyl carrier protein 
synthase III) that catalyzes the extension of fatty acids such 
as lauroyl, myristoyl, and palmitoyl groups (Morbidoni et al., 
2006). Based on similarities in the structure, we docked these 
molecules on InhA (enoyl‐acyl carrier protein enzyme) to get 
insights into their interaction profiles and mechanism of action.

2 |  METHODS AND MATERIALS

All the chemicals were purchased from Sigma‐Aldrich and 
S. D. Fine Chemicals, India. 1H NMR was recorded on 
400 MHz and 13C NMR at 101 MHz on Agilent Technology 
MR400 spectrometer. Merck silica gel 60 F‐254 aluminum 

F I G U R E  1  Fatty acid and thiadiazole 
derivatives with antimycobacterial activity

F I G U R E  2  Pictorial representation of 
designed fatty acid derivatives
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sheets were used for analytical thin‐layer chromatography 
(TLC), and silica gel 60–120 mesh was used for column 
chromatography. Mass spectra were recorded by Shimadzu 
instrument in electrospray ionization in both positive and 
negative modes.

2.1 | General procedure for the synthesis of 
compounds 2a‐k
A mixture of appropriate carboxylic acid (1.0  g, 0.1  mol), 
thiosemicarbazide (0.1 mol), and POCl3 (0.3 mol) was heated 
to 75°C for 0.5 hr. The reaction mixture was cooled to room 
temperature, and then, water (9 ml) was added to it, and the 
mixture was refluxed for a further 4  hr. The mixture was 
cooled and basified to pH 8 with 50% NaOH solution. The 
mixture was filtered, and the residue was recrystallized from 
ethanol to afford the corresponding compounds characterized 
by melting point similar to reported compounds (Guan et al., 
2014).

2.2 | General procedure for the synthesis of 
compound 1k
To a solution of 4‐fluorobenzoic acid (5  g, 0.04  moles) 
in ethanol (50 ml), concentrated sulfuric acid (5 ml) was 
added, and the reaction mixture was refluxed for 16 hr. The 
reaction was monitored by TLC. After the consumption of 
starting material, the solvent was evaporated under reduced 
pressure. Saturated NaHCO3 was added, and the resultant 
solution was extracted with ethyl acetate. The organic layer 
was washed with water and then with brine solution. The 
organic layer was dried over anhydrous Na2SO4 and evapo-
rated under reduced pressure to obtain the desired product 
(ii) as yellow oil matched with the previously reported re-
sults (90%). A reaction mixture of ethyl 4‐fluorobenzoate 
(1.00 g, 5.95 mmol), phenol (1.11 g, 6.55 mmol), and dry 
K2CO3 (1.64 g, 11.9 mmol) in DMSO (8 ml) was heated at 
110°C for 18 hr. The mixture was poured into water and 
extracted with EtOAc several times. The organic layer was 
washed with water and brine and dried over anhyd·Na2SO4. 
The solvent was evaporated in vacuo, and the residue was 
purified by silica gel column chromatography (n‐hexane/
AcOEt) to give 1.47 g of iii (78% yields), to obtain color-
less oil in 78% yield (boiling point = 150–152°C; Li et al., 
2015; Palmer et al., 2015).

Ethyl 4‐phenoxybenzoate (iii) (1.85  mmol), sodium hy-
droxide (80  mg, 2.0  mmol) in ethanol (4  ml), and water 
(4 ml) were stirred under reflux for 3 hr. The reaction mixture 
was allowed to cool to ambient temperature and concentrated 
in vacuo. The residue was partitioned between ethyl acetate 
(3 × 10 ml) and water (20 ml). The aqueous layer was sepa-
rated and made acidic with 2 M HCl and then extracted with 
dichloromethane (3 × 10 ml). The organic layer was washed 

with brine (20 ml), dried over Na2SO4, and then evaporated 
under reduced pressure to give compound 1k (yield 75%) as 
a white solid with melting point 159–161°C matched with 
literature was used directly for the next step without further 
purification (Yang et al., 2012).

2.3 | General procedure for the synthesis of 
compounds 4a and 4b
Dodecanoic (3a)/tetradecanoic acid (3b) (1g, 1.0  eq.) was 
dissolved in dry chloroform (20 ml/g), and a catalytic amount 
of DMF was added followed by slow addition of thionyl chlo-
ride (1.2 eq.). The reaction mixture was heated under reflux 
for 4 hr. The solvent was removed evaporated in vacuo to get 
the crude acid chlorides. The crude acid chlorides (colorless 
liquids) were used directly for next step without further puri-
fication (García‐Barrantes et al., 2013).

2.4 | General procedure for the synthesis of 
compounds 5a‐k and 6a‐k
Thiadiazole amines (1 equiv) were dissolved in pyridine 
(20 ml/g) and stirred at 0°C under an inert atmosphere. After 
15 min, 1.2 equiv of dodecanoyl/tetradecanoyl chloride was 
added to the above stirred solution. The mixture was stirred 
at room temperature for 4  hr, and completion of the reac-
tion was monitored by TLC. After completion of the reaction, 
the reaction mixture was diluted with water and ethyl acetate 
followed by the addition of 2 N HCl to neutralize the mix-
ture. The precipitate obtained was then washed with water 
and stirred in saturated bicarbonate solution to remove acid 
impurities. (Wherever the residue was soluble in the organic 
layer, the organic layer was washed with water and saturated 
bicarbonate solution sequentially. The organic layer was 
dried over anhydrous Na2SO4, and then evaporated under re-
duced pressure to afford corresponding amides.) The crude 
compounds were purified either by column chromatography 
or by recrystallization from chloroform and methanol. The 
compounds were characterized by melting point, 1H NMR, 
13C NMR, and mass spectrometer (Figures S3–S53).

2.5 | In vitro antitubercular activity
Resazurin microtiter assay protocol (Palomino et al., 2002) 
was used to determine the minimum inhibitory concentra-
tion (MIC) of all the synthesized N‐(5‐aryl‐1, 3, 4‐thiadia-
zole‐2‐yl) alkanamide derivatives (5a–5k & 6a–6k). The 
synthesized compounds were screened against Mtb H37Rv 
25177 using serial dilution technique in Middlebrook 
7H9‐S broth medium. Mtb H37Rv was grown in media till 
the cells reached mid log phase. Each compound (2  mg) 
was dissolved in 1 ml of DMSO. The serial dilution of each 
compound was prepared using 96‐well microtiter plate and 
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100 μl of Mtb H37Rv cell suspension in nutrient media was 
added to each well. The pellicle was vortexed with glass 
beads in sealed tube in Middlebrook 7H9broth to obtain 
homogeneous suspension. The supernatant formed after 
standing the suspension for 15 min was taken in fresh tube, 
and optical density at 540  nm was adjusted to 0.1 (~107 
cells/ml). 100  µl of Mtb H37Rv culture suspension was 
seeded in 96‐well microtiter plates at a density of 104 cells 
per well and serially diluted with compounds to a final vol-
ume of 200  µl. Equivalent amount of DMSO was to the 
controls instead of compounds. The plates were incubated 
at 37°C for 7  days, after that 30  μl of the resazurin dye 
(0.02% w/v dissolved in distilled water) was added to all 
the wells and, the plates were again sealed and re‐incu-
bated for 48 hr. The MIC values were calculated by visual 
inspection for each well displaying change in color of the 
resazurin from blue to pink. Isoniazid (INH) was used as 
the standard drug.

2.6 | Docking studies and in silico 
ADME prediction
The docking studies were performed using Glide mod-
ule (version 7.1, Schrödinger, LLC, NY) installed on 
Linux workstation, and in silico ADME was predicted 
by Qikprop module as described in the Supplementary 
Information.

3 |  RESULTS AND DISCUSSION

3.1 | Chemistry
The novel series of N‐(5‐aryl‐1, 3, 4‐thiadiazole‐2‐yl) 
alkanamide derivatives were synthesized according to 
Schemes 1, 2 and 3. The intermediates, 5‐sub and unsub 
aryl‐1, 3, 4‐thiadiazol‐2‐amine, were synthesized as de-
picted in Scheme 1. Acylthiosemicarbazides were prepared 
in situ by heating the carboxylic acid and thiosemicar-
bazide in the acidic medium and cyclized subsequently. 
Various aryl and heteroaryl acid were reacted with thio-
semicarbazide in the presence of POCl3 to form in situ 
2‐acyl thiosemicarbazides which later underwent cyclode-
hydration to afford corresponding amine intermediates. 1k 
was synthesized by esterification of 4‐flourobenzoic acid 
followed by nucleophilic aromatic substitution of ethyl‐4‐
flourobenzoate with phenol in the presence of K2CO3 as a 
base in DMSO at 110°C; then, subsequent hydrolysis of the 
ester with aqueous NaOH gave the 4‐phenoxybenzoic acid 
(1k) as depicted in Scheme 2. As described in Scheme 3, 
the lauric and myristic acid was treated with thionyl chlo-
ride to obtain the corresponding acyl chloride and was re-
acted with various amines, 2a–k in the presence of pyridine 
to afford the target compounds, 5a–k, and 6a–k (Scheme 
3). The structures of 5a–k and 6a–k were characterized 
by 1H NMR, 13C NMR, and mass spectroscopic analysis. 
In 1H NMR spectra, the aromatic protons resonated at δ 

S C H E M E  1  Synthesis of 
unsubstituted and substituted 5‐aryl‐1, 3, 4‐
thiadiazol‐2‐amine derivatives (2a–k)

S C H E M E  2  Synthesis of 4‐phenoxybenzoic acid (1k)
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7.10–9.50 ppm. Resonance signals of the aliphatic regions 
were seen in the range of δ 0.88–2.37 ppm. The terminal 
methyl group was seen at 0.85–0.89 ppm. Broad singlet be-
tween δ 12.0 and 13.5 ppm confirmed the presence of pro-
ton of ‐CONH group. In 13C NMR spectra, aromatic carbon 
resonated between δ 111 and 160 ppm with many overlaps 
in these regions, while the C=O carbon resonated around 
δ171–173 ppm. The C‐5 of the 1, 3, 4‐thiadiazole nucleus 
appeared downfield in the NMR spectra in comparison to 

C‐2 of the ring. Further structural confirmation was done 
using mass spectrometric data analysis (Supplementary 
Information).

3.2 | Biological Screening
All 22 novel, N‐(5‐aryl‐1, 3, 4‐thiadiazole‐2‐yl) alkanamide 
derivatives were evaluated in a whole‐cell assay against Mtb 
strain H37Rv using REMA (Palomino et al., 2002). The 

S C H E M E  3  Synthesis of N‐(5‐
aryl‐1, 3, 4‐thiadiazole‐2‐yl) alkanamide 
derivatives (5a–k) and (6a–k)

Compound Ar QPlogPo/wa Mol. weight MIC in μg/ml (μM)

5a Ph 5.393 359.529 4.69 (13.04)

5b 4‐F‐Ph 5.633 377.519 150 (397.32)

5c 3‐NO2‐Ph 4.686 404.526 9.38 (23.18)

5d 3,5‐diNO2‐Ph 3.987 449.524 4.69 (10.43)

5e 3,4‐diOMePh 5.52 419.581 18.75 (44.67)

5f 4‐MePh 5.749 373.555 18.75 (50.1)

5g 3‐Br‐4‐OMePh 6.094 468.451 9.38 (20.02)

5h C6H5‐CH=CH‐ 6.043 385.566 4.69 (12.16)

5i 2‐Cl‐Ph 5.836 393.974 75 (190.37)

5j 4‐pyridinyl 4.427 360.516 2.34 (6.49)

5k Ph‐O‐Ph 7.018 451.626 37.5 (83.03)
aDetermined by QikProp analysis. 

T A B L E  1  Antitubercular activity of 
N‐(5‐aryl/heteroaryl)‐1, 3, 4‐thiadiazol‐2‐yl) 
dodecanamide derivatives

Compound Ar QPlogPo/wa Mol. weight MIC in μg/ml (μM)

6a Ph 6.172 387.582 9.38 (24.20)

6b 4‐F‐Ph 6.409 405.573 >150 (>369.84)

6c 3‐NO2‐Ph 5.456 432.58 18.75 (43.34)

6d 3,5‐diNO2‐Ph 4.744 477.577 9.38 (19.64)

6e 3,4‐diOMePh 6.307 447.635 37.5 (83.77)

6f 4‐MePh 5.749 401.609 37.5 (93.37)

6g 3‐Br‐4‐OMePh 6.852 496.504 9.38 (18.89)

6h C6H5‐CH=CH‐ 6.815 413.62 18.75 (45.33)

6i 2‐Cl‐Ph 6.615 422.027 >150 (>355.43)

6j 4‐pyridinyl 5.185 388.57 18.75 (48.25)

6k Ph‐O‐Ph 7.686 479.679 75 (156.34)

INH — —   0.4 (2.91)

Rifampicin — —   0.60 (0.729)
aDetermined by QikProp analysis. 

T A B L E  2  Antitubercular activity of 
N‐(5‐aryl/heteroaryl)‐1, 3, 4‐thiadiazol‐2‐yl) 
tetradecanamide derivatives
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synthesized compounds exhibited interesting activity with 
MIC ranging from 2.34 to 150  μg/ml against Mtb H37Rv, 
as seen in Tables 1 and 2. INH was used as a standard drug. 
The results of in vitro antimycobacterial evaluation revealed 
that substitution at the para position with electron withdraw-
ing group such as fluoro was deleterious for the activity (5b, 
6b). Introduction of the weaker electron‐releasing group such 
as methyl at the para position of phenyl ring (5f) displayed 
a decrease in the potency as compared to the unsubstituted 
phenyl ring in dodecanamide series (5a). Similarly, in tet-
radecanamide series, methyl substituted ring (6f) was least 
active as compared to its unsubstituted counterparts (6a). The 
presence of bulkier groups at para position resulted in com-
pounds with reduced antitubercular activity in both the series 
(5k, 6k) may be due to high steric hindrance. Halogen sub-
stitution at ortho position was unfavorable in both dodecana-
mide and tetradecanamide series (5i, 6i). In general, halogen 
substitution was detrimental for the activity. Substitution at 
meta position with nitro was favorable for activity (5c, 6c). 
Disubstitution at 3, 5 positions with electron withdrawing 
group such as nitro showed an improved biological profile as 
compared to monosubstituted nitro at 3‐position indicating 
that the presence of both nitro groups in dodecanamide series 
is requisite for the high efficacies (5d, 6d). Disubstitution at 
3, 4 positions with one electron withdrawing and one elec-
tron donating have shown equal potency in dodecanamide 
(5g) and tetradecanamide (6g) series and showed better 
activity as compared to electron donating groups. (5e, 6e) 
Disubstitution was favorable over monosubstitution. Styryl 
group in case of dodecanamide (5h) series exhibited good 
antitubercular activity as compared to tetradecanamide series 
(6h). Replacement of phenyl ring with heteroaryl ring such 
as 4‐pyridinyl resulted in compounds with the highest anti-
mycobacterial activity in dodecanamide series (5j, 6j). The 
above finding revealed that the potency decreased with the 
increase in the carbon chain. Overall, dodecanamide series 
displayed greater antitubercular potency as compared to tet-
radecanamide series.

3.3 | Molecular docking studies
The mycobacterial cell wall biosynthetic pathway (FAS II) is 
distinct from mammalian (FAS‐I) multienzyme complex. So in-
hibition of InhA enzyme, involved in mycobacterium cell wall 
biosynthesis, is an attractive target. As per previous reports on 
the antitubercular activity of some alkanamide and thiadiazole 
derivatives (Martínez‐Hoyos et al., 2016; Saha, Alam, & Akhter, 
2015; Shirude et al., 2013; Šink et al., 2015), molecular dock-
ing was carried out on the basis of the similarity of the struc-
tures with the bound ligand in the target. All the molecules were 
docked into the active site of the crystal structure of enoyl‐ACP 
reductase (5JFO) target enzymes to determine the possible mode 
of action and binding orientations, as seen in Figures S1 and S2.

3.4 | In Silico ADME prediction
Fatty acids being lipophilic imparted distinct lipophilicity to 
the designed molecules and hence imparted distinct MIC’s. 
QikProp analysis data reveal that three compounds follow the 
Lipinski rule of five, and others have varying Log P values 
which range from 3.987 to 7.686 (Table S1), as increase in 
the lipophilicity could ease the entrance of these molecules 
through the lipid‐enriched bacterial membrane (Biava et al., 
2008; Navarrete‐Vázquez et al., 2007).

4 |  CONCLUSION

In summary, a new series of N‐(5‐aryl‐1, 3, 4‐thiadia-
zole‐2‐yl) alkanamides were designed successfully through 
molecular hybridization approach based on the inherent an-
titubercular activity of abundant fatty acids. The synthesized 
derivatives exhibited good to moderate in vitro inhibitory 
activity against Mtb H37Rv strain (ATCC 25177). These 
fatty acid‐thiadiazole derivatives were synthesized from 
readily accessible reactants and reagents by simple and ef-
ficient synthetic protocols. Out of 22 fatty acid‐thiadiazole 
derivatives, compounds 5a, 5d, and 5h showed in vitro in-
hibitory activity with MIC 4.69 μg/ml and 5j with 4‐pyridi-
nyl moiety displayed maximum Mtb inhibitory activity with 
MIC 2.34 µg/ml. The structure–activity relationship revealed 
that electron withdrawing group such as nitro on phenyl ring 
(mono‐ and disubstitution) enhanced the inhibitory activity 
of the compounds as compared to electron donating groups. 
Lauric acid derivatives showed higher activity as compared 
to myristic acid derivatives. SAR revealed that the increase 
in log P did not improve the inhibitory activity toward my-
cobacteria. Additionally, docking and MM‐GBSA studies on 
the enzyme InhA were carried out with the most active mole-
cules to examine the putative interactions responsible for bi-
ological activity. Docking studies revealed that compounds 
5a and 5j bind to the enzyme InhA. However, the biological 
target for compounds 5d and 5h needs to be defined. Further 
studies are underway to improve antitubercular potency and 
to elucidate the precise mechanism of action.
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