Month 2015 Ferrocenyl, Alkyl, and Aryl-Pyrido[2,3-*d*]Pyrimidines as Vasorelaxant of Smooth Muscle of Rat Aorta via cAMP Conservation Through Phosphodiesterase Inhibition

Ivonne Arellano,^a* Fernando Rodríguez-Ramos,^b Martín González-Andrade,^c Andrés Navarrete,^c Manju Sharma,^d Noé Rosas,^a and Pankaj Sharma^a*

^aInstituto de Química, Universidad Nacional Autónoma de México, México, Distrito Federal, 04510, México ^bDepartamento de Ciencias Naturales, DCNI, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, México, Distrito Federal, 05300, México

^cFacultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, México, Distrito

Federal, 04510, México

^dIngeniería Bioquímica, Instituto Tecnológico Superior de Atlixco, Atlixco, Puebla, México

*E-mail: ivonnearj@gmail.com; pankajsh@unam.mx

Received June 2, 2014 DOI 10.1002/jhet.2380

Published online 00 Month 2015 in Wiley Online Library (wileyonlinelibrary.com).

New pyrido [2,3-d]pyrimidines 11, 12, 13, and 21 have been synthesized. The vasorelaxant effect on smooth muscle isolated from rat aorta, via PDEs inhibition, of these compounds along with other pyrido [2,3-d]pyrimidines **14-20** reported earlier by our group, has also been determined. These pyrido[2,3-d]pyrimidines 11–21 were synthesized by the reaction of ferrocenyl-ethynyl ketones (1–4) or α -alkynyl ketones (5-10) with 6-amino-1,3-dimethyluracil using $[Ni(CN)_4]^{-4}$ as an active catalytic species, formed *in situ* in a Ni(CN)₂/NaOH/H₂O/CO/KCN aqueous system. Evaluation of the vasorelaxant effect of compounds 11-21 demonstrated that all compounds relax the tissue in a concentration-dependent manner. The structural changes do not alter the effectiveness; however, there are differences related to potency expressed as EC₅₀. Compounds **12** (7-ferrocenyl-1,3-dimethyl-5-(*m*-tolyl)-pyrido[2,3-*d*]pyrimidine) and **13** (7ferrocenyl-1,3-dipropyl-5-(4-metoxyphenyl)-pyrido[2,3-d]pyrimidine) were the most potent compounds, even more than rolipram, reference drug; the EC_{50} was $0.41 \pm 0.02 \,\mu\text{M}$ and $0.81 \pm 0.11 \,\mu\text{M}$ for 12 and 13, correspondingly. The EC₅₀ of compounds **15** (7-ferrocenyl-1,3-dimethyl-5-phenyl-pyrido[2,3-d]pyrimidine), 14 (7-ferrocenyl-5-(3,5-dimethoxyphenyl)-1,3-dimethylpyrido[2,3-d]pyrimidine), and 19 (5-n-butyl-7-ethyl-1,3-dimethylpyrido[2,3-d]pyrimidine) was similar to EC₅₀ of rolipram. Compounds 11–21 significantly induce concentration-dependent vasorelaxation in endothelium-intact aortic rings. In addition, the relaxation responses to each compound in either endothelium-intact or endothelium denuded aortic rings were comparable, suggesting that removal of the functional endothelium has no significant influence on its intrinsic vasorelaxant activity. In vitro capability of conserving cyclic-AMP or cyclic-GMP (adenosine and guanosine 3', 5'-cyclic monophosphate) via PDE inhibition for compounds 12-15 and 19 was evaluated. Compounds 15 and 19 show the highest percent inhibition effect (94.83% and 83.98%, respectively) for the decomposition of c-AMP. Docking studies showed that the compound 15 was selective for the inhibition of PDE-4.

J. Heterocyclic Chem., 00, 00 (2015).

INTRODUCTION

Pyrido[2,3-*d*]pyrimidines are versatile compounds with pharmacological effects as anti-hypertensive [1], analgesic, anti-inflammatory [2], vasorelaxant [3], cytotoxic [4],

antiviral [5], antibacterial [6], antihistaminic [7], as protein kinases [8], tyrosine kinases [9], anti-proliferative CDK2 [10], and phosphodiesterases (PDEs) enzymes inhibitors, specifically, types 4 (PDE-4) [11,12] and 7 (PDE-7) [13]. PDEs are enzymes in charge for the hydrolysis of

I. Arellano, F. Rodríguez-Ramos, M. González-Andrade, A. Navarrete, M. Sharma, N. Rosas, and P. Sharma

Figure 1. Rolipram.

intracellular cAMP or cGMP to AMP and GMP, respectively. Inhibition of these enzymes causes the increase of mentioned second messengers, inducing a vasorelaxant effect in a variety of blood vessels [14] and plays an important role for controlling the blood pressure [15] and is used for the development of new anti-hypertensive drugs [16,17].

Previously, we have reported the synthesis of some pyrido[2,3-*d*]pyrimidines analogs by an efficient and simple way through heterocyclization of α -ketoalkynes or ferrocenyl ethynyl ketones with 6-amino-1,3-dimethyluracil using [Ni(CN)₄]⁻⁴ as an active catalytic species, formed *in situ* by a Ni(CN)₂/NaOH/H₂O/CO/KCN aqueous system [18,19].

On the other side, many ferrocenyl compounds have demonstrated biological activities as cytotoxic, antitumor, antimalarial, antifungal, antioxidant, and antineoplastic [20–23]. It is also known that ferrocenyl group has been used widely in the design or redesign of drugs as phenyl bioisostere so it is worthwhile to functionalize pyrido[2,3*d*]pyrimidines with a ferrocenyl group. In this work, several analogs of these compounds (some of them contain ferrocenyl group in the molecule) were synthesized to

 Table 1

 Ethynyl ketones obtained to synthesize pyrido[2,3-d] pyrimidines.

	R	R_1	
Compound	R—	R ₁	Ref.*
1	Ferrocenvl	n-methoxynhenyl	26
2	Ferrocenyl	<i>m</i> -tolyl	20
3	Ferrocenyl	3.5-dimethoxyphenyl	19
4	Ferrocenvl	Phenvl	19
5	Phenyl	Phenyl	27
6	Phenyl	Ethyl	18
7	Phenyl	Propyl	18
8	Butyl	Ethyl	18
9	Butyl	Propyl	18
10	(CH ₃) ₃ Si	Propyl	28

*Ref., reference.

To obtain pyrido[2,3-d]pyrimidines 11 and 13, compound 1 was used.

explore their activity as vasorelaxant through the inhibition of PDEs and to analyze the structure–activity relationship. Rolipram (Figure 1), a selective PDE-4 inhibitor that has shown to conserve cAMP levels in vascular smooth muscle [24], was used as a reference drug.

RESULTS AND DISCUSSION

Chemistry. Pyrido[2,3-*d*]pyrimidines were obtained through a heterocyclization reaction between α -

Scheme 1. Synthesis of ethynyl ketones. This figure is available in colour online at wileyonlinelibrary.com/journal/jhet

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

Scheme 2. Synthesis of pyrido[2,3-d]pyrimidines.

ketoalkynes or ferrocenyl ethynyl ketones and 6-amino-1,3-dimethyluracil. Ferrocenyl ethynyl ketones were obtained from ethynylferrocene and acyl chlorides via a palladium-catalyzed coupling reaction as reported earlier by our group (1–4) [19]. α -ketoalkynes were obtained from an alkynide, formed by an alkyne, *n*-BuLi, and BF₃OEt₂, and an anhydride in an inert atmosphere at -78° C (5–10) (Scheme 1) [25]. The compounds obtained in this work are shown in Table 1.

Pyrido[2,3-*d*]pyrimidines substituted at the C-7 position by a ferrocenyl group (**11–15**) were obtained from ferrocenyl ethynyl ketones and 6-amino-1,3-dimethyluracil (11, 12, 14, and 15) or 6-amino-1,3-dipropyluracil (13) using a nickel aqueous catalytic system, as reported earlier [19]. Compounds that are substituted at the C-5 and C-7 positions by aryl or alkyl groups (16–21) were obtained by using α -ketoalkynes and 6-amino-1,3-dimethyluracil [18]. Compound 21 was obtained from the heterocyclization of silyl- α -ketoalkyne and 6-amino-1,3-dimethyluracil. Compounds 11, 12, 13, and 21 are new and have not been reported earlier (Scheme 2) and were characterized by various physico-chemical methods. This method allows the easy preparation of several pyrido[2,3-*d*]pyrimidines-5,7 disubstituted in water under mild conditions.

Vasorelaxant effect of ferrocenyl, alkyl, and aryl-pyrido [2,3-d]pyrimidines on rat aorta. Pyrido[2,3-*d*] pyrimidines 11-21 (Table 2) were tested for their vasorelaxant activity in rat aortic rings pre-contracted with norepinephrine (NE) (0.1 μ M). Figure 2 shows the concentration-response curves of these compounds. Rolipram, a PDE-4 inhibitor, was used as a reference drug. It is noted that all compounds relax the tissues in a concentration-dependent manner. All compounds present vasodilator effect, which indicates that the pyrido [2,3-d]pyrimidine ring retains its effect and does not lose it even if it is substituted at N-1 and N-3 positions with a methyl group (compounds 11, 12, and 14-21) or a propyl group as in compound 13.

 EC_{50} values for compounds **11–21** along with the EC_{50} value for rolipram are shown in Table 2. These values are in the following descendent potency order

Pyrido[2,3- a]pyrimidines obtained and evaluated by their vasodilator effect in rat aortic rings (results expressed as EC ₅₀).					
Compound	R_3 R_1 R_2 Yield or reference EC_{50} [μ M]		₅₀ [µM]		
	R_1	<i>R</i> ₂		With endothelium	Without endothelium
11	<i>p</i> -methoxyphenyl	Ferrocenyl	70%	9.83 ± 2.28	10.84 ± 2.50
12	<i>m</i> -tolyl	Ferrocenyl	70%	0.41 ± 0.02	0.36 ± 0.06
13*	<i>p</i> -methoxyphenyl	Ferrocenyl	70%	0.81 ± 0.11	0.80 ± 0.01
14	3,5-dimethoxyphenyl	Ferrocenyl	Ref. 18	1.45 ± 0.39	1.78 ± 0.80
15	Phenyl	Ferrocenyl	Ref. 18	2.00 ± 0.71	1.81 ± 0.45
16	Phenyl	Phenyl	65%	3.13 ± 0.16	3.52 ± 0.25
17	Phenyl	Ethyl	Ref. 17	3.61 ± 0.74	3.63 ± 0.83
18	Phenyl	Propyl	Ref. 17	2.31 ± 0.77	2.57 ± 0.79
19	Butyl	Ethyl	Ref. 17	1.60 ± 0.36	1.80 ± 0.26
20	Butyl	Propyl	Ref. 17	5.00 ± 0.44	4.14 ± 0.33
21	Н	Propyl	70%	5.63 ± 1.16	4.31 ± 0.59
Rolipram	NA	NA	NA	1.821 ± 0.72	NE

 Table 2

 Pyrido[2,3_d]
 a_d a_d

*For compound **13**, $R_3 = n$ -Propyl. For compounds **11**, **12**, **14–21**, $R_3 = Me$.

 EC_{50} [µM], half maximal effective concentration. Each value represents the mean ± SEM of at least six experiments.

NA, do not apply; NE, was not evaluated; Ref., reference.

Figure 2. Concentration–response curves of pyrido[2,3-*d*]pyrimidines 12–15, 19, and rolipram. Each point represents the mean \pm SEM (*n* = 6). **p* < 0.05, significant difference compared with the respective control (Dunnett's *t*-test after analysis of variance).

12 > 13 > 14 > 19 > rolipram > 15 > 18 > 16 > 17 > 20-

21 > 11. It is observed that 15 and 19 have a similar potency as of rolipram. From the statistical analysis of maximum effect for compounds 11-21, it is concluded that structural changes do not alter the effectiveness; however, there are difference related to potency expressed as EC₅₀. It was observed that compounds 11-21 significantly induce concentration-dependent vasorelaxation in endothelium-intact aortic rings (Table 2). Figure 2 shows concentration-response curves of compounds 12-15, 19, and rolipram for a better understanding. In addition, the relaxation responses to each compound in either endothelium-intact or endothelium denuded aortic rings were comparable (Table 2), suggesting that removal of the functional endothelium does not influence significantly on its intrinsic vasorelaxing activity.

The structural analysis showed that compound 11, substituted with a ferrocenyl group at C-7 and p-methoxyphenyl at C-5, was less potent as vasorelaxant; however, its effectiveness is not very different from the other compound 13 analogous to 11, it was inferred that a longer chain at positions N-1 and N-3 promotes the vasodilatory effect of pyrido[2,3-d]pyrimidines. When the

position C-7 is substituted with a propyl group as in compounds 18, 20, and 21, the relaxing power is slightly higher for compound 20, which is substituted by an *n*-butyl group at C-5 than compound 21, which is unsubstituted at C-5. This indicates that the substitution at C-5 position of the ring has a plus effect on the activity and it is better if substituent is a phenyl group (compound 18). A similar tendency is observed in the relaxing effects for compounds 16 and 17, which is greater than the relaxing effects for compounds 20 and 21, confirming that the presence of aromatic rings at C-5 increases the relaxing potency.

In the case of compounds **15** and **18**, which have aromatic ring at C-5, whereas C-7 position is substituted with a ferrocenyl group and propyl group, respectively, an increased relaxing effect was observed. When the aromatic ring at C-5 of compound **15** was replaced with a 3,5-dimethoxyphenyl group as in compound **14**, an improvement of vasorelaxant effect was observed, which indicates that substitution on phenyl group at position C-5 is preferred. Compounds **12** and **13** are the most potent, which are ferrocenyl-substituted at C-7 position. Compounds **15** and **19** show a similar potency as shown by the reference drug rolipram.

Inhibition of degradation of cAMP or cGMP via phosphodiesterases inhibition. Compounds 12-15 and 19 were evaluated as inhibitors of PDEs, as these compounds presented the most potent vasorelaxant effect. A colorimetric enzymatic assay was carried out, in which these compounds were capable to avoid the degradation of secondary messengers (cAMP and cGMP) via PDEs inhibition. Rolipram was used as a reference compound, which is a selective inhibitor of PDE-4. Table 3 presents the percentage inhibition of degradation of cAMP or cGMP by compounds 12-15 and 19. All the tested compounds inhibit the action of PDE, and the observed changes depend on the substrate used, and in fact, the compounds inhibit the degradation of cAMP. When cAMP was used as a substrate, all compounds presented inhibitory effect from 30% to 95%, unlike when cGMP

 Table 3

 Percentage inhibition of degradation of cAMP or cGMP via PDE inhibition

Sub	strate
cAMP	cGMP
31.24	20.13
30.00	17.53
50.83	16.73
94.83	5.68
83.98	6.38
70.43	16.56
	Sub: cAMP 31.24 30.00 50.83 94.83 83.98 70.43

Each percentage inhibition shows the maximum inhibition effect of compounds to $100\,\mu\text{M}.$

Month 2015

was used as a substrate presenting inhibitory effect of approximately 6% and 20%. Compounds **12** and **13** present the best vasorelaxant effect, inhibiting the degradation of cAMP (31.24% and 30.00%, respectively), which indicates that their relaxant effect occurs through another mechanism.

It has been well documented that the presence of PDE-1, PDE-3, PDE-4, and PDE-5 in vascular smooth muscle tissue [14,29] and an increase in the concentration of cAMP causes relaxation of vascular smooth muscle [29] tissue, where the pyrido[2,3-d]pyrimidines **15** and **19** showed a similar activity than rolipram. This result suggests that **15** and **19** have a vasorelaxant effect on smooth muscle isolated from rat aorta via inhibition of cAMP-dependent PDEs.

Molecular docking. According to the results of the enzyme inhibition, it was observed that compounds 12–15 and 19 are more efficient to inhibit degradation of cAMP, and its binding to the cAMP-dependent PDEs was predicted using a docking study. Docking studies were carried out with the AUTODOCK 4.0.2 program, and compounds 12–15 and 19 were evaluated by their capability to bind PDE-3 and PDE-4 cleavage to obtain the theory K_i . These enzymes were used as they are cAMP-dependent and present in a considerable extent in rat aorta.

The structures of compounds **12–15** and **19** were built using the program HyperChem 8 release and optimized using the Gaussian software. Initially, the ligands were docked to the entire protein, and then the best conformations were docked in a smaller area (grid) in order to refine the results. The compounds analyzed bound to the pocket corresponding to one or more of the sites of PDE-3 and PDE-4 (K_i values are indicated in Table 4). All compounds exhibited affinity to the proteins. In relation to the reference drugs, enoximone (PDE-3 Inhibitor) and rolipram (PDE-4 inhibitor) showed the proven affinity for their respective PDE.

In silico studies showed that compound 15 binds to the catalytic site of PDE-4, in a similar way as shown by

Table 4		
Theoretical parameters of phosphodiesterase inhibitors.	Predicted	activity
values of the studied compounds.		

	PDE-3		PDE-4	
Compound	K _i (nM)	EFEB (kcal/mol)	K _i (nM)	EFEB (kcal/mol)
12	90.04	-9.61	151.32	-9.30
13	131.84	-9.39	87.72	-9.63
14	1110	-8.12	444.26	-8.67
15	127.36	-9.41	71.56	-9.75
19	894.61	-8.25	1240	-8.06
Rolipram	784.38	-8.33	392.28	-8.74
Enoximone	3840	-7.39	4920	-7.24

Ki, estimate inhibition constant (μ M). EFEB, estimating free energy of binding (Kcal/Mol).

rolipram. Besides, both compounds have a minor Ki value for PDE-3 (0.77 and 0.99 fold less, respectively, than for PDE-4). Compound 19 has affinity for the catalytic site of PDE-3. These facts demonstrate a good correlation with the in vitro assays. Thus, compound 15, which is substituted by a ferrocenyl group at C-7 position and by a six-membered aromatic ring at C-5 position, is the most effective inhibitor of degradation of cAMP (Table 3) and shows a similar vasorelaxant effect as rolipram (Table 2) and the best Ki value for PDE-4. In the same way, compound 19, which is substituted by alkyl chains at C-5 and C-7 positions, shows a best Ki value for PDE-3 than for PDE-4. This explains the fact that in *in vitro* PDE assay, 19 is more effective than rolipram and 15 is more effective than 19. Figure 3 shows the results of docking study. Compound 15 and rolipram bound to the same catalytic site formed by the amino acids Tyr233, His234, His238, Asp392, Leu393, Asn395, Pro396, Tyr403, Trp406, Thr407, Ile410, Phe414, Met431, Ser442, Gln443, Phe445, and Phe446.

CONCLUSION

New pyrido[2,3-d]pyrimidines 11, 12, 13, and 21 have been synthesized and characterized. Vasorelaxant effect via PDEs inhibition of these compounds along with known pyrido[2,3-d]pyrimidines 14-20 has also been determined. Apparently, there is no clear trends in potency from the different substitution patterns, compounds 15 and 19 are the most potent PDE inhibitors and are more effective than rolipram. Docking study demonstrates that compound 15 has an affinity for the catalytic site of PDE-4, and compound 19 has an affinity for the catalytic site of PDE-3, and these results have a correlation with their vasorelaxant effects. Even though compounds 12 and 13 were presented as the most potent vasorelaxant substances, nevertheless, they are not so effective to inhibit degradation of cAMP or cGMP via PDE-inhibition suggesting that 12 and 13 present their relaxant effect through another pharmacological action mechanism.

Finally, because hypertension is one of the most common diseases related with vascular smooth muscle contraction, and the therapeutic strategies to combat the consequent damage to the vascular endothelium are generally aimed at modulating the molecular and biochemical mechanisms underlying this dysfunction, such as vascular smooth muscle contraction, the pyrido[2,3-*d*]pyrimidines are suggested as possible effective antihypertensive agents as vasodilators via PDE inhibition.

EXPERIMENTAL

Chemistry. 6-amino-1,3-dimethyluracil and 6-amino-1,3diprophyluracil were purchased from Aldrich. ¹H and ¹³C spectra were recorded on a JEOL GX-300 instrument (Tokyo, Japan), 300 MHz for ¹H and 75 MHz for ¹³C using CDCl₃ as solvent. IR

Figure 3. Structural models of PDE4-15 and PDE4 = rolipram complex. On the right shows the complex in magenta cartoon, yellow, and red stick the PDE4, 15, and rolipram, respectively. The 2D representation of PDE4-15 and PDE4-rolipram complexes resulting from the docking is shown. The images were made with PyMOL and LIGPLOT.

spectra were recorded in film on a Nicolet FT 5SX spectrophotometer (Madison, Wisconsin, USA). Mass spectra were obtained using a JEOL JMSAX505HA spectrometer (Tokyo, Japan). Ferrocenylethynyl ketones were prepared according to the previous report [19]. α -alkynyl ketones were obtained as follows.

In N₂ atmosphere, 40 mL of dried THF was added to a flask which was kept in a bath of acetone-dried ice to -78°C. About 30 mmol of the corresponding alkyl compound and 30 mmol of Bu-Li were then added. After 30 min, 30 mmol of BF₃OEt₂ and 45 mmol of the corresponding anhydride were added. After stirring for 15 min, reaction was quenching using 2 N NaOH solution (50 mL). The crude product was purified by flash chromatography using ethyl acetate/hexane (90:10) as eluent.

General procedure. *Pyrido*[2,3-d]*pyrimidines*. A 5N NaOH solution (50 mL) was degassed and saturated with CO under atmospheric pressure for 30 min, 2 mmol of Ni(CN) 2.4H2O was added to the solution, the mixture was kept at room temperature overnight, with stirring and slow bubbling of CO, until a pale yellow solution was obtained. Addition of 15 mmol of KCN resulted in a color change to orange. The catalytic species $[Ni(CN)_4]^{-4}$ is obtained when an excess of KCN is added to an alkaline solution of Ni(CN)2 in CO atmosphere. After stirring for 0.5 h, the corresponding ketoalkyne (10 mmol) and the corresponding 6-amino-uracil (10 mmol) were added. The evolution of the reaction was followed by TLC. At the end of the reaction, ethyl acetate was used to extract the product. After evaporation of the solvent followed by drying over MgSO₄, the crude product was purified by flash chromatography using ethyl acetate/hexane (80:20) as eluent.

7-Ferrocenyl-1,3-dimethyl-5-(4-methoxyphenyl)-pyrido[2,3*d]pyrimidine-2,4-dione (11).* The product was obtained as red crystals in a 70% yield (mp 243–244°C); mass spectrum IE: m/z (%): 481 (6) M⁺, 416 (3), 91 (100); IR (film, cm⁻¹): 1702, 1656 (C=O), 1545 (C=N); ¹H NMR (300 MHz, CDCl₃, δ in ppm): 3.38 (*s*, 3H,CH₃N(2)), 3.81 (*s*, 3H, CH₃N(1)), 3.88 (*s*, 3H, OCH₃), 4.07 (*s*, 5H, cp'-ring), 4.52 (*t*, 2H, J=1.9 Hz, cp-ring), 5.00 (*t*, 2H, J = 1.9 Hz, cp-ring), 7.00 (*d*, 2H, J = 10.8 Hz, 3,5-C₆H₄), 7.30 (*d*, 2H, J = 8.6 Hz, 2,6-C₆H₄), 8.13 (*s*, 1H, C=CH); ¹³C NMR (75 MHz, CDCl₃, ppm): 29.1 (N(2)CH₃), 31.7 (N(1) CH₃), 55.6 (OCH₃), 69.6 (C–C, cp-ring), 70.4 (C–H, cp'-ring), 70.9 (C–H, cp-ring), 79.4 (C–H, cp-ring), 113.8 (C6), 119.4 (C 3,5-C₆H₄), 130.6 (C 2,6-C₆H₄) 132.5 (C1-C₆H₄) 150.9 (C2), 151.3 (C7), 154.7 (C5), 157.3 (C9), 160.1 (C4).

7-Ferrocenyl-1,3-dimethyl-5-(m-tolyl)-pyrido[2,3-d]pyrimidine-The product was obtained as orange powder 2,4-dione (12). in 70% yield (mp 249.5–250°C); mass spectrum IE: m/z(%): 465 (97) M⁺, 400 (100); IR (film, cm⁻¹): 1700, 1657 (C=O), 1548 (C=N); ¹H NMR (300 MHz, CDCl₃, δ in ppm): 2.50 (s, 3H, Ph-CH₃), 3.40 (s, 3H,CH₃N(2)), 3.84 (s, 3H, CH₃N(1)), 4.16 (s, 5H, cp'-ring), 4.47 (t, 2H, J = 1.8 Hz, cp-ring), 4.72 (t, 2H, J=1.8 Hz, cp-ring), 7.34 (d, 1H, $J = 7.3 \text{ Hz}, 4 - C_6 H_4$, 7.45 (t, 1H, $J = 7.5 \text{ Hz}, 3 - C_6 H_4$), 7.95 (d, 2H, J = 8.8 Hz, 2,6-C₆H₄), 8.15 (s, 1H, C=CH);¹³C NMR (75 MHz, CDCl₃, ppm): 21.9 (PhCH₃), 28.6 (N(2)CH₃), 30.5 (N(1)CH₃),68.5 (C-C, cp-ring), 70.5 (C-H, cp'-ring), 72.7 (C-H, cp-ring), 84.2 (C-H, cp-ring), 107.6 (C=CH), 120.6 (C2-C₆H₄), 124.6 (C3-C₆H₄), 128.2 (C4-C₆H₄), 129.3 (C6-C₆H₄), 131.6 (C5-C₆H₄), 138.9 (C1-C₆H₄), 151.6 (C2), 151.9 (C7), 154.4 (C5), 157.9 (C9), 160.7 (C4).

7-Ferrocenyl-1,3-dipropyl-5-(4-methoxyphenyl)-pyrido[2,3-d] pyrimidine-2,4-dione (13). The product was obtained as orange powder in 70% yield (mp 166–167°C); mass spectrum IE: m/z (%): 537 (32) M⁺, 472 (23), 132 (100); IR (KBr, cm⁻¹): 1703, 1660 (C=O), 1542 (C=N); ¹H NMR (300 MHz, CDCl₃, δ in ppm): 0.92 (*t*, 3H, J=7.4 Hz, N(2)(CH₂CH₂CH₃), 1.05 (*t*, 3H, J=7.4 Hz, N(1)(CH₂CH₂CH₃), 1.65 (*sex*, 2H, J=7.5 Hz, N(2) (CH₂CH₂CH₃), 1.85 (*sex*, 2H, J=7.4 Hz, N(1)(CH₂CH₂CH₃), 3.91 (*s*, 3H, OCH₃), 3.97 (*m*, 2H, N(2)(CH₂CH₂CH₃), 4.16 (*s*, 5H cp'-ring), 4.43 (*m*, 2H, N(1)(CH₂CH₂CH₃), 4.45 (*t*, 2H, J=1.9 Hz, cpring), 4.68 (*t*, 2H, J=1.8 Hz, cp-ring), 7.07 (*d*, 2H, J=9.1, 3,5-C₆H₄), 8.08 (*s*, 1H, C=CH), 8.12 (*d*, 2H, J=8.9, 2,6-C₆H₄); ¹³C NMR (75 MHz, CDCl₃, δ in ppm): 11.4 (N(2) CH₂CH₂CH₃), 11.6 (N(1)CH₂CH₂CH₃), 21.2 (N(2)CH₂CH₂CH₃),

Month 2015 Ferrocenyl, Alkyl, and Aryl-Pyrido[2,3-d]Pyrimidines as Vasorelaxant of Smooth Muscle of Rat Aorta via cAMP Conservation Through Phosphodiesterase Inhibition

21.4 (N(1)CH₂CH₂CH₃), 43.4 (N(2)CH₂CH₂CH₃), 44.8 (N(1) CH₂CH₂CH₃), 55.6 (OCH₃), 68.8 (*C*–C, cp-ring), 70.2 (*C*–H, cp'ring), 72.2 (*C*–H, cp-ring), 84.9 (*C*–H, cp-ring), 114.6 (C6), 119.3 (C 3,5-C₆H₄), 128.7 (C 2,6-C₆H₄), 130.1 (C1-C₆H₄), 151.6 (C2), 154.0 (C7), 154.9 (C5), 157.2 (C9), 160.5 (C4), 161.7 (C4-C₆H₄).

7-propyl-1,3-dimethylpyrido[*2,3-d*]*pyrimidine-2,4-dione* (*21*). The product was obtained as white needles in 70% yield (mp 86–86.5°C); mass spectrum IE: m/z (%): 233 (14) M⁺, 205 (100); ¹H NMR (300 MHz, CDCl₃, δ in ppm): 0.91 (t, 3H, CH₃), 1.72 (m, 2H, CH₃CH₂CH₂), 2.74 (t, 2H, CH₃CH₂CH₂), 3.40 (s, 3H, N (1)CH₃), 3.65 (s, 3H, N(2)CH₃), 6.96 (d, 1H, CH=CH) 8.26 (d, 1H, CH=CH); ¹³C NMR (75 MHz, CDCl₃, δ in ppm): 13.8 (CH₃CH₂CH₂), 22.3 (CH₃CH₂CH₂), 28.3 (N(2)CH₃), 29.3 (N(1) CH₃), 40.6 (CH₃CH₂CH₂), 108.2 (C7), 118.2 (C6), 137.5 (C5), 150.5 (C10), 151.0 (C9), 161.6 [N(C=O)N], 168.4 [N(C=O)C].

Other pyrido[2,3-d]pyrimidines 14, 15, 16, 17, 18, 19, and 20 were synthesized according to our earlier reports. 7-Ferrocenyl-5-(3,5-dimethoxyphenyl)-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4dione (14) and 7-Ferrocenyl-1,3-dimethyl-5-phenyl-pyrido[2,3-d] pyrimidine-2,4-dione (15) [19]. 1,3-dimethyl-5,7-diphenylpyrido [2,3-d]pyrimidine-2,4-dione (16); [30] 7-Ethyl-1,3-dimethyl-5-phenylpyrido[2,3-d]pyrimidine-2,4-dione (17); 1,3-Dimethyl-5-phenyl-7propylpyrido[2,3-d]pyrimidine-2,4-dione (18); 5-n-Butyl-7-ethyl-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4-dione (19) and 5-n-Butyl-1,3-dimethyl-7-n-propylpyrido[2,3-d]pyrimidine-2,4-dione (20) [18].

Vasorelaxant procedure. Acetylcholine chloride (ACh), (-) NE, rolipram, and enoximone were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Sildenafil citrate was used as USP reference standard. The drugs were suspended in 0.05% Tween 80 in distilled water. The final concentration of Tween 80 was in trace (less than 0.0005%) and did not affect the tracheal or vascular response. The drug solution or suspensions was freshly prepared each time few minutes before the experimentation. Male rat (Wistar) weighting 200-300 g was obtained from Harlan México (México). Animals were maintained at constant room temperature $(22 \pm 2^{\circ}C)$ and submitted to 12 h light/dark cycle with free access to food and water. Procedures involving animal care were conducted in conformity with the Mexican Official Norm for Animal Care and Handing (NOM-062-ZOO-1999; Especificaciones Técnicas para la Producción, Cuidado y Uso de Animales de Laboratorio) and in compliance with international rules on the care and use of laboratory animals. Furthermore, clearance for conducting the studies was obtained from the Ethics Committee for the Use of Animals in Pharmacological and Toxicological Testing, Facultad de Química, UNAM. Male Wistar rats were euthanized in a CO2 chamber, and thoracic aorta was removed and immediately immersed in a Krebs solution at 37°C. After removal the excess of connective tissue and fat, the aorta was divided into eight small rings of about 2 mm in length. Each aorta ring was hung between two nichrome hooks inserted into the lumen and placed in a 10-mL organ bath containing Krebs solution (composition in mM: NaCl 118, KCl 4.7, NaH₂PO₄ 1.2, MgSO4°7H2O 1.2, CaCl2°2H2O 2.5, NaHCO3 25, glucose 11.1) at 37°C and bubbled constantly with 5% CO₂-95% O₂. Isometric tension was recorded through an eight-channel Biopack System polygraph MP100 via a Grass FT 03E force transducer. The data were digitalized and analyzed by mean of software for data acquisition (Acknowledge 3.9.0). Tissues were placed under a resting tension of 4.0 g and allowed to stabilize for 60 min, and they were washed with fresh Krebs solution at 15-min interval before starting the experiments. After stabilization period, the rings were contracted with NE (0.1 μ M) two times at 30-min interval. The integrity of the endothelium was verified by the relaxant response to ACh (10 μ M); intact endothelium showed relaxation over 84%, the endothelium absence (denuded aorta) did not relax with Ach. About 30 min after the tissues were contracted with NE (0.1 μ M), cumulative concentrations of synthesized compounds or reference drugs were added to the bath to yield the required aorta relaxant effects and allowed to reach a steady state at each concentration. The concentration required to relax 50% of the aorta precontracted with NE that was expressed as EC₅₀.

Phosphodiesterase inhibition procedure. For the PDE assay, the drugs were dissolved in a binary mixture of acetonitrile (Burdick & Jackson, MI, USA)/water (Direct-Q Millipore water purification system) (1:1). PDE enzyme from bovine brain, 5'nucleotidase from Crotalusatrox venom, 3',5'c-AMP, 3',5'-cGMP, buffer (10-mM Tris-HCl, pH7.4), BIOMOL GREENTM reagent and IBMX were purchased from BIOMOL International, Inc. (PA, USA). The enzyme inhibition assay was performed using BIOMOL cyclic nucleotide PDE assay kit, consisting in a colorimetric non-radioactive assay designed in a microplate format. The basis for this assay is the cleavage of cAMP or cGMP by a cyclic nucleotide PDE. The 5'-nucleotide released is further cleaved into the nucleoside and phosphate by the enzyme 5'-nucleotidase. The phosphate released because of enzymatic cleavage is quantified using BIOMOL GREEN reagent in a modified malachite green assay [31]. It may be used to screen inhibitors and modulators of cyclic nucleotide PDE activity. The compounds and reference drugs were tested at different concentrations: ferrocenyl, alkyl and aryl-pyrido[2,3d]pyrimidines (1.0–300 µM), rolipram (3.0–300 µM), and sildenafil (0.001-300 µM).

Data analysis. The EC_{50} values for relaxant effect were calculated by linear regression and are shown as mean ± SEM of at least six experiments. The differences among these obtained values were statistically calculated by one-way analysis of variance and then determined by Dunnett's *t*-test [16]. p < 0.05 was considered as statistically significant. The inhibitory activities of PDE by ferrocenyl, alkyl, and aryl-pyrido[2,3-*d*] pyrimidines or reference drugs are reported as IC₅₀±SEM or maximal percent of inhibition of at least three experiments.

Computational method. Docking was carried out using the X-ray structure of PDE3B in complex with a dihydropyridazine inhibitor (1SO2.pdb) and PDE4B complexed with rolipram (1RO6). The ligands 12-15, 19, rolipram, and enoximone were built using the program HyperChem 8.0 and optimized using the density functional method, at the B3LYP/6-31G* level [32], with the program Gaussian 09, revision A.02 (Gaussian Inc., Wallingford, CT, USA). The protein complex and the ligand were further prepared using the utilities implemented by AutoDockTools 1.5.4, revision 30 (http://mgltools.scripps.edu/). The protein complex was adding polar hydrogen atoms, Kollman united-atom partial charges and to the ligands computing Gasteiger-Marsilli formalism charges, rotatable groups which were assigned automatically as were the active torsions. The initial grid box size was $60\text{\AA} \times 60\text{\AA} \times 60\text{\AA}$ in the x, y, and zdimensions. Blind docking was carried out using AutoDock4 version 4.2 software http://autodock.scripps.edu/ [33,34] using the default parameters, the Lamarkian genetic algorithm with

local search, number of individuals in population (150), maximum number of energy evaluations (2.5 million), maximum number of generations (27,000), rate of gene mutation (0.02), rate of crossover (0.8), and 200 runs for docking. Electrostatic grid maps were generated for each atom type in the ligands using the auxiliary program AutoGrid4 part of the software AutoDock4. All calculations were made using a parallel distributed memory supercomputer (Kanbalam, Dirección General de Cómputo y de Tecnologías de Información y Comunicación, UNAM), which contains 1368 processors AMD Opteron, around 3 terabyte of memory and 160 terabyte of storage (http://www.super.unam.mx/). The analysis of the docking was made with AutoDockTools using cluster analysis and program LIGPLOT and PyMOL [35].

Acknowledgments. I. Arellano acknowledges fellowship (No. 1715, 200409) from CONACyT.

REFERENCES AND NOTES

[1] Chhabria, M. T.; Srinivas, S.; Rajan, K. S.; Ravikumar, T.; Rathnam, S. Arzneimittelforschung 2002, 52, 792.

[2] El-Gazzar, A. B. A.; Hafez, H. N. Bioorg Med Chem Lett 2009, 19, 3392.

[3] Pastor, A.; Alajarin, R.; Vaquero, J. J.; Alvarez-Builla, J.; Casa-Juana, M. F.; Sunkel, C.; Priego, J. G.; Fonseca, I.; Sanz-Aparicio, J. Tetrahedron, 1994, 50, 8085.

[4] Moreno, E.; Plano, D.; Lamberto, I.; Font, M.; Encío, I.; Palop, J. A.; Sanmartín, C. Eur J Med Chem 2012, 47, 283.

[5] Nasr, M. N.; Gineinah, M. M. Arch Pharm Pharm Med Chem 2002, 6, 289.

[6] Matsumoto, J.; Minami, S. J Med Chem 1975, 18, 74.

[7] Quintela, J. M.; Peinador, C.; Botana, L.; Estevez, M.; Riguera, R. Bioorg Med Chem Lett 1997, 5, 1543.

[8] Cowart, M.; Lee, C. H.; Gfesser, G. A.; Bayburt, E. K.; Bhagwat, S. S.; Stewart, A. O.; Yu, H.; Kohlhaas, K. L.; McGaraughty, S.; Wismer, C. T.; Mikusa, J.; Zhu, C.; Alexander, K. M.; Jarvis, M. F.; Kowaluk, E. A. Bioorg Med Chem Lett 2001, 11, 83.

[9] Hamby, J. M.; Connolly, C. J. C.; Schroeder, M. C.; Winters, R. T.; Showalter, H. D. H.; Panek, R. L. J Med Chem 1997, 40, 2296.

[10] Ibrahim, D. A.; Ismail, N. S. M. Eur J Med Chem 2011, 46, 5825.

[11] Nam, G.; Yoon, C. M.; Kim, E.; Rhee, C. K.; Kim, J. H.; Shin, J. H.; Kim, S. H. Bioorg Med Chem Lett 2001, 11, 611.

[12] Draheim, R.; Egerland, U.; Rundfeldt, C. J Pharmacol Exp Therapeut 2003, 308, 555.

[13] Pitts, W. J.; Barbosa, J. Quinazoline and pyrido[2,3-d]pyrimidine inhibitors of phosphodiesterase (PDE) 7. WO/2002/102315, Dec 27, 2002.

[14] Lugnier, C. Pharmacol Ther 2006, 109, 366.

[15] Garcia-Sáinz, J. A.; Villalobos-Molina, R. Eur J Pharmacol 2004, 500, 113.

[16] Kümmerle, A. E.; Raimundo, J. M.; Leal, C. M.; da Silva, G. S.; Balliano, T. L.; Pereira, M. A.; de Simone, C. A.; Sudo, R. T.; Zapata-Sudo, G.; Fraga, C. A. M.; Barreiro, E. Eur J Med Chem 2009, 44, 4004.

[17] Harris, M. D.; Chen, X.; Pesant, S.; Cohn, I. H.; MacDonell, M. S.; Boucher, M.; Vinge, E. L.; Raake, P.; Moraca, R. S.; Li, D.; Most, P.; Houser, R. S.; Koch, J. W.; Eckhart, D. A. J Mol Cell Cardiol 2009, 46, 100.

[18] Rosas, N.; Sharma, P.; Álvarez, C.; Cabrera, A.; Ramírez, R.; Delgado, A.; Arzoumanian, H. J. J Chem Soc Perkin Trans 1 2001, 2341.

[19] Arellano, I.; Sharma, P.; Arias, J. L.; Toscano, A.; Cabrera, A.; Rosas, N. J Mol Catal Chem 2007, 266, 294.

[20] Fouda, M. F. R.; Abd-Elzaher, M. M.; Abdelsamaia, R. A.; Labib, A. A. Appl Organomet Chem 2007, 21, 613.

[21] Top, S.; Vessieres, A.; Cabestaing, C.; Laios, I.; Leclereq, G. J Organomet Chem 2001, 637-639, 500.

[22] Hocek, M.; Stepnicka, P.; Ludvik, J.; Císarová, I.; Votruba, I.; Reha, D.; Hobza, P. Chem Eur J 2004, 10, 2058.

[23] van Staveren, D. R.; Metzler-Nolte, N. Chem Rev 2004, 104, 5931.

[24] Marivet, M. C.; Bourguignon, J. J.; Lugnier, C.; Mann, A.; Stoclet, J. C.; Wermuth, C. G. J Med Chem 1989, 7, 1450.

[25] Brown, H. C.; Racherla, U. S.; Singh, S. M. Tetrahedron Lett 1984, 25, 2411.

[26] Arellano, I.; Sharma, P.; Cabrera, A.; Pérez, D.; Arias, J. L.; Rosas, N. J Organomet Chem 2009, 694, 3823.

[27] Wu, X. F.; Sundararaju, B.; Neumann, H.; Dixneuf, P. H.; Beller, M. Chem Eur J 2011, 17, 106.

[28] Suárez-Ortiz, G. A.; Sharma, P.; Amézquita-Valencia, M.; Arellano, I.; Cabrera, A.; Rosas, N. Tetrahedron Lett 2011, 52, 1641.

[29] Zypp, A.; Rechtman, M.; Majeweski, H. Gen Pharmacol 2000, 34, 245.

[30] Wawzonek, S. J Org Chem 1976, 41, 3149.

[31] Beers, S. A. Bioorg Med Chem 1997, 5, 2203.

[32] da Silva, C. H.; Del Ponte, G.; Neto, A. F.; Taft, C. A. Bioorg Chem 2005, 33, 274.

[33] Morris, G. M.; Goodsell, D. S. J Comput Chem 1998, 19, 1639.

[34] Huey, R.; Morris, G. M.; et al. J Comput Chem 2007, 28, 1145.

[35] DeLano, W. L. Abstr Paper Am Chem Soc 2004, 228, U313.