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ABSTRACT: A short, enantioselective synthesis of (–)-
maximiscin, a structurally-intriguing metabolite of mixed 
biosynthetic origin, is reported. A retrosynthetic analysis 
predicated on maximizing ideality and efficiency led to 
several unusual disconnections and tactics. Formation of the 
central highly-oxidized pyridone ring through a convergent 
coupling at the end of the synthesis simplified the route 
considerably. The requisite building blocks could be 
prepared from feedstock materials (derived from shikimate 
and mesitylene). Strategies rooted in hidden symmetry 
recognition, C–H functionalization, and radical 
retrosynthesis played key roles developing this concise route. 

    Natural products derived from mixed biosynthetic lineages have 
historically provided chemists with some of the most exotic 
molecular architectures imaginable (e.g. staurosporine, hyperforin, 
and reserpine).1 The unique structure of (–)-maximiscin 1 (Figure 
1A) is no exception, resulting from the rare union of three separate 
metabolic pathways.2 Thus, a central 1,4-dihydroxy-2-pyridone 
(derived from tyrosine 3) is linked to both a shikimate derivative 
(derived from shikimic acid 2) and a trisubstituted cyclohexyl 
fragment of polyketide origin (derived from 4). As such, 1 exists as 
an equilibrating mixture of atropisomers about the C-3,7 bond. The 
challenge associated with synthesizing such a structure is 
compounded by its documented instability, as it tends to fragment 
between the shikimate and pyridone residues.3 4-hydroxy-2-
pyridone alkaloids such as 1 have historically represented an 
exciting class of natural products for chemical synthesis, due to their 
intriguing structural properties, and biological activiites.4 Although 
no synthesis of 1 has been reported, simpler variants lacking the 
shikimate subunit have been prepared.5 In this Communication, an 
abiotic, convergent, enantioselective preparation of 1 is reported; 
this synthesis is enabled by exploiting hidden symmetry and 
leveraging the logic of C–H functionalization6 and radical 
retrosynthesis strategies7.  

To maximize convergency, retrosynthetic scission of the central 
pyridone ring produced two equally sized fragments (R=shikimate 
derivative 5, and 6). Their union through a non-canonical 
Guareschi-Thorpe-type condensation (Tactic 1, Figure 1B) could 
potentially forge this core motif at a late-stage. While such 
condensations normally require an electron-withdrawing group on 
the enamine fragment,8 in this variant a b-silicon atom was 
employed, reminiscent of the Sakurai-type allylation.9 This 
provided the added benefit of building in the requisite N-oxide 
motif, which would otherwise require subsequent oxidation from 
the parent pyridone.5, 10 Fragment 5 could be traced back to a known 
shikimate-derived epoxide in a few simple steps. Fragment 6 was 
envisaged to arise from a decarboxylative radical homologation 

sequence (Tactic 2) to forge the hindered C-3,7-bond and set its 
relative trans-orientation. During this process, a remarkably 
efficient radical cascade was developed to achieve not only this 
bond formation but also a redox relay11 to set the proper C-13 
oxidation state. Recognizing that if the C-13 position were simply a 
methyl group, an enantiocontrolled desymmetrizing C–H activation 
could be invoked (Tactic 3) to cement the absolute configuration of 
four centers in one step.12 Such a tactic is not without risk, as the 
required C-H activation would enlist a challenging 6-membered 
palladacycle intermediate.13  Finally, the all-cis stereochemistry 
needed for this step could originate from the hydrogenation of an 
inexpensive mesitylene-derived carboxylic acid 714 (Tactic 4).  

 

Figure 1. (A) (–)-Maximiscin (1): biosynthesis; (B) key strategies 
and tactics employed. 

   The successful execution of these tactics to access synthetic 1 for 
the first time is outlined in Scheme 1. Preparation of fragment 6 
(Scheme 1A) began with hydrogenation of 7 using Adam’s catalyst, 
which furnished the all-cis carboxylic acid 8 with complete 
selectivity in 97% isolated yield (gram-scale).15 This set the stage 
for the development of a desymmetrizing C–H activation reaction 
that was to define four chiral centers from this meso-acid.16 An 
exhaustive set of directing groups and C–H functionalization 
conditions were explored (see SI), culminating in the identification 
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of a chiral PIP-type directing group (9, X = H, inset table 1).17 
Amide 10d, derived from acid 8 and amine 9 (84% isolated yield, 
gram-scale), conferred reasonable yield and high 
diastereoselectivity under Pd-catalyzed methoxylation conditions to 
deliver 11.18 The influence of various substituents on the pyridyl 
ring of the directing group was then explored. Although 
diastereoselectivity remained high, ring electronics exerted a 
profound effect on reaction yield (inset table 1). A 4-Cl substituted 
analog was identified as the optimal directing group, and upon 
further refinement of the reaction conditions, a scalable 
desymmetrizing methoxylation to access 11 was realized (58% 
isolated yield + 23% recovered 10d, gram-scale). This, to the best 
of our knowledge, represents the most complex desymmetrizing C–
H activation reported to-date.19 It defines 4 stereocenters in a single 
step, including the distal δ-methyl substituent, which is remote from 
the directing group. Removal of the directing group from 11 was 
accomplished using HBr at elevated temperature (99% isolated 
yield, gram-scale). This reaction cleanly delivered lactone 12, along 
with a substantial amount of recovered directing group 9 (80%). The 
latter material could be recycled, and used to prepare another batch 
of amide 10d for the C–H activation sequence, without any erosion 
in enantiopurity (see SI). With lactone 12 in hand, the next tactic 
involved effecting a decarboxylative homologation for a key C–C 
bond forming step, drawing further utility from the C–H 
functionalization handle. Phenyl vinyl sulfone was selected as the 
homologation reagent of choice. It represents a simple, inexpensive 
2-carbon extension unit, and has precedent for such applications.20 
Initial success was achieved using a Ni-catalyzed decarboxylative 
Giese addition protocol21 (performed on a derivative of 12, see SI), 
but the yield was hampered by competing 1,5-hydrogen atom 
transfer (1,5-HAT) from C–2 to C–13 which resulted in double 
addition of the radical acceptor onto C–13 (see SI). It was 
hypothesized that transitioning from a reductive to oxidative 
decarboxylative manifold could enable this transposed radical to be 
oxidized, thus producing aldehyde 14.22 A number of exotic redox 
strategies were evaluated before a simple solution emerged (see SI) 
using Minisci-type conditions23 directly from lactone 12, which was 
hydrolyzed in-situ. Thus, following saponification of lactone 12 
with NaOH (1.2 equiv), sequential addition of AgNO3 (0.3 equiv), 
Na2S2O8 (2.5 equiv), NaHSO4 (1.13 equiv), Fe2(SO4)3 (0.2 equiv), 
and the vinyl sulfone led to the formation of aldehyde 14. The 
reaction was exceptionally clean (see SI for crude NMR) and proved 
scalable, resulting in a 91% yield of 14 on gram scale. Some features 
of this radical translocation cascade are worth noting. The addition 
of NaHSO4 enabled the tandem hydrolysis/decarboxylation by 
buffering the resulting carboxylate. Without it, a heterogeneous 
mixture resulted, leading to aggregate formation and diminished 
product yield. The standard Ag+/persulfate combination proved 
ineffective (ca. 6% yield), prompting the exploration of additives 
(inset table 2). Fe2(SO4)3 uniquely served as a highly efficient co-
catalyst, the first use we are aware of in concert with a Ag-catalyzed 
Minisci-reaction.24 The reaction requires both metals to be present, 
as no desired product is formed in the absence of Ag. Literature on 
the reactivity of Fe-salts in free radical chemistry suggest that the 
Fe3+ can assist in the selective oxidation of the intermediate α-oxy 
alkyl radical.25 With aldehyde 14 in hand, access to key building 
block 6 could be rapidly achieved. Classical Wittig conditions 
provided an olefin intermediate which was elaborated to 15 through 
a one-pot sulfone oxidation and methyl ester formation sequence 
(50% yield overall).26 Next, acylation of 15 proved challenging, 
with most acyl electrophile/base combinations leaving the hindered 
ester untouched. Use of LDA with Mander’s reagent in diethyl ether 
proved uniquely effective,27 and in-situ hydrolysis of the resulting 
diester provided 6 in 74% isolated yield. The crude diacid could be 
purified by simple trituration, and yielded crystals suitable for x-ray 
diffraction, which confirmed its absolute configuration.  

Synthesis of fragment 5 was accomplished starting from known 
epoxide 16, which is derived from shikimic acid (Scheme 1B).28 
Opening of the epoxide intermediate to furnish 17 was achieved 
using N-Boc-hydroxylamine assisted by DBU in methylene chloride 
(70% isolated yield, gram-scale); use of Lewis acids led to mixtures 
of SN2/SN2’ products, while elimination/aromatization pathways 
dominated in different solvents. X-ray analysis confirmed the 
regioselectivity of the epoxide opening process. Intermediate 17 
was converted to a TBS-protected hydroxylamine intermediate 
(72% isolated yield, gram-scale), which was condensed with 
acetaldehyde to give des-TMS-5 (not shown, 82% isolated yield). 
The final bond-forming step involved union of this fragment with 6 
using a bold late-stage pyridone synthesis to forge the central ring 
of 1. Initial conditions surveyed for this step were based on a report 
for the synthesis of alkyl-fused hydroxypyridones, derived from 
diacid chlorides and ketoxime ethers.29 Combination of oxime ether 
des-TMS-5 with the diacid chloride derivative of 6 in toluene at 
90°C generated intractable mixtures of decomposition products, 
with significant recovery of unreacted des-TMS-5. It was reasoned 
that the poor nucleophilicity of the oxime ether, combined with 
elevated reaction temperatures, promoted decomposition of the 
diacid chloride before it could engage with the oxime. To remedy 
this, two modifications were implemented: (1) The TMS derivative 
5 was prepared, inspired by the venerable Hosomi-Sakurai 
reaction30 as it was envisaged that a β-silicon effect could enhance 
the nucleophilicity at nitrogen via σ(Si–C) to π donation.31 (2) The 
reaction was conducted at lower temperature, using AgOTf to 
promote activation of the diacid chloride electrophile. Ultimately, 
this push-pull system of Si/Ag+ activation delivered the 
condensation product 18 in moderate yield with surprising speed 
(reaction quenched after 7 minutes, see inset table 3 for selected 
optimization conditions). The reaction benefited from elevated 
temperature, although by-products became predominant above 50 
°C. Acetonitrile proved to be the optimal solvent, and a methanol 
quench was employed to liberate product which had been acylated 
on the pyridone 4-OH by starting material. This enabled the facile 
recovery of the diacid fragment as a mixture of the mono- and di-
methyl esters (25% + 22% respectively) which could be recycled to 
access additional 6. A reasonable mechanistic proposal involves 
silver mediated activation of the diacid chloride derived from 6, to 
produce a transient diacyl triflate, which is intercepted by oxime 5, 
assisted by the appended TMS moiety. This would produce an 
enamine intermediate which could rapidly engage the second acyl 
electrophile in an intramolecular fashion to generate the pyridone 
ring. Additionally, TMSOTf generated in situ may serve to further 
enhance the reactivity of the electrophile (TMS derivatization is 
observed by LCMS). The importance of the silyl substituent on 5 is 
highlighted by the observation that des-TMS-5 provides 18 in much 
lower yield (14%) under the same reaction conditions (see SI). This 
represents a unique pyridone synthesis and enables the construction 
of a remarkably hindered ring system, which exists as a mixture of 
interconverting atropisomers. Deprotection using TFA/MeOH 
afforded (–)-maximiscin 1 ([𝛼]!"#.#	= –147), completing a 10-step 
(LLS) total synthesis of this natural product (60% ideality).32 All 
spectral data were wholly consistent with the original isolation 
report.2 

Several unusual steps in this synthesis are worthy of note: (1) a 
scalable enantiocontrolled C–H activation-desymmetrization 
defined 4-stereocenters in a single step and enabled access to a 
highly-functionalized carbocycle from simple aromatic feedstock; 
(2) a radical disconnection, leveraging a Ag/Fe co-catalyzed 
stereoinvertive decarboxylative Giese addition, constructed a 
hindered C–C bond with concomitant radical translocation to a 
remote site; (3) a non-intuitive disconnection through the central 
hydroxypyridone ring enabled a highly convergent synthesis of 1 
and led to the development of a new tactic to assemble such systems.
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Scheme 1.  Total synthesis of maximiscin (–)-1. a   

 

aReagents and conditions: (1). PtO2 (5 mol%), H2 (450 psi), AcOH, rt, 14 h. (2) (COCl)2 (1.20 equiv), DMF (0.05 equiv), CH2Cl2, 0 °C to rt, 
1 h, then 9 (1.00 equiv), Et3N (3.70 equiv.), DMAP (0.05 equiv), PhMe, 70 °C, 2.5 h. (3) Pd(OAc)2 (15 mol%), LiOAc (1.00 equiv), NaIO4 
(4.00 equiv), Ac2O (2.00 equiv), PhMe/MeOH (2:1), 90 °C, 24 h. (4) aq. HBr, 100 °C, 15 h. (5) aq. NaOH (1.20 equiv), THF, MeOH, rt, 12 
h, then AgNO3 (30 mol%), Fe2(SO4)3•5H2O (20 mol%), NaHSO4•H2O (1.13 equiv), Na2S2O8 (2.50 equiv), phenyl vinyl sulfone (1.40 equiv), 
H2O/CH3CN (4:1), 40 °C, 3 h. (6) CH3PPh3Br (2.50 equiv), n-BuLi (2.30 equiv), THF, –5 °C to rt, 1 h. (7) KHMDS (2.50 equiv), O2 
(balloon), THF –78 °C to rt, 45 min, then Me2SO4 (3.50 equiv), rt, 1 h, then morpholine (3.00 equiv), rt, 30 min. (8) LDA (3.00 equiv), Et2O, 
–78 °C to 0 °C, 1 h, then methyl cyanoformate (4.00 equiv), –78 °C, then methanol (excess), aq. KOH (8.20 equiv), EtOH, 80 °C, 12 h. (9) 
(COCl)2 (2.50 equiv), DMF (0.08 equiv), CH2Cl2, rt, 2.5 h, then 5 (1.20 equiv), DTBMP (2.20 equiv), AgOTf (1.90 equiv), CH3CN, 50 °C, 
7 min. (10) TFA/MeOH (1:1), 0 °C to rt, 22 h. (a) N-Boc-NHOH (1.20 equiv), DBU (1.00 equiv), CH2Cl2, rt, 5 min. (b) TFA/CH2Cl2 (1:4), 
0 °C, 15 min, then TBSCl (3.00 equiv), Imid. (4.00 equiv), DMAP (0.10 equiv), CH2Cl2, 12 h. (c) TMS-acetaldehyde (1.20 equiv), CH2Cl2, 
rt, 30 min. Abbreviations: DBU = 1,8-diazobicyclo[5.4.0]undec-7-ene; DMAP = N,N-dimethyl-4-aminopyridine; DMF = N,N-
dimethylformamide; DTBMP = 2,6-Di-tert-butyl-4-methylpyridine; imid. = imidazole; KHMDS = potassium bis(trimethylsilyl)amide; LDA 
= lithium diisopropylamide; TFA = trifluoroacetic acid; THF = tetrahydrofuran. 
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