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Abstract

3-Deoxy-3,3-difluoroshikimicacid2 and its 4-epimer3 as new analogues of shikimic acid have been synthesised
from quinic acid in overall yields of 30% and 12%, respectively. © 1999 Elsevier Science Ltd. All rights reserved.

Shikimic acid1 is an important intermediate in the biosynthetic sequence known as the shikimate
pathway which operates in plants, fungi and microorganisms to convert carbohydrate precursors to
essential aromaticα-amino acids (L-phenylalanine,L-tyrosine andL-tryptophan).1 The lack of the
shikimate pathway in mammals has spurred an intense search for specific enzyme inhibitors along the
pathway as potential herbicides and antimicrobial agents, particularly following the discovery ofN-
phosphonomethylglycine which specifically inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate
synthase.2 Very recently the existence of a functional shikimate pathway in apicoplexan parasites was
reported,3 which thus provides attractive targets for the development of new antiparasite agents. As
a consequence of the interest shown in the pathway, increasing effort has been directed towards the
synthesis of analogues of the pathway intermediates, particularly that of shikimic acid.4 So far, the func-
tionalisation of the cyclohexene ring of shikimic acid includes the introduction of 2-fluoro,5,6 2-bromo,6

2-chloro,7 3α-hydroxymethyl,8 3α-amino,9,10 3α- and 3β-fluoro,11 3β-chloro,11b 5β-amino,12,13 5β-
hydroxymethyl,14 6α- and 6β-amino,15 6α- and 6β-fluoro,15,16 6β-hydroxy,15,17,18and 6β-mercapto15

groups. In this communication, we describe the first examples of the synthesis of difluoro-substituted
shikimic acids2 and3 from natural quinic acid.
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As a semi-detached member of the shikimate pathway, (−)-quinic acid4 has been used extensively
as a cheap chiral template for the synthesis of shikimic acid and analogues.4 Recent developments in
the protecting groups fortrans diequatorial vicinal diols in carbohydrate chemistry19 have enabled the
selective protection oftrans-4,5-dihydroxyl groups in quinic acid with 2,2,3,3-tetramethoxybutane to
form the corresponding butane diacetal520 (Scheme 1). Oxidation of the remaining 3-hydroxyl group
in 5 under Swern conditions gave the ketone6 in 70% yield, m.p. 209–211°C, [α]D +115.0 (c 0.55
in CHCl3) {lit. 9 m.p. 212–214°C, [α]D +82.7 (c 1.05 in CHCl3)}, together with some spontaneousβ-
elimination product7 (15%), m.p. 123.5–125°C, [α]D +85.8 (c 1.28 in CHCl3) {lit. 9 m.p. 98–99°C, [α]D

+73.3 (c 1.25 in CHCl3)}. 21 Dehydration of ketone6 was effected either by treatment with phosphorus
oxychloride in pyridine (81%) or under normal acetylation conditions (85%). We have also found
that the product of methoxymethylation of ketone6 underwent rapid and complete elimination during
chromatography on silica gel to give compound7 in almost quantitative yield.gem-Difluorination of the
α,β-unsaturated ketone7 was achieved by using excessN,N-diethylaminosulphur trifluoride (DAST) in
CH2Cl2 at room temperature to give compound822 (94%), [α]D +75.8 (c 0.69 in CHCl3), which was
then treated with aqueous trifluoroacetic acid to remove the butane diacetal group to afford compound
9 (94%), [α]D −100.1 (c 0.83 in CHCl3). Hydrolysis (NaOH, H2O) of the methyl ester9 delivered
the desired acid2 (37%), m.p. 168.5–170°C, [α]D −90.6 (c 0.76 in CH3OH), and also protocatechuic
acid (12%) which resulted from the elimination of hydrogen fluoride and subsequent aromatisation. An
improved yield of 67% for acid2 was achieved without aromatisation by treating the methyl ester9 with
potassium trimethylsilanolate.23

Scheme 1. Reagents and conditions: i, Dowex 50WX4-50 resin (H+), methanol, reflux, 20 h; ii, 2,2,3,3-tetramethoxybutane,
CH(OMe)3, CSA (cat.), methanol, reflux, 20 h (84% for two steps); iii, DMSO, (COCl)2, CH2Cl2, −78°C, 60 min, then Et3N,
−78°C to rt (70%); iv, POCl3, pyridine, rt, 4 h (81%) or Ac2O, DMAP (cat.), pyridine, rt, 10 h (85%); v, DAST, CH2Cl2, rt,
14 days (94%); vi, aq. TFA, rt, 1.5 h (94%); vii, NaOH, H2O:THF (1:1), rt, 20 h, then Amberlite IR-120 (H+) resin (37%) or
KOSiMe3, THF, rt, 20 h, then Amberlite IR-120 (H+) resin (67%)

Having prepared 3-deoxy-3,3-difluoroshikimic acid2, we then looked at the synthesis of its 4-epimer
from quinic acid (Scheme 2). By employing known literature procedures,24 theα,β-unsaturated ketone
11 was obtained from quinic acid in three steps with an overall yield of 34%, m.p. 89–91°C, [α]D −51.7
(c 1.20 in CHCl3) {lit. 24d m.p. 84–85°C, [α]D −51.7 (c 0.5 in CHCl3)}. Reaction of ketone11 with
excess ofN,N-diethylaminosulphur trifluoride (DAST) produced the difluoroshikimate12 (60%), [α]D

+22.3 (c 0.63 in CHCl3), which was deprotected with aqueous trifluoroacetic acid to give compound13
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(80%), [α]D −37.9 (c 0.71 in CHCl3). Further deprotection using potassium trimethylsilanolate furnished
the free acid3 (71%), m.p. 142–144°C, [α]D −51.8 (c 1.41 in CH3OH), together with 15% of eliminated
and aromatised product which was identified as 3-fluoro-4-hydroxybenzoic acid, m.p. 220–221.5°C.

Scheme 2. Reagents and conditions: i, CMe2(OMe)2, p-TsOH (cat.), PhH, reflux, 18 h (80%); ii, NaOMe, methanol, rt, 4 h
(78%); iii, PCC, 4 Å molecular sieve, pyridine, CH2Cl2, rt, 30 h (55%); iv, DAST, CH2Cl2, rt, 20 h (60%); v, aq. TFA, rt, 4 h
(80%); vi, KOSiMe3, THF, rt, 20 h, then Amberlite IR-120 (H+) resin (71%)

Initial testing of acid2 against the type II dehydroquinase fromM. tuberculosis25 showed active
inhibition. More detailed biochemical studies on these compounds are currently under way, the results of
which will be reported in due course.
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