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Abstract—(6S)-6-Fluoroshikimic acid 2 and (6R)-6-hydroxyshikimic acid 3 have been synthesised via an OsO4-catalysed
dihydroxylation of diene 6, which was derived from (−)-shikimic acid 1. © 2001 Elsevier Science Ltd. All rights reserved.

The shikimate pathway is the biosynthetic sequence
that exists in plants, fungi and microorganisms to syn-
thesise the aromatic amino acids (L-phenylalanine, L-
tyrosine and L-tryptophan) from carbohydrates.1 It has
recently been discovered that the shikimate pathway is
also present in apicomplexan parasites.2 Since the shiki-
mate pathway is absent from mammals,3 enzymes along
this pathway are therefore attractive targets for the
development of antimicrobial agents against bacterial,
fungal and parasitical pathogens. There have been
increasing efforts to design and synthesise analogues of
the shikimate pathway intermediates as potential
enzyme inhibitors.4 Shikimic acid 1 is a key intermedi-
ate in the shikimate pathway, and the synthesis of its
analogues has been a particularly active area of
research.5 Among various analogues of shikimic acid,
(6S)-6-fluoroshikimic acid 2 has been reported to have
antibacterial properties and also to be useful as a
mechanistic probe for studying the enzymology of the
shikimate pathway.6 Both (6S)-6-fluoroshikimic acid 2
and (6R)-6-hydroxyshikimic acid 3 have been previ-
ously synthesised in a lengthy synthesis from quinic
acid5a,b as well as arene cis-dihydrodiols,5c,7 with the
derivatives of (6R)-6-hydroxyshikimic acid 3 being pre-
cursors for the synthesis of (6S)-6-fluoroshikimic acid
2. An enzymatic synthesis of 2 from 3-fluorophospho-
enolpyruvate on a small scale has also been reported.8

However, with the intense interest shown in the shiki-
mate pathway, there still exists an urgent need for the
efficient synthesis of (6S)-6-fluoroshikimic acid 2 to
cater for the mechanistic studies of the shikimate path-
way, and in this communication we report our facile
syntheses of (6S)-6-fluoroshikimic acid 2 and (6R)-6-
hydroxyshikimic acid 3 using shikimic acid as the start-
ing material.

Esterification of (−)-shikimic acid9 with methanol using
a catalytic amount of camphorsulphonic acid produced
the crystalline methyl ester, which was protected with
2,2-dimethoxypropane, also in the presence of cam-
phorsulphonic acid, to give the acetonide 410 in 91%
overall yield (Scheme 1). Activation of the hydroxyl
group in acetonide 4 with trifluoromethanesulphonic
anhydride yielded the triflate 5 (98%). Treatment of
triflate 5 with cesium acetate in DMF at room temper-
ature produced the diene 6 in 81% yield.11 After some
experimentation, we found that the elimination of the
triflate group was normally complete within 2 h, pro-
longed reaction time and heating up the reaction mix-
ture invariably led to the diene 6 eliminating further to
give methyl 3-hydroxybenzoate as the sole product.
When a mesylate group was installed rather than the
triflate group, the elimination reaction with cesium
acetate in DMF either did not occur at room tempera-
ture or, when being heated, instead affording methyl
3-hydroxybenzoate. Catalytic dihydroxylation of the
diene 6 with N-methylmorpholine N-oxide and osmium
tetroxide gave the diols 7,12 mp 97−99°C, [� ]D −31.3 (c
0.80 in CHCl3), and 8, mp 91−92°C, [� ]D +82.7 (c 1.05
in CHCl3), ratio 1:1, in 73% combined yield.

Diol 7 was selectively protected with tert-
butyldimethylsilyl triflate to give the monosilyl ether 9
(72%) as colourless crystals, mp 66−67.5°C, [� ]D −79.3
(c 0.92 in CHCl3). Treatment of silyl ether 9 with an
excess of N,N-diethylaminosulphur trifluoride (DAST)
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Scheme 1. Reagents and conditions : (i) CSA, MeOH, reflux, 10 h, 96%; (ii) CMe2(OMe)2, CSA, rt, 2 h, 95%; (iii) Tf2O, DMAP,
pyridine, CH2Cl2, −20°C, 40 min, 98%; (iv) CsOAc, DMF, rt, 2 h, 81%; (v) OsO4, NMO, t-BuOH–H2O (10:1), 20°C, 8 h, 38%
for 7, 35% for 8.

Scheme 2. Reagents and conditions : (i) TBDMSOTf (1.05 equiv.), Et3N, CH2Cl2, −20°C, 30 min, 72%; (ii) DAST, CH2Cl2, rt, 4
h, 92%; (iii) LiOH, dioxane–H2O (1:1), rt, 1 h; (iv) TFA–H2O (9:1), rt, 2 h, 81% for two steps.

Scheme 3. Reagents and conditions : (i) CMe2(OMe)2, CSA, rt, 3 h, 98%; (ii) LiOH, THF–H2O (1:4), rt, 1 h, 98%; (iii) aq. HCl,
MeOH, 30 h, 91%.

at room temperature afforded the fluorinated com-
pound 10 in 92% yield, [� ]D +41.1 (c 1.22 in CHCl3)
(Scheme 2). Hydrolysis of the methyl ester group in 10
with lithium hydroxide gave the free acid, which was
further deprotected using aqueous trifluoroacetic acid
to remove both the silyl and isopropylidene groups to
furnish the desired (6S)-6-fluoroshikimic acid 25a,b,8 in
an overall yield of 65%.

Diol 7 could be directly deprotected to give the (6R)-6-
hydroxyshikimic acid 3. Here, for the convenience of
isolating the free acid intermediate, diol 7 was first
converted to the diacetonide 11 (98%), [� ]D +41.9 (c
0.86 in CHCl3), which was then hydrolysed with lithium
hydroxide and further deprotected with aqueous hydro-
chloric acid to afford the free acid 3 in 89% overall
yield, [� ]D −172.6 (c 0.95 in MeOH) {lit.7b [� ]D −169 (c
0.23 in MeOH)} (Scheme 3).

In conclusion, we have demonstrated a short and
efficient synthesis of (6S)-6-fluoroshikimic acid 2 and
(6R)-6-hydroxyshikimic acid 3. These compounds are
useful tools for biologists to study the enzymes in the
shikimate pathway.
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