Green Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Kumar and N. Ahmed, Green Chem., 2015, DOI: 10.1039/C5GC01785H.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

β-Cyclodextrin/IBX in water: Highly facile biomimetic one pot deprotection of THP/MOM/Ac/Ts ethers and concomitant oxidative cleavage of chalcone epoxides and oxidative dehydrogenation of alcohols

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x
www.rsc.org/

Sumit Kumar* and Naseem Ahmed*

Abstract

A mild and efficient one-pot deprotection of THP/MOM/Ac/Ts ethers and concomitant oxidative cleavage of epoxides and oxidative dehydrogenation of alcohols to form β hydroxy 1, 2 diketones, 1, 2, 3 triketones and conjugated aromatic carbonyl systems (chalcones) using β-Cyclodextrin/IBX in water has been developed. o-lodoxybenzoic acid, a readily available hypervalent iodine (V) reagent, was found to be highly effective with β-Cyclodextrin in carrying out deprotection and sequel transformations under eco-friendly environment. The reaction gave moderate to excellent yields ranging from $50-99 \%$ at $60^{\circ} \mathrm{C}$ in 40 min to 6 h .

Protection and deprotection of hydroxyl groups have fundamental importance and most frequently used strategies in the multi-steps organic syntheses. In particular, these two phenomena are extremely important because of their presence in a number of natural products, biological and synthetic compounds such as carbohydrates, peptides, macrolides, nucleotides, steroids and polyethers [1]. Among the various methods for protecting hydroxy group, the formation of tetrahydropyranyl ethers (THPEs) is one of the most commonly employed methods due to its easy formation and inertness to various reaction conditions like strong bases such as metal hydrides, organolithium compounds, Grignard reagents, catalytic hydrogenation and alkylating or acylating conditions [2]. Likewise, methoxymethyl chloride (MOMCI), acetyl chloride/acetic anhydride ($\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{Ac}_{2} \mathrm{O}$) and tosyl chloride (TsCl) are also important reagents for the alcoholic and phenolic group protection. Various methods have been reported for the deprotection of THPEs that include protic acids [3a-d], BF_{3}-etherate [3e], LiBr [3f], LiOTf [3g], $\mathrm{LiBF}_{4}[3 \mathrm{~h}], \mathrm{LiClO}_{4}[3 \mathrm{i}], \mathrm{In}(\mathrm{OTf})_{3}[3 \mathrm{j}], \mathrm{Sc}(\mathrm{OTf})_{3},[3 \mathrm{k}], \mathrm{I}_{2}[3 \mathrm{ll}], \mathrm{InCl}_{3}$ $[3 \mathrm{~m}], \mathrm{ZrCl}_{3}[3 \mathrm{n}], \mathrm{CuCl}_{2}[3 \mathrm{o}], \mathrm{NH}_{4} \mathrm{Cl}[3 \mathrm{p}]$ and other catalysts. Similarly, Many catalysts have been used to remove the MOM group under acidic conditions such as using protic acids [4a] Lewis acids [4b], Lewis acid-thiol, [4c], boron halides, [4d], $\mathrm{YbCl}_{3}[4 \mathrm{e}] \mathrm{CBr}_{4}-\mathrm{PPh}_{3}$ [4f]

[^0]$\mathrm{ZnBr}_{2}[4 \mathrm{~g}]$ and silica-supported NaHSO_{4} [4h] and TMSOTf (TESOTf)-2,2'-bipyridyl [4i]. Several catalysts have been reported for the deacetylation and detosylation of alcohols and phenols under acidic and basic conditions including NaOMe [5a], micelles [5b], $\mathrm{Zn}-\mathrm{MeOH}$ [5c], enzymes [5d], metallo-enzyme [5e] metal complexes [5f] and antibodies [5g], montmorillonite $\mathrm{K}-10[5 \mathrm{~h}], \mathrm{I}_{2}[5 \mathrm{i}], \mathrm{NaBO}_{3}$ [5j] and TFA [5k]. Most of these methods however have one or other drawbacks such as low yields, long reaction time, reflux at high temperature, excess amounts of reagents and tedious workup procedures [6]. Hence, there is still scope to develop milder and efficient methods in the detetrahydropyranylation, demethoxymethylation, deacetylation and detosylation of hydroxyl groups.
In recent years much attention has been focused on oxidations involving hypervalent iodine reagents. These reagents are wellknown for their selective, efficient, mild, and eco-friendly properties as oxidizing agents [7]. The utility of hypervalent iodine (V) compounds such as 2-iodoxybenzoic acid (IBX) has been sufficiently evidenced by several examples of their selectivity in oxidation reactions [8].
Cyclodextrins (CDs), which are cyclic oligosaccharides possessing hydrophobic cavities, exert microenvironmental effects leading to selective reactions. They catalyse reactions by supramolecular catalysis through non-covalent bonding forming reversible hostguest complexes just like in enzymes. We used β-Cyclodextrin as the catalyst because it is easily accessible and inexpensive among the CDs. The concept of green chemistry has attracted the attention of performing reactions in aqueous medium. However the fundamental problem in performing the organic reactions in water is that many organic substrates are hydrophobic and are insoluble in water. But this can be overcome by the use of cyclodextrins [9].
The upsurge in interest to develop new methodology in protectiondeprotection chemistry [4e], herein, we report a simple and efficient one pot deprotection of MOM/THP/Ac/Ts ethers and concomitant oxidative cleavage of chalcone epoxides and oxidative dehydrogenation of alcohols to form β-hydroxy 1,2 diketones, 1,2 , 3 triketones and α, β-unsaturated ketones employing a mild and environmentally friendly catalytic system $\beta-C D / I B X$ in water as a novel reagent. These β-hydroxy 1,2 diketones, 1, 2, 3 triketones and α, β-unsaturated ketones (chalcones) are widely used as synthetic intermediates of high significance in organic and medicinal chemistry.

In our initial study toward the development of this methodology, a model reaction was conducted by treating substrate 1 with 1.1 mmol of IBX in acetone at room temperature and product a was obtained in moderate yield (45\%, Table 1, entry 1). When IBX loading was increased to 2.2 mmol , the product \mathbf{b} was attained in 46% yield (Table 1, entry 2). But introduction of 1 mmol of $\beta-C D$ alongwith 1.1 mmol of IBX as a supramolecular host in this reaction, to our delight, detetrahydropyranylation took place with the sequel oxidative cleavage of epoxide to give product 1a in 55\% (Table 1, entry 3). The role of $\beta-C D$ in this reaction may be that it complexes with the epoxide and OTHP and also it facilitates the solubility of IBX in water and conducts the reaction smoothly. During the exploratory studies conducted, this prototype reaction was
attempted by increasing the IBX quantity as well as by increasing the reaction times and temperatures. For instance, on taking $1: 2.2$ of reagent ratio ($\beta-C D$: IBX), product 8 a was obtained in 57% yield (Table 1, entry 4). It led to conclude that the extra quantity of IBX added was utilised in further oxidation of β-hydroxy 1,2 diketone $\mathbf{1 a}$ to $1,2,3$ triketone $\mathbf{8 a}$. It is also remarkable that on increasing the β $C D$: IBX ratio to 1:3 or more with prolonging reaction time did not bring about further oxidation of the triketone $\mathbf{8 a}$. Then we study the effect of temperature of same prototype reaction in acetone. It was observed that on increasing the temperature of the reaction system to $55{ }^{\circ} \mathrm{C}$ (reflux), the products yields ($\mathbf{a}, \mathbf{b}, \mathbf{1 a}, \mathbf{8} \mathbf{a}$ respective to the $\beta-C D$: IBX ratio) were increased significantly (Table 1, entries 5-8).

Table 1. Optimization of reaction conditions for deprotection and concomitant oxidative cleavage of chalcone epoxide ${ }^{c}$.

${ }^{\text {c }}$ Reaction was carried out on 1 mmol scale; ${ }^{\text {d }}$ Solvent oxidation observed; ${ }^{\mathrm{e}}$ Isolated yield.

After that the effect of the solvents like $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{PhCH}_{3}, \mathrm{THF}$, neat $\mathrm{H}_{2} \mathrm{O}$ and mixed solvents $\left(\mathrm{H}_{2} \mathrm{O}\right.$: acetone) on the reaction system was investigated (Table 1, entries 9-12, 15,16, 19, 20). The reaction proceeded smoothly in neat water at $70^{\circ} \mathrm{C}$ furnishing the products in appreciable yields. But $\mathrm{H}_{2} \mathrm{O}$: acetone mixture was found to be the best solvent at $60{ }^{\circ} \mathrm{C}$ affording the products $1 \mathbf{a}$ and 8 a in 98 and 99% yield in 40 min and 1 h respectively (Table 1, entries 19, 20). This is because of the low or non-solubility of compounds in neat water but the addition of some drops of acetone improves the solubility of the compounds and hence product yields were enhanced. Solvents like PhCH_{3} and THF did not provide the desired products at all (Table 1, entries 19, 20). So, it led to conclude that $\mathrm{H}_{2} \mathrm{O}$: acetone mixture at $60{ }^{\circ} \mathrm{C}$ temperature was the optimal
condition for the reaction to get best yields of the products 1a and 8a. Recently, from the viewpoint of green chemistry, use of $\mathrm{H}_{2} \mathrm{O}$ in organic transformations is highly demanded, so we carried out the reactions in $\mathrm{H}_{2} \mathrm{O}$ as solvent. The use of aqueous medium as solvent also lessens the harmful effects of organic solvents. Finally, it can conclusively be substantiated that in the absence of $\beta-C D$, the reaction did not yield the detetrahydropyranylated products 1a or 8a.
After getting optimization conditions, various chalcone epoxides were examined for detetrahydropyranylation and demethoxymethylation and concomitant oxidative cleavage of epoxide ring. The results are summerized in Table 2.

Table 2. $\beta-C D / I B X$ mediated one pot deprotection and sequel oxidative cleavage of epoxide to form β-hydroxy 1,2 deketones and $1,2,3$ triketones.

(

Reactions were carried out on 1 mmol scale at $60^{\circ} \mathrm{C}$; ${ }^{\mathrm{c}} \beta-\mathrm{CD}$: IBX (1:1.1 mmol) for entries 1-7; ${ }^{\mathrm{d}} \beta-\mathrm{CD}: \mathrm{IBX}$ (1:2.2 mmol) for the entries $8-14$.
${ }^{a, b}$ Isolated yields of detetrahydropyranylation, demethoxymethylation.

The products were confirmed on the basis of FTIR NMR and mass (ESIt). For instance, compound $\mathbf{2 a}$, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum displayed the characteristic broad peaks at $\delta 4.81$ and 2.52 ppm for phenolic and alcoholic hydroxyl group respectively. Disappearance of one doublet of $-\mathrm{CH}-$ and a broad peak at $3422 \mathrm{~cm}^{-1}$ for -OH groups, peaks of two $>C=O$ groups at $1685 \mathrm{~cm}^{-1}$ and $1647 \mathrm{~cm}^{-1}$ in IR spectrum indicate the deprotection with oxidative cleavage of chalcone epoxide $\mathbf{2}$ and confirm the formation of compound $\mathbf{2 a}$.
The universality and utility of conjugated aromatic carbonyl systems in organic chemistry coupled with the complications that are often associated with their construction led us to explore the possibility of obtaining them using an iodine (V)-based reagent. Because IBX is well-known for the oxidation of alcohols, the anticipation of achieving multiple oxidative processes in one operation was particularly alluring. Encouraged by the above results, the scope of the present study (Deprotection and sequel oxidation) was
extended to various phenolic OH protected diversely substituted substrates (15-23) toward this novel transformation and the results were tabulated in Table 3. It was resulted into the deprotection of THP/MOM/Ac/Ts ethers and sequel oxidative dehydrogenation to give conjugated aromatic carbonyl systems (chalcones 15a-23a) in good to excellent yields.
Under optimized reaction conditions, using $\beta-C D$: IBX (1:3 for this transformation, 1.5 equiv. per alcohol or $\mathrm{C}-\mathrm{C}$ bond to be oxidized), the reaction underwent deprotection and sequel oxidative dehydrogenation to α, β unsaturated ketones in excellent yields for detetrahydropyranylation, demethoxymethylation and deacetylation (91-98\%) and moderate yield for detosylation (50$57 \%$) within 6 h at $60{ }^{\circ} \mathrm{C}$ (Table 3, entries 1-9). In case of detosylation, reaction was subjected for a longer time (8-10h), but no improvement in the yield was observed.

Table 3. $\beta-C D / I B X$ mediated one pot deprotection and sequel oxidative dehydrogenation of alcohols to form chalcones.
(2)
(

Reactions were carried out on 1 mmol scale at $60{ }^{\circ} \mathrm{C},{ }^{b} \beta$-CD:IBX (1:3 mmol); ${ }^{a, b, c, d}$ Isolated yields of detetrahydropyranylation, demethoxymethylation, deacetylation, detosylation respectively.

Furthermore, $\beta-C D / I B X$ mediated deprotection and sequel oxidative dehydrogenation was tested on other substrates (24-28) also as given in Table 4.

Table 4. Some other examples of $\beta-C D / I B X$-mediated one pot deprotection and sequel oxidation.
Entry

Reactions were carried out on 1 mmol scale. ${ }^{\text {a }} \beta$-CD : IBX ($1: 3 \mathrm{mmol}$) for entries 1,$2 ;{ }^{\mathrm{b}} \beta$-CD : IBX (1:4.5 mmol) for the entries 3 , $4 ;{ }^{c} \beta-C D$: IBX (1:1.5 mmol) for the entry 5 .
${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}}$ Isolated yields of detetrahydropyranylation, demethoxymethylation, deacetylation, detosylation respectively.
After having obtained success with deprotection of THP/MOM/Ac/Ts ethers of chalcone epoxides (1a-11a) and alcohols (15a-28a), we extended this protocol (β-CD alone in water) for other substrates (29-38) and delightfully on these scaffolds also it worked equally well as shown in Table 5.

Table 5. Some examples of β-CD-mediated deprotection of alcoholic and phenolic hydroxyl group.
(

Reactions were carried out on a 0.5- to 1-mmol scale.
${ }_{a, b, c, d}$ Isolated yields of detetrahydropyranylation, demethoxymethylation, deacetylation, detosylation respectively.

All compounds were characterized by FTIR, NMR, mass (ESIt) and by comparison with the literature [5k, 10]. For example, product 16a, the ${ }^{1} \mathrm{H}$ NMR spectra showed the characteristic olefinic peaks at $\delta \mathrm{ppm} 7.74(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$ and $7.51(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H})$ for $>\mathrm{CH}=\mathrm{CH}<$ and disappearance of $2-\mathrm{CH}_{2}$, one -CHOH at 4.21 ppm and one -CHOH at 3.12 ppm and appearance of phenolic OH at 5.38 (s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable) peaks indicate deprotection and sequel oxidative dehydrogenation of compound 16. In ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, appearance of the characteristic peak of $>\mathrm{C}=\mathrm{O}$ at $\delta 188.2 \mathrm{ppm}$ and disappearance of peaks of $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ at 46.35 ppm and 30.51 ppm and of $-\mathbf{C H O H}$ at 74.1 ppm confirm the oxidative dehydrogenation.

IR value at 3410,1684 and $1599 \mathrm{~cm}^{-1}$ for $-\mathrm{OH},>\mathrm{C}=\mathrm{O}$ and $>\mathrm{C}=\mathrm{C}<$ bonds respectively indicate the said transformation. A mechanistic description of this IBX-mediated demethoxymethylation is depicted in Fig. 1.

Fig. 1 Mechanistic Rationale of β-cyclodextrin/IBX induced deprotection of phenolic ether and concomitant oxidative cleavage of chalcone epoxide.
A plausible mechanism for detetrahdropyranylation and concomitant oxidative cleavage of chalcone epoxide is proposed in Scheme 1 . The role of β-CD appears to be not only to activate the THP ether and epoxide by hydrogen bonding but also to promote highly regioselective ring opening due to inclusion complex formation and thereby facilitating the hydrolysis. Since the β-CD cavity is hydrophobic in nature it may also be forming reversible complexes with the THP ethers. In these reactions, Cyclodextrin can be recycled and reused, also the iodosobenzoic acid (IBA) obtained during the reaction can be converted again to IBX by oxidation [11].

Scheme 1. Plausible reaction mechanism of β-cyclodextrin/IBX induced deprotection of phenolic ether and concomitant oxidative cleavage of chalcone epoxide.

Conclusions

In summary, we have presented an elegant and simple methodology for one pot deprotection of MOM/THP/Ac/Ts ethers and concomitant oxidative cleavage of chalcone epoxides and oxidative dehydrogenation of alcohols employing a mild and eco-friendly oxidizing agent $\beta-C D / I B X$ in water under supramolecular catalysis. Thus, we have demonstrated for the first time the synthesis of highly valuable synthons β hydroxy 1,2 diketones, 1, 2, 3 triketones and α, β-unsaturated ketones directly from the easily accessible chalcone epoxides and 1,3 diphenyl alcohols in the presence of $\beta-C D / I B X$ in water. β-CD was found indispensable for the deprotection reaction. To the best of our knowledge, this is the first report of deprotection with sequel transformations to form β hydroxy 1,2 diketones, $1,2,3$ triketones and α, β-unsaturated ketones in aqueous medium and therefore represents a novel methodology. It is an economical and user-friendly protocol.

Experimental

General procedure for the deprotection of THP/MOM/Ac/Ts ethers and concomitant oxidative dehydrogenation of alcohols (15a-28a). To a solution of alcohol ($\mathbf{1 5 - 2 8}$) in water (2 mL) and 3-4 drops of acetone was added to an aqueous solution of β cyclodextrin (1 mmol in 10 mL of water) at $60^{\circ} \mathrm{C}$ and allowed to cool to room temperature. Then, IBX (1.5 equiv. per alcohol or C-C bond to be oxidized) was added while stirring. The mixture was heated to $60^{\circ} \mathrm{C}$, and the reaction was constantly monitored by TLC until complete consumption of starting material was observed. The reaction mixture was cooled to room temperature and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The organic layer was washed with 5% aq. NaHCO_{3} and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in a vacuo. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate (8:2) as an eluent if required otherwise compounds were pure enough for the spectral elucidation.
General procedure for the deprotection of THP/MOM/Ac/Ts ethers (29a-38a). β-cyclodextrin (0.1 mmol) was dissolved in water $(25 \mathrm{ml})$ at $60^{\circ} \mathrm{C}$; THP/MOM/Ac/Ts ether (1 mmol) in water: acetone mixture ($2 \mathrm{ml}: 3-4$ drops) was added slowly with stirring. The stirring was continued at $60^{\circ} \mathrm{C}$ for the specified time (Table 5). Then the reaction mixture was cooled to room temperature and extracted with $\mathrm{EtOAc}(3 \times 15 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate (9:1) as eluent if required otherwise compounds were pure enough for the spectral elucidation.

Acknowledgements

The authors wish to express their gratitude to the BRNS, India for financial support, DST, New Delhi for providing HRMS facility and CSIR, New Delhi for awarding SRF to S.K.

Notes and references

1 (a) V. Amaranth, A. D. Broom, Chem. Rev. 1977, 77, 183; (b) D. N. Robertson, J. Org. Chem. 1960, 25, 931.

2 A. R. Hajipour, M. Kargosha, A. E. Ruoho, Synth. Commun. 2009, 39, 1084.
3 (a) B. Tamami, K. Parvanak, Tetrahedron Lett. 2004, 45, 715; (b) V. V. Namboodiri, R. S. Varma, Tetrahedron Lett., 2002, 43, 1143; (c) B. S. Babu, K. Balasubramanian, Tetrahedron Lett. 1998, 39, 9287; (d) P. N. Reddy, B. K. Sunil, P. S. Kumar, N. Y. Srinivasulu, T. Reddy, B. Rajitha, Chem. Heterocycl. Compd. 2005, 41, 11; (e) R. R. Diaz, C. R. Melgarejo, M. T. Plaza, I. I. Cubero, J. Org. Chem. 1994, 59, 7928; (f) M. Narender, M. S. Reddy, K. R. Rao, Synthesis, 2004, 30, 1741; (g) C. Wiles, P. Watts, S. Haswell, Tetrahedron Lett. 2005, 61, 5209; (h) B. S. Babu, K. K. Balasubramanian, Tetrahedron Lett. 1998, 39, 9287; (i) B. Karimi, J. Maleski, Tetrahedron Lett. 2002, 43, 5353; (j) B. C. Ranu, M. Saha, J. Org. Chem. 1994, 59, 8269; (k) T. Mineno, Tetrahedron Lett., 2002, 43, 7975; (I) G. G. Haraldsson, J. E. Baldwin, Tetrahedron, 1997, 53, 215; (m) K. Tanemura, T. Haraguchi, T. Suzuki, Bull. Chem. Soc. Jpn. 1992, 65, 304; (n) H. M. S. Kumar, B. V. S. Reddy, E. J. Reddy, J. S. Yadav, Chem. Lett., 1999, 28, 857; (o) J. S. Yadav, D. Srinivas, G. S. Reddy, Synth. Commun. 1998, 28, 1399; (p) A. T. B. Molnarand, Tetrahedron Lett. 1996, 37, 8597.

4 (a) S. Amano, N. Takemura, M. Ohtsuka, S. Ogawa, N. Chida, Tetrahedron, 1999, 55, 3855; (b) G. V. M. Sharma, K. L. Reddy, P. S. Lakshmi, P. R. Krishna, Tetrahedron Lett. 2004,

45, 9229; (c) G. R. Kieczykowski, R. H. Schlessinger, J. Am. Chem. Soc. 1978, 100, 1938; (d) L. A. Paquette, Z. Gao, Z. Ni G. F. Smith, Tetrahedron Lett. 1997, 38, 1271; (e) S. Kumar, N. Verma, I. Parveen, N. Ahmed, J. Hetrocyclic Chem. manuscript accepted; (f) Y. Peng, C. Ji, Y. Chen, C. Huang Y. Jiang, Synth. Commun. 2004, 34, 4325; (g) J. H. Hana, Y. E. Kwona, J.-H. Sohnb, D. H. Ryua, Tetrahedron, 2010, 66, 1673; (h) C. Ramesh, N. Ravindranath, B. Das Org. Chem. 2003, 68, 7101; (i) H. Fujioka, O. Kubo K. Senami, Y. Minamitsuji, T. Maegawa, Chem. Comm. 2009, 4429.
5 (a) J. Otera, Chem. Rev. 1993, 93, 1449; (b) T. Kunitake, Y. Okahata, T. Sakamoto, J. Am. Chem. Soc. 1976, 98, 7799; (c) A. G. Gonzalez, Z. D. Jorge, H. L. Dorta, F. L. Rodriguez, Tetrahedron Lett. 1981, 22, 335; (d) V. S. Parmer, A. K. Prasad, N. K. Sharma, K. S. Bisht, H. N. Pati, P. Taneja, Bioorg. Med. Chem. Lett. 1993, 3, 585; (e) M. R. Crampton, K. E. Holt, J. M. Perey, J. Chem. Soc. 1990, 2, 1701; (f) V. L. Boisselier, M. Postel, E. Dunach, Tetrahedron Lett. 1997, 38, 2981; (g) J. Guo, W. Huang, T. S. Scanlan, J. Am. Chem. Soc. 1994, 116, 8062; (h) B. P. Bandgar, L. S. Uppalla, A. D. Sagar, V. S. Sadavarte, Tetrahedron Lett. 2001, 42, 1163; (i) B. Das, J. Banerjee, R. Ramu, R. Pal, N. Ravindranath, C. Ramesh, Tetrahedron Lett. 2003, 44, 5465; (j) B. P. Bandgar, L. S. Uppalla, V. S. S. Patil, New J. Chem. 2003, 5, 68; (k) N. Ahmed, N. K. Konduru, S. Ahmad, M. Owais, Eur. J. Med. Chem. 2014, 75, 233.
6 L. Liu, M. Chen, C. Cai, Chin. Chem. Lett. 1992, 8, 585.
7 (a) A. Varvoglis, Hypervalent lodine in Organic Synthesis; Academic Press: London, 1997; (b) T. Wirth, U. H. Hirt, Synthesis, 1999, 1271.
8 (a) M. Frigerio, M. Santagostino, Tetrahedron Lett. 1994, 35, 8019; (b) T. Wirth, Angew. Chem. Int. Ed. Engl. 2001, 40, 2812; (c) J. D. More, N. S. Finney, Org. Lett. 2002, 4, 3001. (d) K. Surendra, N. S. Krishnaveni, M. A. Reddy, Y. V. D. Nageswar, K. R. Rao, J. Org. Chem. 2003, 68, 2058; (e) T. Wirth, Top. Curr. Chem. 2003, 224, 185; (f) J. N. Moorthy, N. Singhal, K. Senapati, Tetrahedron Lett. 2006, 47, 1757; (g) K. C. Nicolaou, T. Montagnon, P. S. Baran, Y.-L. Zhong, J. Am. Chem. Soc. 2002, 124, 2245.
9 (a) S. N. Murthy, Y. V. D. Nageswar, Tetrahedron Lett. 2011, 52, 4481; (b) L. R. Reddy, N. Bhanumathi, K. R. Rao, Chem. Commun. 2000, 2321; (c) M. A. Reddy, N. Bhanumathi, K. R. Rao, Chem. Commun. 2001, 1974; (d) K. Surendra, N. S. Krishnaveni, R. Sridhar, K. R. Rao, Tetrahedron Lett. 2006, 47, 2125; (e) O. S. Tee, C. Mazza, R. Lozano-Hemmer, J. B. Giorgi, J. Org. Chem. 1994, 59, 7602.

10 P.B. Babasaheb, S.G. Shrikant, G.B. Ragini, V.T. Jalinder, N.K. Chandrahas, Bioorg. Med. Chem. 2010, 18, 1364; (b) S. Syam, S. I. Abdelwahab, M. A. Al-Mamary, S. Mohan, Molecules 2012, 17, 6179.
11 M. Frigerio, M. Santagostino, S. Sputore, J. Org. Chem. 1999, 64, 4537.

Graphical Abstract

β-Cyclodextrin/IBX in water: Highly facile biomimetic one pot deprotection of THP/MOM/Ac/Ts ethers and concomitant oxidative cleavage of chalcone epoxides and oxidative dehydrogenation of alcohols

Sumit Kumar* and Naseem Ahmed*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
*Corresponding author. Fax and Tel.: +91 1332285745.

E-mail address: sumitdcy@iitr.ac.in; nasemfcy@,iitr.ac.in
Table of contents

β-Cyclodextrin/IBX in water: Highly facile biomimetic one pot deprotection of THP/MOM/Ac/Ts ethers and concomitant oxidative cleavage of chalcone epoxides and oxidative dehydrogenation of alcohols

Sumit Kumar* and Naseem Ahmed*
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
*Corresponding author. Fax and Tel.: +91 1332285745.
E-mail address: sumitdcy@iitr.ac.in; nasemfcy@iitr.ac.in

Table of contents

1. General methods
2. General procedure for the deprotection of THP, MOM, acetyl and tosyl ethers and concomitant oxidative cleavage of chalcone epoxides and oxidative dehydrogenation of alcohols
3. Characterization data for selected synthesized compounds
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

1. General methods

Unless otherwise noted, chemicals were purchased from commercial suppliers at the highest purity grade available and were used without further purification. Solvents were distilled by standard methods. Thin layer chromatography was performed on Merck precoated 0.25 mm silica gel plates (60F-254) using UV light as visualizing agent and/or iodine as developing agent. Silica gel (100-200 mesh) was used for column chromatography. IR spectra were recorded on FT-IR spectrometer and expressed as wave numbers $\left(\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brüker ($500 \mathrm{MHz} \& 125 \mathrm{MHz}$) \& Jeol ($400 \mathrm{MHz} \& 100 \mathrm{MHz}$) spectrometer. Spectra were referenced internally to the residual proton resonance in CDCl_{3} (δ 7.26 ppm) or with tetramethylsilane (TMS, $\delta 0.00 \mathrm{ppm}$) as the internal standard. Chemical shifts (δ) were reported as part per million (ppm) in δ scale downfield from TMS. ${ }^{13} \mathrm{C}$ NMR spectra were referenced to CDCl_{3} ($\delta 77.23 \mathrm{ppm}$, the middle peak). Coupling constants are expressed in Hz. The following abbreviations are used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Highresolution mass spectra (HRMS) were obtained on a Brüker micrOTOFTM-Q II mass spectrometer (ESIMS).

2. (a) General procedure for deprotection of THP/MOM/Ac/Ts ethers and concomitant

 oxidative cleavage of chalcone epoxides (1a-11a). The chalcone epoxides (1 mmol) dissolved in water (2 mL) and 3-4 drops of acetone was added to an aqueous solution of β cyclodextrin (1 mmol in 10 mL of water) at $60^{\circ} \mathrm{C}$ and allowed to cool to room temperature. Then, IBX (1.1 or 2.2 mmol depending on the desired product) was added while stirring and stirring was continued for $40-60 \mathrm{~min}$ at $60^{\circ} \mathrm{C}$. After completion of reaction, the mixture was cooled to room temperature and extracted with EtOAc $(3 \times 15 \mathrm{~mL})$, dried, and concentrated in a vacuo. The crude product was purified by silica gel column chromatography usinghexane/ethyl acetate (8:2) as an eluent if required otherwise compounds were pure enough for the spectral elucidation.
(b) General procedure for deprotection of THP/MOM/Ac/Ts ethers and concomitant oxidative dehydrogenation of alcohols (15a-28a). To a solution of alcohol (15-28) in water (2 mL) and 3-4 drops of acetone was added to an aqueous solution of β-cyclodextrin (1 mmol in 10 mL of water) at $60^{\circ} \mathrm{C}$ and allowed to cool to room temperature. Then, IBX (1.5 equiv. per alcohol or C-C bond to be oxidized) was added while stirring. The mixture was heated to $60^{\circ} \mathrm{C}$, and the reaction was constantly monitored by TLC until complete consumption of starting material was observed. The reaction mixture was cooled to room temperature and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The organic layer was washed with 5% aq. NaHCO_{3} and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in a vacuo. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate (8:2) as an eluent if required otherwise compounds were pure enough for the spectral elucidation.
(c) General procedure for deprotection of THP/MOM/Ac/Ts ethers (29a-38a). β cyclodextrin (0.1 mmol) was dissolved in water $(25 \mathrm{ml})$ at $60^{\circ} \mathrm{C}$; THP/MOM/Ac/Ts ether (1 mmol) in water: acetone mixture ($2 \mathrm{ml}: 3-4$ drops) was added slowly with stirring. The stirring was continued at $60{ }^{\circ} \mathrm{C}$ for the specified time (Table 5). Then the reaction mixture was cooled to room temperature and extracted with EtOAc $(3 \times 15 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by silica gel column chromatography using hexane/ethyl acetate (9:1) as eluent if required otherwise compounds were pure enough for the spectral elucidation.

3. Characterization data for representative compounds

3-(4-fluorophenyl)-3-hydroxy-1-(4-hydroxyphenyl)propane-1,2-dione (1a)

 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): δ 7.95-7.90 (m, 2H), 7.74 (dd, $J=2,10 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=$ $2,10 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 2.54 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 197.3,191.5,164.6$, 163.1, 133.4, 132.5, 131.1, 129.0, 116.2, 115.8, 85.2. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3420, 2945, 1687, 1649. HRMS (ESIMS) for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 297.0533; found 297.0531.

3-hydroxy-1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)propane-1,2-dione (2a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.90$ (dd, $J=2.5$, $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=$, $2.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~s}$, $1 \mathrm{H}), 4.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 197.9,191.4,163.7,163.2,132.5,130.8,129.9,129.0$, 116.2, 113.7, 84.8, 55.5. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3422, 2940, 1685, 1647. HRMS (ESIMS) for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 309.0733; found 309.0730.

3-(4-chlorophenyl)-3-hydroxy-1-(4-hydroxyphenyl)propane-1,2-dione (3a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.84(\mathrm{dd}, J=2.5,8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.75$ (dd, $J=2.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ (dd $J=2.5$, $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H})$, 4.81 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 2.55 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C} \mathrm{NMR}$ (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 197.6,191.4,162.9,139.7,135.2,132.5,129.8,129.1,128.9,116.2,84.7 . \mathrm{IR}$ $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3423,2947,1684,1645$. HRMS (ESIMS) for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 313.0238; found 313.0232.

3-(4-bromophenyl)-3-hydroxy-1-(4-hydroxyphenyl)propane-1,2-dione (4a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.78-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.54$ $(\mathrm{dd}, J=2,11 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=11 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H})$, $4.23\left(\mathrm{~s}, \quad 1 \mathrm{H}, \quad \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $2.56\left(\mathrm{~s}, \quad 1 \mathrm{H}, \quad \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 197.8,191.5,162.9,135.6,132.6$, 131.9, 129.9, 129.2, 128.5, 116.1, 83.7. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3423, 2947, 1685, 1642. HRMS (ESIMS) for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 356.9732; found 356.9734 .

1-(4-fluorophenyl)-3-hydroxy-3-(4-hydroxyphenyl)propane-1,2-dione (5a)

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): ~ \delta ~ 7.98-7.93$ (m, 2H), 7.76 (dd,
$J=2,10 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=2,10 \mathrm{~Hz}, 2 \mathrm{H})$,
$5.35(\mathrm{~s}, 1 \mathrm{H}), 4.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $2.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 191.8,191.2,165.5,162.8,132.7$, 132.6, 132.5, 125.8, 116.6, 116.4, 84.3. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3420, 2946, 1686, 1647. HRMS (ESIMS) for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 297.0533; found 297.0535.

1-(4-fluorophenyl)-3-(4-hydroxyphenyl)propane-1,2,3-trione (8a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.92-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.71$ (dd, J $=1.5,11 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{dd}, J=1.5,10.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.71$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}): \delta 189.5,166.9,164.7,133.4,132.5,131.0,129.1,116.1,115.8 . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3425$, 2948, 1640, 1599, 1582. HRMS (ESIMS) for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{FNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 295.0377; found 295.0372.

1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)propane-1,2,3-trione (9a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.88(\mathrm{dd}, J=2.5,9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.73(\mathrm{~d}, J=11 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=11 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=2.5$, $11 \mathrm{~Hz}, 2 \mathrm{H}), 4.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 188.4,163.7$, 163.2, $132.5,130.8,129.9,129.0,116.2$, 113.7, 55.4. IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3420,2945,1643,1595,1582$. HRMS (ESIMS) for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NaO}_{4}$ $(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 307.0576; found 307.0569.

1-(4-chlorophenyl)-3-(4-hydroxyphenyl)propane-1,2,3-trione (10a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.84(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.75(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd} J=2.5,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 189.7,162.9,139.7,135.2,132.5$, 129.8, 129.2, 128.9, 116.1. IR (KBr, cm^{-1}): 3421, 2946, 1644, 1585. HRMS (ESIMS) for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 311.0081; found 311.0080.

1-(4-bromophenyl)-3-(4-hydroxyphenyl)propane-1,2,3-trione (11a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.83(\mathrm{dd}, J=2.5,10.5 \mathrm{~Hz}$, 2 H), 7.74 (dd, $J=2.5,10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=2.5,10.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.98(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): δ 189.1, 162.8, 135.6, 132.6, 131.9, 129.9, 129.2, 128.5, 116.1. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3421,2946,1644,1585$. HRMS (ESIMS) for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$ Anal. calcd. 354.9576; found 354.9571.
(E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (15a)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.99(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}$, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.38\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 186.8,162.0,141.3,131.4,130.9,130.8$, 128.9, 121.8, 115.8, 115.2. IR (KBr, $v_{\max }=\mathrm{cm}^{-1}$): 3410, 2926, 2875, 1686, 1599, 1265, 1078, 862, 730. GC-MS (m/z): $302\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrO}_{2}\right], 304[\mathrm{M}+2]$.

(E)-3-(4-hydroxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (16a)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.03(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=16 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}$,
$\mathrm{D}_{2} \mathrm{O}$ exchangeable), $3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 188.2, 163.9, 142.7, $131.4,131.3,130.1,121.5,116.8,116.6,114.2,55.1$. IR $\left(\mathrm{KBr}, v_{\max }=\mathrm{cm}^{-1}\right): 3410,2928$, 2880, 1684, 1599, 1265. GC-MS (m/z): $254\left[\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}\right]$.

(E)-1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (17a)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.03(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.77$ (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), $3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 188.7, 163.6, 142.8, $131.2,131.0,130.4,121.7,116.3,116.2,114.0,55.7$. IR $\left(\mathrm{KBr}, v_{\max }=\mathrm{cm}^{-1}\right): 3410,2926$, 2875, 1686, 1599, 1265. GC-MS (m/z): $254\left[\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}\right]$.
(E)-1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (18a)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.91-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{dd}$, $J=1.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 193.8, 163.7, 162.1, 145.5, 136.3, 130.7, 129.7, 127.4, 120.2, 118.9, 118.7, 117.7, 114.6, 55.6. IR $\left(\mathrm{KBr}, v_{\max }=\mathrm{cm}^{-1}\right)$: 3410, 2926, 2875, 1686, 1599, 1265. GC-MS (m/z): $254\left[\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}\right]$.
(E)-1-(4-chlorophenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one (21a)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.92-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}$, $3 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 193.6,163.8,144.1,136.7$, 133.2, 131.7, 130.0, 129.8, 129.5, 129.0, 120.7, 119.1, 118.9. IR (KBr, $\left.v_{\max }=\mathrm{cm}^{-1}\right): 3410,2926,2875,1686,1599,1265$. GC-MS (m/z): $258\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{2}\right], 260[\mathrm{M}+2]^{+}$.

(E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (23a)

 exchangeable). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 186.88, 162.05, 141.32, 131.41, 130.90, $130.83,128.92,121.85,115.81,115.21$. IR (KBr, $v_{\max }=\mathrm{cm}^{-1}$): 3410, 2926, 2875, 1686, 1599, 1265, 1078, 862, 730. GC-MS (m/z): $302\left[\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrO}_{2}\right], 304[\mathrm{M}+2]$.

Cyclohex-2-enone (24a)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 6.71-6.69(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=10 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{t}, J=1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 198.1,163.2,127.1,37.4,24.5,22.6$. IR (KBr, $v_{\max }$ $\left.=\mathrm{cm}^{-1}\right): 1701,1632 . \mathrm{GC}-\mathrm{MS}(\mathrm{m} / \mathrm{z}): 96\left[\mathrm{M}^{+}, \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}\right]$.

Cyclohepta-2,6-dienone (26a)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 6.43(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.31-6.29(\mathrm{~m}$, 2H), 2.34-2.26 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 194.8, 144.2, 135.1, 28.1. IR (KBr, $v_{\max }=\mathrm{cm}^{-1}$): 1655, 1610, 1564, 1410. GC-MS (m/z): 108 $\left[\mathrm{M}^{+}, \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}\right]$.

1-(4-hydroxyphenyl)-2-phenylethane-1,2-dione (27a)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.48$ $(\mathrm{m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). ${ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 191.7,191.6,162.6,137.6,134.7,132.6,130.7,129.2$, 124.7, 114.4. IR (KBr, $\left.v_{\max }=\mathrm{cm}^{-1}\right): 3410,1686,1640$. GC-MS (m/z): $226\left[\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3}\right]$.

4-hydroxybenzaldehyde (28a)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 9.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 7.35 $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}, \mathrm{ppm}) \delta 192.9,163.0,134.7,130.2,117.1$. IR $\left(\mathrm{KBr}, v_{\max }=\mathrm{cm}^{-1}\right): 3420,2927,2873$, 1721. GC-MS (m/z): $122\left[\mathrm{M}^{+}, \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}\right]$.

2,6-diphenyltetrahydro-2H-pyran-4-yl 4-methylbenzenesulfonate (32)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.88(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}$, $10 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{tt}, J=4.5 \mathrm{and} 11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}, J=4.5,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{q}, J=$ $12.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 144.7,140.9,134.2,129.8,128.3,127.7$, 127.5, 125.7, 78.1, 77.4, 61.2, 39.9, 21.5. IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3056,3039,2923,2852,2373$, $1717,1629,1454,1379,1178,1065,945,903,757,699$.

2,6-bis(4-chlorophenyl)tetrahydro-2H-pyran-4-yl 4-methylbenzenesulfonate (33)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.80(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27$ $(\mathrm{m}, 10 \mathrm{H}), 4.93(\mathrm{tt}, J=4.5,11 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=1.5,11.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dd}, J=4.5,11.5 \mathrm{~Hz}, 2 \mathrm{H}),, 1.75(\mathrm{q}, J=11.5 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 145.0,139.3,134.2,133.7,130.0,128.7,127.6$, 127.2, 77.6, 76.8, 39.9, 21.7.
(E)-2-(4-chlorophenyl)-6-(4-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)phenyl)tetrahydro-2H-pyran-4-yl 4-methylbenzenesulfonate (34)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 8.02-8.05(\mathrm{~m}, 4 \mathrm{H})$, $7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J$ $=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8,2.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5,3 \mathrm{~Hz}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{tt}, J=11,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.56-4.49 (m, 2H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 188.8,164.6,146.9,144.8,143.4,139.3,134.3,134.1,133.8,133.6,131.7$, 131.1, 130.0, 128.6, 128.6, 127.6, 127.2, 126.4, 121.2, 77.6, 77.3, 76.9, 39.8, 39.8, 21.7. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3000,2945,1678,1614,1350,1200,1121,861$. HRMS (ESIMS) for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{ClFNaO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 613.1228; found 613.1220.
(E)-2-(4-bromophenyl)-6-(4-(3-(4-bromophenyl)-3-oxoprop-1-en-1yl)phenyl)tetrahydro-

2H-pyran-4-yl 4-methylbenzenesulfonate (35)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.86$ (dd, $J=8.5$, $2 \mathrm{~Hz}, 4 \mathrm{H}), 7.60$ (dd, $J=10.5,8.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.39-7.46$ (m, $6 \mathrm{H}), 7.33(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ $(\mathrm{tt}, J=6.5,3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=28,10 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{dd}, J=24,12.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.77(\mathrm{q}, J=11 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 189.18,146.84,143.35$, $139.67,136.75,133.91,133.67,131.78,131.46,129.90,128.50,127.46,127.42,126.33$, $121.03,118.61,77.43,76.73,72.70,39.65,21.55 . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3000,2945,1678,1614$, 1350, 1200, 1121, 861. HRMS (ESIMS) for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{NaO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 716.9922; found 716.9900.
(c) Spectral data of OTs deprotected product:

2,6-diphenyltetrahydro-2H-pyran-4-ol (32a)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.19-7.41(\mathrm{~m}, 8 \mathrm{H}), 4.51-4.43(\mathrm{~m}, 2 \mathrm{H})$, $4.07(\mathrm{tt}, J=4.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28\left(\mathrm{~s}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.1 \mathrm{H}, \mathrm{OH}\right)$, $2.21(\mathrm{dd}, J=4,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{q}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(125$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 131.4,128.3,127.5,125.8,77.8,68.6,42.9$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3433$, 2965, 2921, 2852, 1634, 1452, 1382, 1265, 1156, 1065, 900, 760, 700. GC-MS (m/z): 410 $\left[\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}\right]$.

2,6-bis(4-chlorophenyl)tetrahydro-2H-pyran-4-ol (33a)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.29-7.24(\mathrm{~m}, 8 \mathrm{H}), 4.47$ (d, $J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{tt}, J=4.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J$ $=4,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{q}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 139.2,132.3,127.5,126.2,77.8,67.4,41.9$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3447$, 2960, 2886, 1652, 1543, 1088, 804. GC-MS (m/z): $323\left[\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2}\right]$.
(E)-3-(4-(6-(4-chlorophenyl)-4-hydroxytetrahydro-2H-pyran-2-yl)phenyl)-1-(4-
fluorophenyl)prop-2-en-1-one (34a)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 8.18(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=9 \mathrm{~Hz}, 3 \mathrm{H}), 7.48$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{t}, J=3 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{tt}, J=11,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.85$ $(\mathrm{m}, 2 \mathrm{H}), 2.04\left(\mathrm{~s}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 1 H$), 1.73-1.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 188.8,166.7,164.6,144.6,143.7,140.8,134.5,134.3,131.2,130.0$, 128.7, 127.7, 126.5, 125.9, 121.6, 115.9, 78.0, 77.7, 69.4, 40.0. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3434,3010$, 2922, 2843, 1734, 1626, 1456, 1256, 1069, 808.8. HRMS (ESIMS): for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClFNaO}_{3}$ $(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 459.1139; found 459.1150.
(E)-1-(4-bromophenyl)-3-(4-(6-(4-bromophenyl)-4-hydroxytetrahydro-2H-pyran-2-yl)phenyl)prop-2-en-1-one (35a)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.88(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.66(\mathrm{~m}, 4 \mathrm{H})$, $7.47(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.45$
$(\mathrm{d}, J=32,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{tt}, J=10.5,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.20\left(\mathrm{~s}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 1 H), 1.77-1.86 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): δ 189.8, 143.7, $140.7,135.4,134.4,134.1,129.8,129.2,128.5,128.4,127.8,127.5,126.2,125.7,122.0$, 77.8, 77.4, 67.2, 39.8. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3454, 2961, 2878, 1651, 1541, 1091, 801. HRMS (ESIMS): for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 562.9833; found 562.9853.

2-(4-(4-hydroxy-6-phenyltetrahydro-2H-pyran-2-yl)phenyl)-4H-chromen-4-one (36a)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.74(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (dd, $J=6,3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 3 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=6.5,3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.40(\mathrm{t}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{tt}, J=11,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.22(\mathrm{~m}$, 2H), 1.68-1.77 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 190.0,163.0,156.0,139.8$, $135.5,134.1,131.6,129.9,129.3,128.6,128.6,127.6,127.5,126.3,122.2,121.8,77.1,76.9$, 65.0, 39.8, 39.7. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3446, 2971, 2880, 1652, 1513, 1208, 799. HRMS (ESIMS): for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$Anal. calcd. 421.1416; found 421.1441.

4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of representative compounds.

30_SKJ-5-151

69

BRUKER

\%

[^0]: Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
 *Corresponding author. Fax and Tel.: +91 1332285745.
 E-mail address: sumitdcy@iitr.ac.in; nasemfcy@iitr.ac.in
 Electronic Supplementary Information (ESI) available: [details of any
 supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

