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(2)-Quinic acid and (2)-shikimic acid, both recognized as
the key intermediates in the shikimate pathway in plants
and microorganisms, have been synthesized concisely in an
enantio- and diastereo-controlled manner starting from a
synthetic equivalent of (R)-4-hydroxycyclohex-2-enone.

Both (2)-quinic acid 1 and (2)-shikimic acid 2 occur widely in
both plants and microorganisms in which they have been
recognized as the pivotal biogenetic precursors in the biosyn-
thesis of a variety of aromatic natural products in the biogenetic
pathway known as the shikimate pathway.1 Since the shikimate
pathway is only operative in plants and microorganisms,
development of a flexible synthetic procedure for both (2)-qui-
nic acid 1 and (2)-shikimic acid 2 as well as a variety of their
derivatives is of great importance in biogenetic studies as well
as in the search for herbicidal, antifungal or antibacterial agents
that do not affect mammals.1,2 Although a number of proce-
dures including enantiocontrolled approaches have been devel-
oped for the construction of (2)-shikimic acid3,4 2, only three
racemic5 and one chiral6 procedures have been reported for the
synthesis of (2)-quinic acid 1 to date. To explore a unified
enantiocontrolled route to both (2)-quinic acid 1 and (2)-shi-
kimic acid 2, we selected the enantiomerically pure tricyclic
ketol silyl ether7 3, obtained from the catalytic asymmetriza-
tion7,8 of the meso tricyclic ene-1,4-diol bis-silyl ether 4 and
which serves as a synthetic equivalent of
(R)-4-hydroxycyclohex-2-enone,9 as the starting material. We
describe here a diastereoselective conversion of (2)-3 into both
(2)-quinic acid 1 and (2)-shikimic acid 2 in a concise manner
in good overall yields (Scheme 1).

Ketol silyl ether7,8 (2)-3 ( > 99% ee) was treated with
OC(OMe)2 in THF in the presence of NaH to afford in good
yield the b-keto ester which existed in the single enol form‡ 5,
[a]29

D 2191.0 (c 1.71, CHCl3). On hydroxylation in DMSO
containing KF and P(OEt)3,10,11 the enol 5 gave dia-
stereoselectively the a-hydroxy-b-keto ester 6, [a]30

D 259.8 (c
1.09, CHCl3), as a single stereoisomer. As expected, NOE
experiments indicated the exo-stereochemistry of the hydroxy
functionality, which was confirmed by the later conversion.

After acetylation, the resulting tertiary acetate 7, [a]30
D 261.3 (c

1.17, CHCl3), was subjected to thermolysis in Ph2O (ca.
280 °C) to give the cyclohexenone 8, [a]29

D +83.5 (c 0.53,
CHCl3), by retro-Diels–Alder reaction.

Although the stereochemistry of the catalytic osmylation of
(+)-8 could not be predicted, the reaction gave a readily
separable 15 : 1 mixture from which the cis-diol 9, [a]28

D +82.8
(c 1.22, CHCl3), having syn configuration to the acetoxy group,
was obtained in 86% yield as the major product. The observed
high diastereoselectivity may be due to the axially disposed
acetoxy group in the molecule, which directs the ster-
eochemistry of the dihydroxylation by interaction with OsO4
forming a complex such as 8a. After protection of the cis-diol
functionality of 9 via reaction with (MeO)2CMe2 in the
presence of PPTS,12 the resulting acetonide 10 was reduced
with NaBH4 in MeOH at low temperature to give dia-
stereoselectively the single alcohol 11, [a]30

D 215.5 (c 1.23,
CHCl3), which served as the common intermediate for (2)-qui-
nic acid 1 and (2)-shikimic acid 2. The overall yield of 11 from
(2)-3 was 57% (Scheme 2).

To obtain (2)-quinic acid 1, 11 was first transformed into the
imidazo-1-ylthiocarbonate13 12, which then was treated with
Bu3SnH13 to give the deoxygenated product 13, [a]30

D 223.2 (c
1.39, CHCl3). Removal of the three oxygen protecting groups

Scheme 1

Scheme 2 Reagents and conditions: i, NaH, OC(OMe)2, THF, room temp.,
23 h (86%); ii, O2, KF, P(OEt)3, DMSO, room temp., 22 h (90%); iii, Ac2O,
pyridine, room temp., 38 h (100%); iv, Ph2O, reflux, 1 h (100%); v, OsO4

(cat.), NMO, THF–H2O (2 : 1), 0 °C, 72 h (86% 15 : 1 de); vi, Me2C(OMe)2,
PPTS (cat.), 65 h; vii, NaBH4, MeOH, 278 °C, 1.5 h (85% from 9)
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was carried out in one step by refluxing 13 with CBr4 in
MeOH14 to give methyl quinate 14, [a]30

D 231.6 (c 1.45,
MeOH), which was identical with authentic material derived
from natural (2)-quinic acid 1. Finally, 14 was hydrolyzed with
NaOH to give (2)-quinic acid 1, mp 167–168 °C, [a]30

D 243.6
(c 2.03, H2O) {lit.,15 162–163 °C, 242 to 244 (H2O)}.

On the other hand, to obtain (2)-shikimic acid 2, 11 was first
deacetylated to give the cis-1,2-diol 15, which afforded the
cyclohexene 17, [a]29

D 219.7 (c 1.12, CHCl3), via the cyclic
amino acetal 16 on treatment with N,N-dimethylformamide
dimethyl acetal followed by Tf2O.16 Exposure of 17 with dilute
HCl in MeOH allowed spontaneous desilylation and removal of
the acetonide group to give methyl shikimate 18, [a]29

D 2130.0
(c 0.91, EtOH), which was identical with authentic material.4
Finally, 18 was hydrolyzed with NaOH to give (2)-shikimic
acid 2, mp 184–185 °C, [a]25

D 2164.0 (c 0.59, H2O) {lit.,4

184–186 °C, 2163.7 (c 0.59, H2O); lit.,17 184–186 °C, 2170 (c
0.86, H2O)} (Scheme 3).
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Scheme 3 Reagens and conditions: i, thiocarbonyl-1,1A-diimidazole, 50 °C,
14 h (100%); ii, Bu3SnH, toluene, reflux, 9 h (80%); iii, CBr4, MeOH,
reflux, 19 h (86%); iv, NaOH, H2O, roo temp., 13 h (100%); v, DBU,
MeOH, 220 °C, 20 h; vi, (MeO)2CHNMe2, room temp., 23 h; vii, Tf2O,
Pri

2NEt, toluene, 50 °C, 1 h (80% from 11); viii, 2% HCl–MeOH, room
temp., 40 h (95%); ix, NaOH, THF–H2O (1 : 1), room temp., 1 h (96%)
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