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CATALYTIC  REDUCTIVE  �-METALLOETHYLATION
IN  THE  SYNTHESIS  OF  6-METHYLNONAN-3-ONE  AND
3-METHYLHEPTANOIC  ACID,  RACEMIC  ANALOGS  OF
Hesperophylax  occidentalis  AND  Coleoptera  scarabaeidae
PHEROMONES
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Previously, the syntheses of 4-methyloctanoic acid, an aggregation pheromone component of an Oryctes rhinoceros
beetle [1], and 6-methyloctan-3-one, a racemic analog of an alarm pheromone of a Crematogaster ant [2], were used as
examples to demonstrate the potential of the reductive �-metalloethylation of 1-alkenes in the presence of tantalum (Ta)
complexes that was discovered by us [3–7].

Herein, this synthetic approach is expanded to the syntheses of 6-methylnonan-3-one (1), a racemic analog of the sex
pheromone of the caddisfly Hesperophylax occidentalis, and 3-methylheptanoic acid (2), a racemic analog of the aggregation
pheromone of the beetle Coleoptera scarabaeidae. The sex pheromone of H. occidentalis was first isolated by Bjostad et al.
[8] and identified as 6-methylnonan-3-one.  Multistep syntheses of this compound as a racemate and enantiomers are known [8–10].

An effective synthetic pathway to the racemic analog of pheromone 1 was based on the new regioselective reductive
�-zinc-ethylation of 1-alkenes using Et2Zn and TaCl5 as a catalyst that was recently discovered by us [4].

Thus, the reaction of pent-1-ene with Et2Zn in the presence of TaCl5 (Et2Zn–pent-1-ene–TaCl5, 110:100:5, 20°C, 5 h)
formed organozinc compound 3.  For this, pent-1-ene (1.4 mL, 20 mmol) was added to hexane (20 mL) cooled to 0°C, treated
with Et2Zn (22 mmol, 22.0 mL) and TaCl5 (0.4 g, 1 mmol), heated gradually to room temperature, stirred for 5 h, cooled
to –5°C, and treated dropwise with propionyl chloride (4, 1.74 mL, 20 mmol) in hexane (10 mL).  All these manipulations
were performed under dry Ar.  After 4 was added, the mixture was stirred for 2 h at room temperature and treated with HCl
solution (10%).  The resulting 1 was extracted with Et2O (3 � 50 mL), dried over anhydrous MgSO4, and evaporated.
The solid was chromatographed (SiO2, hexane–Et2O, 6:1) to afford 1 (2.95 g, 99% pure by GC) in 95% yield from 4 (Scheme 1).

Catalytic �-metalloethylation was used in the key step of a synthesis of 3-methylheptanoic acid (2).
The reaction of hex-1-ene with EtMgCl in the presence of TaCl5–Ph3P (1:1) catalyst (EtMgCl–hex-1-ene–TaCl5+Ph3P,

150:100:5, 1 mM EtMgCl, THF, 20°C, 4 h) formed organomagnesium compound 5 (Scheme 2).  For this, a solution of EtMgCl
(37.5 mL, 37.5 mmol) in THF (37.5 mL) at 0°C was stirred and treated with hex-1-ene (2.1 g, 25 mmol), Ph3P (0.33 g,
1.25 mmol), and TaCl5 (0.45 g, 1.25 mmol).  The temperature was increased to 20°C.  Stirring continued for 4 h.  The mixture
was oxidized in a glass thermostatted reactor by passing pure O2 through the reaction mixture at 8–10°C for 2 h.  Then, the
mixture was poured into HCl solution (5%).  The resulting alcohol 6 was extracted with Et2O (3 � 70 mL).  The extract was
dried over MgSO4 and evaporated in vacuo to isolate 3-methylheptan-1-ol (6, 2.93 g, 99% pure by GC, based on starting
hex-1-ene), which had the reported spectral characteristics [11].
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Scheme 1
a. TaCl5, hexane, 5 h; b. 1. C2H5COCl (4), 2. HCl/H2O

DOI 10.1007/s10600-018-2282-6



162

Alcohol 6 was oxidized to aldehyde 7 as follows.  A suspension of pyridinium chlorochromate (PCC, 5.9 g,
27.5 mmol) in anhydrous CH2Cl2 (35 mL) was stirred (20°C, Ar), treated in one portion with a solution of 6 (2.93 g,
22.5 mmol) in CH2Cl2 (10 mL), stirred for 1.5 h, diluted with anhydrous Et2O (35 mL), and filtered through a layer of Al2O3
(5 cm).  The solid was rinsed with anhydrous Et2O (50 mL).  The solvents were evaporated to afford 7 (2.51 g, 87.7%).
IR spectrum (�, cm–1): 2730, 2950, 1725, 1470, 1390.  Aldehyde 7 was oxidized to acid 2 as follows.  A solution of AgNO3
(0.32 g, 0.19 mmol) and 7 (2.51 g, 19.6 mmol) in MeCN (40 mL) was stirred, treated dropwise with H2O2 (11.2 mL, 98 mmol,
30%), heated to 50°C and held there for 10 h, decomposed at 5°C by Na2S2O3 solution (10%, 10 mL), and extracted with
CH2Cl2 (2 � 50 mL).  The solvent was evaporated.  The solid was chromatographed over SiO2 (CHCl3) to isolate 2 (2.83 g,
63% based on starting hex-1-ene, Scheme 2), which was >98% pure by GC [12].

The structures of 1 and 2 were confirmed by IR, PMR, and 13C NMR spectra, mass spectrometry, and comparisons
with the literature [8, 9, 13, 14].

Thus, new synthetic capabilities of catalytic reductive �-metalloethylation were demonstrated.
The isolated products were analyzed on a Shimadzu GC-2014 chromatograph in a He stream using a column

(2,000 � 3 mm, 5% SE-30 on Chromaton N-AW-HMDS, 0.125–0.160 mm) at operating temperature 50–300°C.  One- (PMR,
13C NMR) and two-dimensional (COSY, HSQC, HMBC) NMR spectra were recorded in CDCl3 on a Bruker Avance-400
spectrometer (100 MHz for 13C, 400 MHz for 1H) at 25°C.  Chemical shifts were given vs. TMS.  Mass spectra were measured
on a Shimadzu GCMS-QP 2010 (Supelco SLB™-5ms, glass capillary column, 60,000 � 0.25 mm � 0.25 �m, He carrier gas,
temperature programmed from 50 to 260°C at 5°C/min, ion-source temperature 260°C, 70 eV).  Elemental analyses were
determined on a Carlo Erba Model No. 1106 analyzer.  Chromatograms of reaction mixtures were calculated using an internal
standard.  IR spectra were taken on a Bruker VERTEX 70V spectrometer.
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Scheme 2
a. TaCl5-PhP3, THF, 4 h; b. O2, HCl/H2O; c. PCC, CH2Cl2; d. H2O–AgNO3 (catalyst), MeCN


