AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by Gothenburg University Library

Biotechnology and Biological Transformations

Efficient synthesis of theaflavin-3-gallate by a tyrosinasecatalyzed reaction with (-)-epicatechin and (-)epigallocatechin gallate in a 1-octanol/buffer biphasic system

Asako Narai-Kanayama, Yoshinori Uekusa, Fumiyuki Kiuchi, and Tsutomu Nakayama

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.8b05971 • Publication Date (Web): 28 Nov 2018 Downloaded from http://pubs.acs.org on December 2, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Efficient Synthesis of Theaflavin 3-gallate by a Tyrosinase-
2	Catalyzed Reaction with (-)-Epicatechin and (-)-Epigallocatechin
3	Gallate in a 1-Octanol/Buffer Biphasic System
4	
5	Asako Narai-Kanayama*, [†] , Yoshinori Uekusa [‡] , Fumiyuki Kiuchi [‡] , Tsutomu
6	Nakayama ^{†,§}
7	
8	[†] School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science
9	University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
10	[‡] Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512,
11	Japan
12	§ Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka,
13	Setagaya-ku, Tokyo 156-8502, Japan
14	
15	
16	*Corresponding author. Tel: +81-422-31-4151; Fax: +81-422-51-9984;
17	E-mail: a-narai@nvlu.ac.jp;

18 Abstract

19	Theaflavins, the orange-red pigments contained in black tea, have attracted attention
20	due to their health-promoting effects. However, their synthetic preparation, in which the
21	enzymatic oxidation of catechol-type catechin is followed by the quinone-induced oxidative
22	dimerization of selectively combined catechol- and pyrogallol-type catechins, provides only a
23	low yield. In the present study, we found that a 1-octanol/buffer biphasic system improved the
24	yield of theaflavin 3-gallate in a tyrosinase-catalyzed synthetic reaction with (-)-epicatechin
25	and (-)-epigallocatechin gallate. When the enzymatic reaction proceeded in a buffer solution,
26	oxidized (-)-epigallocatechin gallate was preferentially used for self-dimerization. However,
27	self-dimerization was suppressed in the octanol phase, allowing oxidized (-)-epigallocatechin
28	gallate to participate in coupling with (-)-epicatechin quinone leading to effective production
29	of theaflavin 3-gallate. Furthermore, the preferential localization of theaflavin 3-gallate in the
30	octanol phase prevented (-)-epicatechin quinone-induced degradation.

31 Key words

32

theaflavin; tyrosinase; enzymatic synthesis; biphasic system; 1-octanol

34 Introduction

35	Theaflavins, the characteristic orange or orange-red pigments in black tea leaves and their
36	exudates, are produced during the fermentation of Camellia sinensis leaves, in which
37	endogenous polyphenol oxidase (PPO) and peroxidase (POD) are involved. ^{1, 2} Condensation
38	of different pairs of oxidized catechins, one with a dihydroxylated B-ring (catechol-type) and
39	the other with a trihydroxylated B-ring (pyrogallol-type), followed by decarboxylation affords
40	four kinds of theaflavins, theaflavin, 1, theaflavin 3-O-gallate, 2, theaflavin 3'-O-gallate, 3,
41	and theaflavin 3,3'-O-digallate, 4 (Figure 1). ^{3,4}
42	Theaflavins contribute to the astringency of various brewed teas and have various
43	bioactivities, such as antioxidant activity, ^{5, 6} anticancer activity, ^{7, 8} antidiabetic effects, ⁹ and
44	inhibitory activity against bone loss in models of osteoporosis. ¹⁰ According to some in vitro
45	and <i>in vivo</i> studies, 2 specifically decreases the micellar solubility of cholesterol, $11, 12$
46	probably being responsible for the lowering of blood LDL cholesterol by the intake of black
47	tea. ^{13, 14} In addition, a single oral administration of theaflavins elevates cremasteric blood flow
48	in rats, and the magnitude of this effect is in the order of $3 >> 2 >> 1 = 4$. ¹⁵ To elucidate their
49	structure-activity relationships and the mechanisms of their bioactivities, sufficient amounts
50	of theaflavins are required. However, the study and application of theaflavins have been
51	hampered by their fairly low amounts in black tea ¹⁶ and their instability in aqueous solutions,

52	especially under neutral or alkaline conditions. ¹⁷⁻¹⁹	
----	---	--

53	Researchers have investigated the mechanism of theaflavin synthesis using plant
54	homogenates, ⁴ PPO purified from tea leaves, ^{1, 20, 21} or tyrosinase (EC 1.14.18.1) from the
55	mushroom Agaricus bisporus, a copper-containing oxidase with both monophenol
56	monooxygenase and diphenol oxidase activities, as a commercially available PPO model. ²²
57	Through the prospective mechanism of PPO-catalyzed theaflavin synthesis (Figure 1), the
58	enzymatic and non-enzymatic reactions proceed concurrently: 1) catechol-type catechins are
59	enzymatically oxidized to the quinone form, 2) pyrogallol-type catechins are oxidized either
60	by enzymatic oxidation or a coupling redox reaction with catechol quinones, and 3)
61	theaflavins are produced by the condensation of a pair of catechol- and pyrogallol-type
62	quinones and subsequent decarboxylation. There is another explanation in which the
63	benzotropolone moiety in theaflavins is produced by direct coupling between catechin
64	quinone and pyrogallol. ^{23, 24} This hypothesis concerning the first step is based on organic
65	reactions in aprotic media. The higher electron-donating property of the pyrogallol group ^{25, 26}
66	and our previous kinetic analyses of tyrosinase-catalyzed reactions with catechins in aqueous
67	media (i.e., catechol-type catechins decrease very slowly in spite of their higher constant
68	efficiency (k_{cat}/K_m) for tyrosinase until almost all of the combined pyrogallol-type ones are
69	consumed) ²² strongly suggest that coupling redox reactions between catechol quinones and

70	pyrogallol occur predominantly under aqueous conditions essential for enzymes. The sub-
71	products interfere with the synthesis of theaflavins; in particular, highly reactive quinones
72	attack theaflavins leading to oxidative degradation. ^{4, 20, 22} Pyrogallol quinones are known to
73	cause self-dimerization, ²⁷⁻³⁰ restricting the efficiency of the condensation critical for the
74	production of theaflavins as described above. ²² In our previous study, we found that the
75	synthetic yields of galloylated theaflavins, such as 2, 3, and 4, by the tyrosinase-catalyzed
76	reaction are significantly lower compared with that of 1. ²²
77	Considering the differences in the partition coefficients of catechins, ³¹ we conceived a 1-
78	octanol/buffer biphasic system that would allow for mild separation of hydrophobic (-)-
79	epigallocatechin gallate, 8, from the aqueous buffer phase, where tyrosinase preferentially
80	oxidizes (-)-epicatechin (EC), 5 , a relatively hydrophilic catechol-type catechin (Figure 2). ²²
81	A coupling redox reaction involving EC quinone and 8 then rapidly occurs, and the
82	condensation of EC- and EGCg quinones synthesize 2. The partition of hydrophobic 2 into
83	the 1-octanol phase may prevent EC quinone-mediated oxidative degradation of 2. In this
84	study, we investigated the effects of a 1-octanol/buffer biphasic system on the tyrosinase-
85	catalyzed synthesis of 2 and found that this system effectively increased the synthetic yield of
86	2.

87 Materials and methods

88	Materials

89	(-)-Epicatechin	(EC), 5 , (-))-epicatechin	gallate (l	ECg), 6 ,	(-)-epigalloca	techin ((EGC), 7	,
----	-----------------	----------------------	---------------	------------	------------------	----------------	----------	----------	---

- and (-)-epigallocatechin gallate (EGCg), 8, were kindly provided by Mitsui Norin Co., Ltd.
- 91 (Shizuoka, Japan). Tyrosinase from *A. bisporus* was obtained from Sigma-Aldrich Co. (St.
- 92 Louis, MO). 1-Octanol was obtained from Kanto Chemical Co., Inc. (Tokyo, Japan). o-
- 93 Phenylenediamine was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan).
- All other reagents used were of analytical grade.

95 Measurement of partition coefficients of catechins and theaflavins

The respective four catechins were dissolved in pure water at 1 mM. An aliquot (200 µL) 96 of aqueous catechin or theaflavin solution was mixed with an equal volume of 1-octanol. 97 After the mixture was vigorously shaken, it was centrifuged at approx. $2046 \times g$ for 3 min at 98 room temperature (25 °C). Polyphenols in both the upper layer (1-octanol phase) and the 99 lower one (aqueous buffer phase) were analyzed by RP-HPLC. RP-HPLC was carried out as 100 described previously.²² Briefly, 30 μ L of sample were injected to a 150 mm × 4.6 mm i.d., 4 101 μm, Synergi Polar-RP 80Å column (Phenomenex, Torrance, CA). Catechins and theaflavins 102 were eluted with aqueous 20% and 32% MeCN solutions containing 0.05% phosphoric acid at 103 flow rate of 1 mL/min, respectively, and were detected at 280 nm. Chromatogram analysis 104

105	was performed with the data processing software Chromato-PRO (Run Time Corp., Tokyo,
106	Japan). Partition coefficients (log Pow values) were determined as follows:
107	$\log P_{ow} = \log_{10} [polyphenol in 1-octanol phase]/[polyphenol in aqueous phase]$
108	Tyrosinase-catalyzed synthesis of 2 in the absence or presence of 1-octanol
109	A series of reaction mixtures containing 5, 8, and tyrosinase were constructed as shown
110	in Table 1. Final concentrations of respective catechins and tyrosinase were 2.5 mM and
111	0.025 mg/mL in 50 mM sodium phosphate buffer, pH 6.0. The enzymatic reaction was
112	conducted at 25 °C. At intervals of 15 min for up to 60 min, the reaction mixture was shaken
113	at 2800 rpm/min for 1 min with a vortex mixer, centrifuged at approximately $2046 \times g$ for 3
114	min, and then each aliquot (30 μ L) of the 1-octanol and buffer fractions was taken and added
115	into 180 μ L of the stop solution (a mixture of equal volumes of 25 mM citric acid and
116	ethanol). The stopped samples were analyzed by RP-HPLC using a 150 mm \times 4.6 mm i.d., 4
117	μ m, Synergi Polar-RP 80Å column (Phenomenex, Torrance, CA). The mobile phase consisted
118	of 0.05% phosphoric acid in water (A) and 0.05% phosphoric acid in 80% MeCN (B).
119	Polyphenols were eluted by gradient elution according to the following program: 0-10-30
120	min/20-25-50% B at flow rate of 1 mL/min. They were detected at 280 nm to identify the
121	peaks of catechins and theaflavins.
122	Analysis of phenazine derivatives

ACS Paragon Plus Environment

123	Each aliquot (30 μ L) of the 1-octanol and buffer fractions was taken and added into 180
124	μ L of 0.5 mg/mL <i>o</i> -phenylenediamine in 0.5% acetic acid/ethanol. ²⁹ Phenazine derivatives
125	were analyzed by RP-HPLC as described above. Some peak compounds were isolated by RP-
126	HPLC with similar eluting conditions, except that 0.2% acetic acid was substituted for 0.05%
127	phosphoric acid. They were concentrated by a centrifugal evaporator CC-105 (Tomy Seiko,
128	Tokyo, Japan) for mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses.
129	High resolution electrospray ionization time-of-flight (HR-ESI-TOF) MS spectra were
130	measured with a JMS-T100LP AccuTOF LC-plus (JEOL, Tokyo, Japan) operated in positive
131	ion mode. Monoisotopic masses were calculated by a Molecular Mass Calculator. ³² MS
132	spectra of P1 and P2 showed [M+Na] ⁺ peaks at m/z 1007.1744 and m/z 1007.1738,
133	respectively. Thus, both molecular formulae of P1 and P2 were identical, corresponding to
134	$C_{50}H_{36}N_2O_{20}$ (calcd for $C_{50}H_{36}N_2NaO_{20}$, 1007.1759). NMR spectra were recorded on an ECP-
135	600 FT-NMR (JEOL, Tokyo, Japan) spectrometer operating at ¹ H and ¹³ C resonance
136	frequencies of 600.18 MHz and 150.93 MHz, respectively. A field-gradient system was used
137	for 2D-NMR measurements. Chemical shift values were referenced with respect to
138	tetramethylsilane (TMS) at 0 ppm.
139	Results and Discussion

140 Efficient synthesis of 2 by a tyrosinase-catalyzed reaction with 5 and 8 in the presence of

141 **1-octanol**

142	The log P _{ow} values of four catechins (Table 2) indicated that the order of their
143	hydrophobicity is 6>8>5>7. While 5 was partitioned almost evenly into both 1-octanol and
144	water fractions, the concentrations of 6 and 8 in 1-octanol were about 40- and 10-fold of those
145	in the water phase, respectively. The $\log P_{ow}$ values of theaflavins (Table 2) also indicated that
146	galloylated theaflavins are more hydrophobic in the order of $4>3>2>1$. As expected, 2 was
147	preferentially partitioned into the 1-octanol phase. After a small volume (10 μ L) of tyrosinase
148	solution (1 mg/mL in 50 mM sodium phosphate buffer, pH 6.0) was added into the 1-octanol
149	phase (400 μ L) containing 2 mM of 5 or 8, these two catechins hardly decreased (data not
150	shown), suggesting that the enzyme was denatured and inactivated by 1-octanol. Therefore,
151	we examined the tyrosinase-catalyzed reaction with 5 and 8 in the 1-octanol/buffer biphasic
152	system.
153	In a simple buffer solution, tyrosinase oxidized 5 (Figure 3A) and 8 individually (Figure
154	3B). As previously reported, ²² the tyrosinase-catalyzed reaction with a mixture of 5 and 8
155	produced 2 ; however, the yield of 2 was very low: 0.20 mM of 2 at 60 min corresponding to
156	32% and 9% based on consumed 5 and 8, respectively (Figure 3C). On the other hand, in the
157	presence of 1-octanol, tyrosinase decreased 5 by itself in both 1-octanol and buffer phases,
158	keeping its distribution pattern between the two phases (Figure 4A). The decrease of 5

159	accompanied an orange colorization of the buffer phase (data not shown). This is probably
160	due to oxidative polymerization of 5 and hydrophilicity of the resulting products. Although
161	the generated EC quinone is considered to be more hydrophobic than 5, it may be so highly
162	reactive as to induce the polymerization of 5 before its distribution into the 1-octanol phase.
163	In the case of the tyrosinase-catalyzed reaction with 8 by itself, a slightly pale-yellow
164	colorization in the buffer phase and a moderate decrease of 8 in the 1-octanol phase were
165	observed (Figure 4B). The latter might be due to compensation for the enzymatically
166	consumed 8 in the buffer phase, because the enzymatic oxidation of 8 did not occur in 1-
167	octanol as described above. The tyrosinase-catalyzed reaction with a mixture of 5 and 8 in the
168	1-octanol/buffer biphasic system showed efficient synthesis of 2 with a higher yield in the 1-
169	octanol fraction: 0.46 mM of 2 at 60 min corresponding to 91% and 34% based on consumed
170	5 and 8, respectively (Figure 4C). Preferential localization of 2 into the 1-octanol phase
171	(Figure 4C and D) was visually confirmed. Although it is still unclear in which of the two
172	phases the redox reaction between EC quinone and 8 occurs, the resulting product, EGCg
173	quinone, might be effectively utilized for synthesis of 2 through condensation with EC
174	quinone. The increase of 2 as well as the consumption of catechins reached a plateau after a
175	45-min reaction (Figure 4C and 4D) despite 5 remaining in both phases at higher
176	concentrations than with treatment of 5 alone (Figure 4A). A higher concentration of

177	tyrosinase produced more 2 : 0.70 mM of 2 at 60 min with 88% and 47% yields based on
178	consumed 5 and 8 , respectively (Figure 5A), though the reaction rate also decreased after 45
179	min (Figure 5). These results imply that enzyme inactivation during the reaction restricts the
180	yield of 2 . Thus, in order to improve such a biphasic reaction system, further examinations are
181	necessary into the adequate stirring conditions and technologies for enzyme immobilization
182	required to prevent the enzyme from being denatured by 1-octanol.
183	Suppression of self-dimerization of EGCg quinone in the 1-octanol/buffer biphasic
184	system
185	To investigate effects of the 1-octanol/buffer biphasic system on quinone production and
186	oxidative self-dimerization of 8 , ^{28, 29} we compared the formation of phenazine derivatives
187	between the reaction mixtures in the absence and presence of 1-octanol. In RP-HPLC
188	chromatograms of samples in the absence of 1-octanol, compared with the slight peaks
189	detected in the reaction of 5 alone with retention times of 9.4 min and 19.4 min (Figure 6A),
190	two more distinguishable peaks, P1 and P2, possibly corresponding to phenazine derivatives
191	were detected in both the individual 8 reaction (Figure 6B) and the mixture of 5 and 8 (Figure
192	6C). Although 2, P1, and P2 were also detected in the 1-octanol phase (Figure 7), the peak
193	area of 2 was remarkably larger than those of P1 and P2, the latter being smaller than those
194	from samples without 1-octanol (Figure 6C). The HR-ESI-TOF MS spectra of P1 and P2

195	showed $[M+Na]^+$ peaks at m/z 1007.1744 and m/z 1007.1738, respectively. These data
196	indicated that both molecular formulae of P1 and P2 were identical, corresponding to
197	$C_{50}H_{36}N_2O_{20}$. The ¹ H NMR spectrum of compound P2 showed signals for eight protons
198	derived from two C-rings ($\delta_{\rm H}$ 2.34–5.59), two pairs of meta coupled benzene protons ($\delta_{\rm H}$ 5.90
199	(d, $J = 2.2$ Hz), and $\delta_{\rm H}$ 5.95 (d, $J = 2.2$ Hz), $\delta_{\rm H}$ 6.08 (d, $J = 2.2$ Hz), and $\delta_{\rm H}$ 6.12 (d, $J = 2.2$
200	Hz)), two singlet benzene protons ($\delta_{\rm H}$ 7.12 and $\delta_{\rm H}$ 8.22, each 1H), two galloyl protons ($\delta_{\rm H}$
201	6.98 and $\delta_{\rm H}$ 7.09, each 2H), and protons of the phenazine moiety ($\delta_{\rm H}$ 7.91–8.26) in the ¹ H
202	NMR spectrum (Table 3). In the ¹³ C NMR spectrum, 45 signals including two signals for 2
203	carbons and one signal for 4 carbons were observed as shown in Table 3. These spectra were
204	analyzed by the aid of COSY, HMQC, and HMBC experiments, and the signals were
205	assigned. Based on the chemical and spectroscopic data, P2 was determined to be the
206	phenazine derivative as shown in Figure 8, which is identical to a compound prepared by
207	treatment of an ethanol extract of fermented tea leaves with <i>o</i> -phenylenediamine. ²⁷
208	Comparison of the ¹³ C NMR data of P2 with those reported confirmed the identity. ²⁷
209	Similarly, the ¹ H NMR spectrum of P1 revealed two C-rings ($\delta_{\rm H}$ 1.93–3.02), two pairs of
210	doublets ($\delta_{\rm H}$ 5.88 (d, J = 2.2 Hz) and $\delta_{\rm H}$ 5.92 (d, J = 2.6 Hz), $\delta_{\rm H}$ 6.05 (d, J = 2.2 Hz), and $\delta_{\rm H}$
211	6.06 (d, $J = 2.2$ Hz)), two galloyl moieties ($\delta_{\rm H}$ 7.11 and $\delta_{\rm H}$ 7.12, each 2H), and a phenazine
212	moiety ($\delta_{\rm H}$ 7.89–8.22). In the ¹ H NMR of P1 , one singlet benzene signal was observed at $\delta_{\rm H}$

213	7.15 as the corresponding signal ($\delta_{\rm H}$ 7.12) of P2 . However, another singlet benzene signal
214	was significantly shifted to a higher magnetic field ($\delta_{\rm H}$ 7.78) in comparison with the signal
215	($\delta_{\rm H}$ 8.22) of P2 (Table 3). These observations indicated that P1 is a structural isomer of P2 in
216	which the phenazine moiety is bound to a different position of the B-ring of the original
217	EGCg quinone dimer (Figure 8). Compounds P1 and P2 should be produced from quinone
218	equivalents (9a and 9b) of dehydrotheasinensin A, ^{28, 29} respectively (Figure 8). These results
219	indicate that oxidative dimerization of EGCg quinone rapidly occurs in an aqueous buffer
220	solution, but not in the 1-octanol phase. This is one of the reasons for differences in yield of 2
221	between reaction systems in the absence and presence of 1-octanol. In the present study, the
222	phenazine derivative of EGCg quinone could not be detected; however, it is so hydrophobic
223	compared to 8 as to be preferentially distributed into the 1-octanol phase. Such a water-
224	immiscible solvent might lower the polarization of 8 and EGCg quinones, inhibiting the
225	Michael addition reaction required for their dimerization. On the other hand, catechol
226	quinones in aprotic solvents are known to be relatively stable but not completely stop the
227	quinone-induced oxidation. ^{23, 24} Therefore, this suggests that the highly reactive EC quinone
228	enables its condensation with EGCg quinone either in the buffer or 1-octanol phase, resulting
229	in synthesis of 2 .

230 Preventive effect of the 1-octanol/buffer biphasic system against EC quinone-induced

231 oxidative degradation of 2

232	To investigate whether the preferential partition of 2 into the 1-octanol phase prevents its
233	oxidative degradation caused by the attack of EC quinone, tyrosinase was added into the
234	mixture of 2 and 5 in the absence or presence of 1-octanol. As a result, both 2 and 5 more
235	rapidly diminished in the absence of 1-octanol than in the 1-octanol/buffer biphasic system
236	(Figure 9), whereas without tyrosinase these two polyphenols were stable under the
237	experimental conditions used (data not shown). It is known that tyrosinase does not directly
238	use 2 as a substrate. ²² Therefore, it is clear that EC quinone, the product of enzymatic
239	oxidation of 5, is involved in the degradation of $2^{4, 22}$ Considering that the decreases of 2 and
240	5 were not completely inhibited even in the 1-octanol phase (Figure 9), the degraded 2 in the
241	buffer phase might have been compensated for by 2 from the other phase to keep its partition
242	equilibrium. Although it is unclear why degradation of 2 was not noticeable in the 1-
243	octanol/buffer biphasic system containing 8, the latter may be more susceptible to EC
244	quinone-induced oxidation than 2.
245	
246	Using a 1-octanol/buffer biphasic system is a promising approach to synthesize 2 in good

- 247 yield by the tyrosinase-catalyzed reaction with **5** and **8**. Water-immiscible solvent-water
- biphasic systems are attractive for other enzymatic condensation reactions, giving products

249	with no dissociating groups. ³³⁻³⁸ The expected effects of organic solvents on product yields
250	are dependent on the partition coefficients of substrates and products. Furthermore, these
251	solvents can play a role in limiting the reverse hydrolysis of products by lowering water
252	activity. ³⁶⁻³⁸ The present study for the first time elucidated the utility of a 1-octanol/buffer
253	biphasic system for the tyrosinase-catalyzed synthesis of 2 , suggesting that the solvent
254	restricts undesirable non-enzymatic reactions and enhances product yield. On the other hand,
255	this system is not applicable to synthesis of the other theaflavins, because the distribution of
256	combined 5 and 7 into the aqueous phase is not effective for 1 , and the excessive localization
257	of 6 into the 1-octanol phase prevents it from enzymatic oxidation, leading to very slow
258	synthesis of 3 and 4 (data not shown). Therefore, further study is needed to find other
259	methods for enzymatic syntheses of 1, 3, and 4. Screening other highly volatile solvents that
260	not only have similar effects of 1-octanol on the synthesis of 2 , but are also available in the
261	food industry is the next step for applying synthesized theaflavins into health foods,
262	pharmaceuticals, and to study their various bioactivities.

263

264 Abbreviations used

265 EC: (-)-epicatechin; EGC: (-)-epigallocatechin; ECg: (-)-epicatechin gallate; EGCg: (-)-

266 epigallocatechin gallate; log P_{ow}: 1-octanol–water partition coefficient

267

268	Acknowledgement
200	

- 269 This work was supported by JSPS KAKENHI Grant Number JP17K07823 and JP18K05525,
- and a Grant from the Cross-Ministerial Strategic Innovation Promotion Program (SIP), Urgent
- 271 Project for Development and Diffusion of Innovative Technology towards Realization of the
- 272 Aggressive Agriculture, Forestry, and Fisheries.

273	Supp	orting	Infor	mation

- 274 The HR-ESI-TOF MS spectra of P1 and P2 (Figure S1). This material is available free of
- charge via the Internet at http://pubs.acs.org.
- 276

277 **References**

- 1) Subramanian N.; Venkatesh P.; Ganguli S.; Sinkar V.P. Role of polyphenol oxidase and
- peroxidase in the generation of black tea theaflavins. J. Agric. Food Chem. 1999, 47, 2571-
- 280 2578.
- 281 2) Verloop A.J.W.; Vincken J.P.; Gruppen H. Peroxidase can perform the hydroxylation step
- in the "oxidative cascade" during oxidation of tea catechins. J. Agric. Food Chem. 2016,
- *64*, 8002–8009.
- 3) Tanaka T.; Inoue K.; Betsumiya Y.; Mine C.; Kouno I. Two types of oxidative

285	dimerization of the black tea polyphenol theaflavin. J. Agric. Food Chem. 2001, 49, 5785-
286	5789.
287	4) Tanaka T.; Mine C.; Inoue K.; Matsuda M.; Kouno I. Synthesis of theaflavin from
288	epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in
289	the synthesis and degradation of theaflavin. J. Agric. Food Chem. 2002, 50, 2142-2148.
290	5) Leung L.K.; Su Y.; Chen R.; Zhang Z.; Huang Y.; Chen Z.Y. Theaflavins in black tea and
291	catechins in green tea are equally effective antioxidants. J. Nutr. 2001, 131, 2248-2251.
292	6) Yang Z.; Tu Y.; Xia H.; Jie G.; Chen X.; He P. Suppression of free-radicals and protection
293	against H ₂ O ₂ -induced oxidative damage in HPF-1 cell by oxidized phenolic compounds
294	present in black tea. Food Chem. 2007, 105, 1349-1356.
295	7) Kobalka A.J.; Keck R.W.; Jankun J. Synergistic anticancer activity of biologicals from
296	green and black tea on DU 145 human prostate cancer cells. Cent. Eur. J. Immunol. 2015,
297	40, 1–4.
298	8) Gao Y.; Rankin G.O.; Tu Y.; Chen Y.C. Theaflavin-3, 3'-digallate decreases human
299	ovarian carcinoma OVCAR-3 cell-induced angiogenesis via Akt and Notch-1 pathways,
300	not via MAPK pathways. Int. J. Oncol. 2016, 48, 281-292.
301	9) Matsui T.; Tanaka T.; Tamura S.; Toshima A.; Tamaya K.; Miyata Y.; Tanaka K.;
302	Matsumoto K. α-Glucosidase inhibitory profile of catechins and theaflavins. J. Agric.

- 303 *Food Chem.* **2007**, *55*, 99–105.
- 10) Nishikawa K.; Iwamoto Y.; Kobayashi Y.; Katsuoka F.; Kawaguchi S.; Tsujita T.;
- 305 Nakamura T.; Kato S.; Yamamoto M.; Takayanagi H.; Ishii M. DNA methyltransferase 3a
- 306 regulates osteoclast differentiation by coupling to an S-adenosylmethionine–producing
- 307 metabolic pathway. *Nat. Med.* **2015**, *21*, 281–287.
- 308 11) Vermeer M.A.; Mulder T.P.; Molhuizen H.O. Theaflavins from black tea, especially
- 309 theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles. J. Agric.
- 310 Food Chem. **2008**, *56*, 12031–12036.
- 12) Ikeda I.; Yamahira T.; Kato M.; Ishikawa A. Black-tea polyphenols decrease micellar
- 312 solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats. J. Agric.
- 313 *Food Chem.* **2010**, *58*, 8591–8595.
- 13) Davies M.J.; Judd J.T.; Baer D.J.; Clevidence B.A.; Paul D.R.; Edwards A.J.; Wiseman
- 315 S.A.; Muesing R.A.; Chen S.C. Black tea consumption reduces total and LDL cholesterol
- in mildly hypercholesterolemic adults. J. Nutr. 2003, 133, 3298S–3302S.
- 317 14) Zhao Y.; Asimi S.; Wu K.; Zheng J.; Li D. Black tea consumption and serum cholesterol
- 318 concentration: Systematic review and meta-analysis of randomized controlled trials. *Clin*.
- 319 *Nutr.* **2015**, *34*, 612-619.
- 320 15) Saito A.; Nakazato R.; Suhara Y.; Shibata M.; Fukui T.; Ishii T.; Asanuma T.; Mochizuki

321	K.; Nakayama T.; Osakabe N. The impact of theaflavins on systemic-and microcirculation
322	alterations: The murine and randomized feasibility trials. J. Nutr. Biochem. 2016, 32, 107-
323	114.
324	16) Henning S.M.; Fajardo-Lira C.; Lee H.W.; Youssefian A.A.; Go V.L.; Heber D. Catechin
325	content of 18 teas and a green tea extract supplement correlates with the antioxidant
326	capacity. Nutr. Cancer 2003, 45, 226–235.
327	17) Su Y.L.; Leung L.K.; Huang Y.; Chen Z.Y. Stability of tea theaflavins and catechins.
328	Food Chem. 2003, 83, 189-195.
329	18) Jhoo J.W.; Lo C.Y.; Li S.; Sang S.; Ang C.Y.; Heinze T.M.; Ho C.T. Stability of black tea
330	polyphenol, theaflavin, and identification of theanaphthoquinone as its major radical
331	reaction product. J. Agric. Food Chem. 2005, 53, 6146-6150.
332	19) Li N.; Taylor L.S.; Ferruzzi M.G.; Mauer L.J. Kinetic study of catechin stability: effects
333	of pH, concentration, and temperature. J. Agric. Food Chem. 2012, 60, 12531-12539.
334	20) Opie S.C.; Clifford M.N.; Robertson A. The role of (-)-epicatechin and polyphenol
335	oxidase in the coupled oxidative breakdown of theaflavins. J. Sci. Food Agric. 1993, 63,
336	435-438.
337	21) Stodt U.W.; Blauth N.; Niemann S.; Stark J.; Pawar V.; Jayaraman S.; Koek J.;
338	Engelhardt U.H. Investigation of processes in black tea manufacture through model

339	fermentation (oxidation) experiments. J. Agric. Food Chem. 2014, 62, 7854-7861.
340	22) Narai-Kanayama, A.; Kawashima A.; Uchida Y.; Kawamura M.; Nakayama T.
341	Specificity of tyrosinase-catalyzed synthesis of theaflavins. J. Mol. Catal. B Enzym. 2016,
342	<i>133</i> , \$452–\$458.
343	23) Yanase E.; Sawaki K.; Nakatsuka S. The isolation of a bicyclo[3.2.1] intermediate during
344	formation of benzo-tropolones, a common nucleus found in black tea pigments:
345	theaflavins. Synlett 2005, 2661-2663.
346	24) Matsuo Y.; Oowatashi R.; Saito Y.; Tanaka T. Nonenzymatic biomimetic synthesis of
347	black tea pigment theaflavins. Synlett 2017, 28, 2505-2508.
348	25) Balentine D.A.; Wiseman S.A.; Bouwens L.C.; The chemistry of tea flavonoids. Crit.
349	Rev. Food Sci. Nutr. 1997, 37, 693-704.
350	26) Matsuura K.; Usui Y.; Kan T.; Ishii T.; Nakayama T. Structural specificity of electric
351	potentials in the coulometric-array analysis of catechins and theaflavins. J. Clin. Biochem.
352	Nutr. 2014, 55, 103-109.
353	27) Tanaka T.; Mine C.; Watarumi S.; Fujioka T.; Mihashi K.; Zhang Y.J.; Kouno I.
354	Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of
355	theasinensins. J. Nat. Prod. 2002, 65, 1582-1587.
356	28) Tanaka T.; Watarumi S.; Matsuo Y.; Kamei M.; Kouno I. Production of theasinensins A

357	and D, epigallocatechin gallate dimers of black tea, by oxidation–reduction dismutation of
358	dehydrotheasinensin A. Tetrahedron 2003, 59, 7939-7947.
359	29) Li Y.; Tanaka T.; Kouno I. Oxidative coupling of the pyrogallol B-ring with a galloyl
360	group during enzymatic oxidation of epigallocatechin 3-O-gallate. Phytochemistry 2007,
361	<i>68</i> , 1081-1088.
362	30) Matsuo Y.; Yamada Y.; Tanaka T.; Kouno I. Enzymatic oxidation of gallocatechin and
363	epigallocatechin: Effects of C-ring configuration on the reaction products. Phytochemistry
364	2008 , <i>69</i> , 3054-3061.
365	31) Kajiya K.; Kumazawa S.; Nakayama T. Effects of external factors on the interaction of
366	tea catechins with lipid bilayers. Biosci. Biotechnol. Biochem. 2002, 66, 2330-2335.
367	32) Molecular Mass Calculator. http://www.lfd.uci.edu/~gohlke/molmass/ (Accessed: 23
368	January 2018)
369	33) Martinek K.; Semenov A.N.; Berezin I.V. Enzymatic synthesis in biphasic aqueous-
370	organic systems. I. Chemical equilibrium shift. Biochim Biophys Acta. 1981, 658, 76-89.
371	34) Martinek K.; Semenov A.N.; Enzymatic synthesis in biphasic aqueous-organic systems.
372	II. Shift of ionic equilibria. Biochim Biophys Acta. 1981, 658, 90-101.
373	35) Nakanishi K.; Matsuno R. Kinetics of enzymatic synthesis of peptides in aqueous/organic
374	biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-

- 376 36) Monot F.; Borzeix F.; Bardin M.; Vandecasteele J.P. Enzymatic esterification in organic
- 377 media: role of water and organic solvent in kinetics and yield of butyl butyrate synthesis.
- 378 *Appl. Microbiol. Biotechnol.* **1991**, *35*, 759-765.
- 379 37) Miyanaga M.; Ohmori M.; Imamura K.; Sakiyama T.; Nakanishi K. Kinetics and
- 380 equilibrium for thermolysin-catalyzed syntheses of dipeptide precursors in aqueous/organic
- biphasic systems. J. Biosci. Bioeng. 2000, 90, 43-51.
- 382 38) Wang K.; Lu Y.; Liang W.Q.; Wang S.D.; Jiang Y.; Huang R.; Liu Y.H. Enzymatic
- synthesis of galacto-oligosaccharides in an organic-aqueous biphasic system by a novel β -
- galactosidase from a metagenomic library. *J Agric Food Chem.* **2012**, *60*, 3940-3946.

Figure captions

Figure 1 Mechanism of tyrosinase-catalyzed synthesis of theaflavins (1-4) from catechins (5-8) in aqueous conditions. R₁ and R₂ are H or a galloyl group (G).

Figure 2 Expected reactions in tyrosinase-catalyzed synthesis of **2** in the 1-octanol/buffer biphasic system. Additional Q means the quinone form of catechins.

Figure 3 Tyrosinase-catalyzed reactions with (A) **5** only; (B) **8** only; and (C) a mixture of **5** and **8** in buffer solution without 1-octanol. The concentrations of **2** (\Box), **5** (\bigcirc), and **8** (\triangle) are indicated. Data are means ± SD (n=3).

Figure 4 Tyrosinase-catalyzed reactions with (A) single 5 only; (B) single 8 only; and (C) 1octanol; (D) buffer phase of a mixture of 5 and 8; in a 1-octanol/buffer biphasic system containing tyrosinase at 0.025 mg/mL. For 2 (\Box , \blacksquare), 5 (\bigcirc , \blacklozenge) and 8 (\triangle , \blacktriangle), closed and open symbols indicate the concentrations in 1-octanol and buffer phases, respectively. Data are means \pm SD (n=3). Figure 5 Tyrosinase-catalyzed reactions with a mixture of **5** and **8**; (A) 1-octanol; (B) buffer phase; in a 1-octanol/buffer biphasic system containing tyrosinase at 0.05 mg/mL. For **2** (\Box , **\blacksquare**), **5** (\bigcirc , **\bigcirc**) and **8** (\triangle , **▲**), closed and open symbols indicate the concentrations in 1-octanol and buffer phases, respectively. Data are means ± SD (n=3).

Figure 6 HPLC chromatograms of *o*-phenylenediamine-treated samples after an enzymatic reaction for 30 min in buffer solution without 1-octanol. Each aliquot of (A) **5** only; (B) **8** only; and (C) a mixture of **5** and **8** was treated with *o*-phenylenediamine and analyzed (signal output = 1.0 AU/1000 mV).

Figure 7 HPLC chromatograms of *o*-phenylenediamine-treated samples. After an enzymatic reaction for 30 min in the 1-octanol/buffer biphasic system, each aliquot of 1-octanol phases of (A) **5** only; (B) **8** only; and (C) a mixture of **5** and **8** was treated with *o*-phenylenediamine and analyzed (signal output = 1.0 AU/1000 mV).

Figure 8 Derivatization scheme of EGCg quinone dimers by *o*-phenylenediamine,^{27,28} and chemical structures of **P1** and **P2**.

Figure 9 Tyrosinase-catalyzed reactions with a mixture of **2** and **5** in the absence (dotted lines) or presence (solid lines) of 1-octanol containing tyrosinase at 0.025 mg/mL. For **5** (\bigcirc and \bullet in A) and **2** (\square and \blacksquare in B), closed and open symbols indicate the concentrations in 1-octanol and buffer phases, respectively. Data are means \pm SD (n=3).

	5 only		8 only		Mixture of 5 and 8	
1-Octanol	(-)	(+)	(-)	(+)	(-)	(+)
5 mM of 5 solution ^a	0.2	0.2	-	-	0.2	0.2
5 mM of 8 solution ^a	-	-	0.2	0.2	0.2	0.2
50 mM phosphate buffer, pH 6.0	0.2	0.2	0.2	0.2	-	-
1-Octanol	-	0.4	-	0.4	-	0.4
1 mg/mL Tyrosinase ^b	0.01	0.01	0.01	0.01	0.01	0.01

Table 1 Solution Composition (mL) for Reaction Systems.

a) Catechins are dissolved in 50 mM sodium phosphate buffer, pH 6.0.

b) Final concentration of tyrosinase in buffer is 0.025 mg/mL.

Catechins	log P _{ow}	Theaflavins	log P _{ow}
5	0.15 ± 0.03	1	0.09 ± 0.01
6	1.66 ± 0.04	2	0.90 ± 0.01
7	-0.43 ± 0.02	3	1.31 ± 0.05
8	1.04 ± 0.05	4	2.29 ± 0.09

Table 2 log P_{ow} Values of Catechins and Theaflavins.

Initial concentrations of catechins and the aflavins in water were 1 mM and 0.5 mM, respectively. Data are means \pm SD (n=3).

	P1	P2			
position	$^{1}\mathrm{H}$	¹ H	¹³ C 76.6		
2	5.30 (1H, s)	5.22 (1H, s)			
3	5.73 (1H, s, J = 4.0 Hz)	5.59 (1H, br d, J = 4.0 Hz)	67.8		
4	2.69 (1H, dd, <i>J</i> = 4.4 Hz, 17.6 Hz)	2.63 (1H, dd, J = 4.6 Hz, 17.4 Hz)	27.1		
4	3.02 (1H, d, J = 17.6 Hz)	3.04 (1H, d, J = 17.2 Hz)	27.1		
5			157.3 ^{b)}		
6	6.06 (1H, d, J = 2.2 Hz)	6.12 (1H, s, J = 2.2 Hz)	96.1		
7			157.9		
8	6.05 (1H, d, J = 2.2 Hz)	6.08 (1H, s, J = 2.2 Hz)	95.9		
4a			98.6		
8a			157.1		
1'			143.2		
2'			116.5		
3'			144.3 ^{c)}		
4'			135.7		
5'			152.1		
6'	7.78 (1H, s)	8.22 (1H, d, J = 0.8 Hz)	119.5		
2"	4.71 (1H. s)	4.79 (1H, s)	76.4		
2 3"	5.33 (1H, br d, $J = 2.6$ Hz)	5.44 (1H, ddd, J = 0.9 Hz, 1.8 Hz, 4.4 Hz)	68.6		
	1.93 (1H, dd, J = 4.9 Hz, 17.6 Hz)	2.34 (1H, dd, J = 4.4 Hz, 17.6 Hz)			
4"	2.45 (1H, dd, J = 17.2 Hz)	2.77 (1H, dd, J = 17.2 Hz)	27.1		
5"	2. 1 5 (111, u , 5 17.2 112)	2.77 (111, 4, 5 17.2 112)	157.5 ^{b)}		
6"	5.92 (1H, d, J = 2.6 Hz)	5.95 (1H, d, J = 2.2 Hz)	96.9		
0 7"	5.92(111, 0, 5 - 2.0112)	5.95(111, u, J = 2.2112)	90.9 157.6		
7 8"	5.88 (1H, d, $J = 2.2$ Hz)	5.90 (1H, d, J = 2.2 Hz)	96.4		
	$5.88(1\Pi, u, J - 2.2 \Pi Z)$	5.90(1H, u, J = 2.2 HZ)			
4a"			98.7 157.2		
8a" 1'"			157.3		
1 2'''			112.4		
			128.5		
3"'			144.0 ^{c)}		
4'''			134.0		
5"'		//	146.5		
6'''	7.15 (1H, s)	7.12 (1H, s)	108.5		
1""			121.4		
2"", 6""	$7.12 (2H, s)^{a}$	6.98 (2H, s)	109.8		
3"", 5""			145.9		
4""			138.9		
CO			166.4		
1"""			122.0		
2''''', 6'''''	7.11 (2H, s) ^{a)}	7.09 (2H, s)	110.0		
3''''', 5'''''			145.9		
4'''''			138.7		
CO'			166.1		
	7.89–7.95 (2H, m)	7.91–7.94 (2H, m)	131.4, 131.8		
	8.18-8.22 (2H, m)	8.17-8.20 (1H, m)	130.3		
		8.23–8.26 (1H. m)	130.2		
			142.3, 144.9		

Table 3. NMR Spectroscopic Data of P1 and P2 in Acetone- d_6

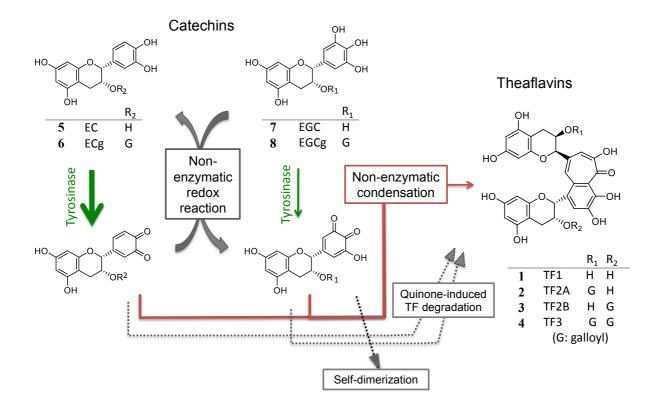


Figure 1

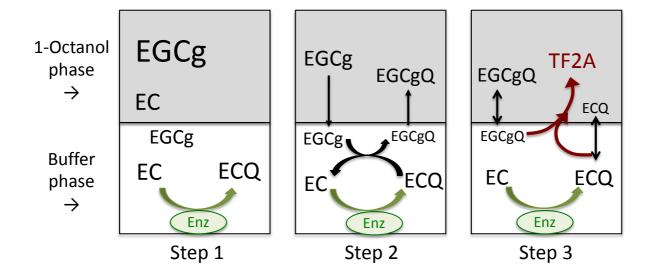


Figure 2

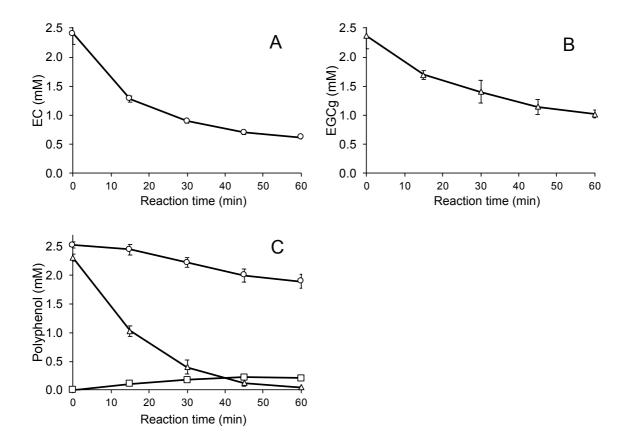


Figure 3

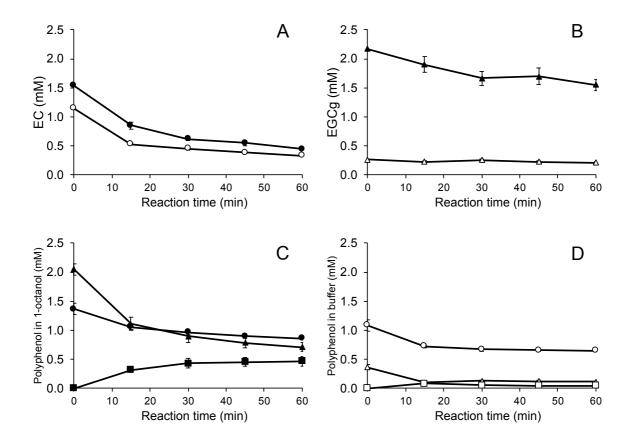


Figure 4

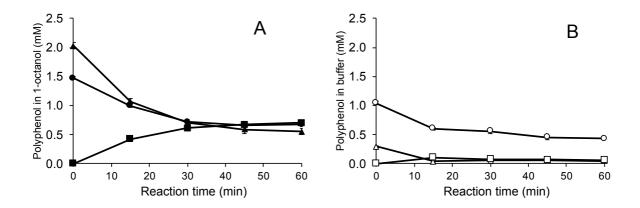


Figure 5

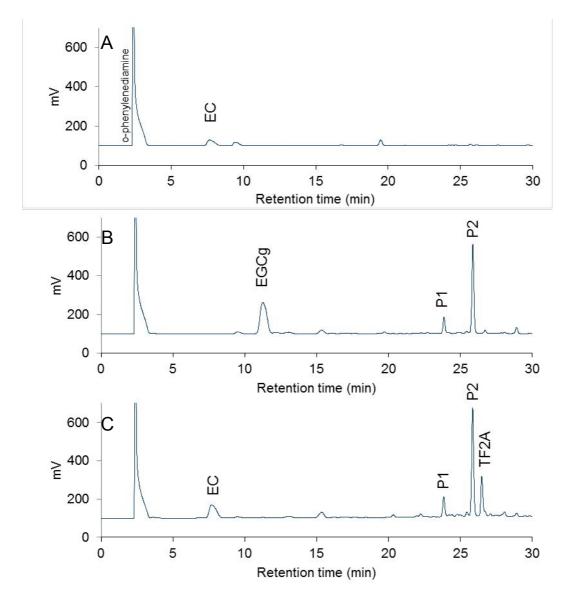


Figure 6

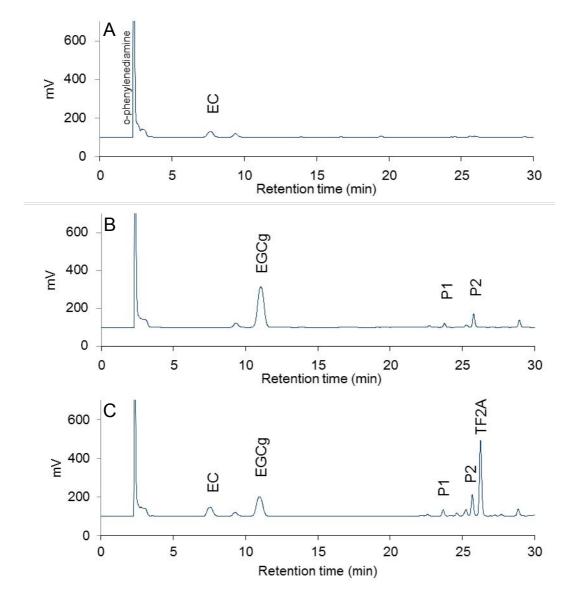


Figure 7

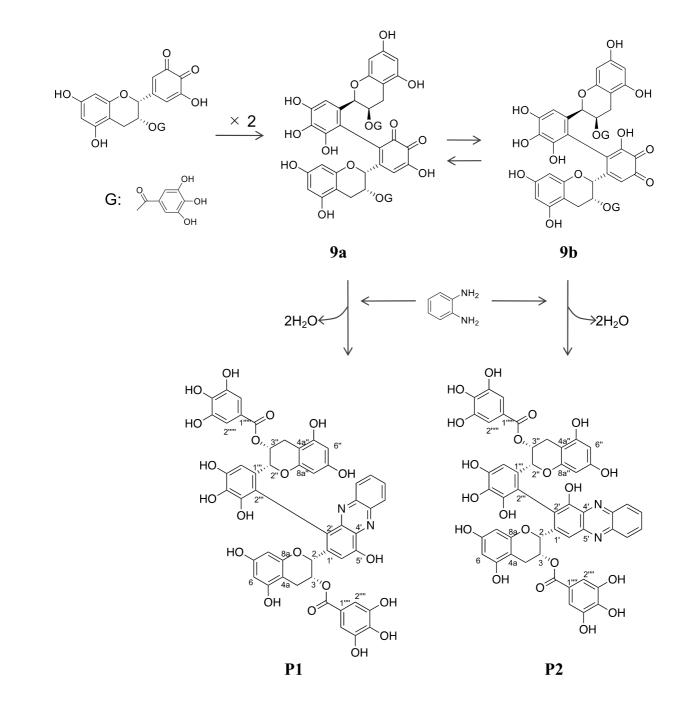


Figure 8

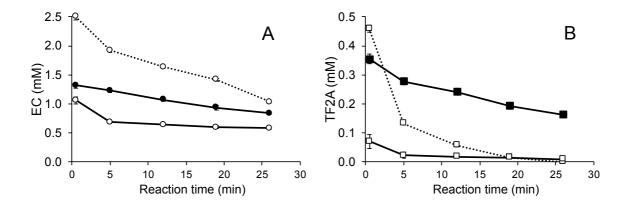
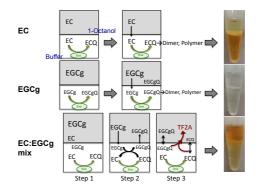



Figure 9

Table of Contents Graphic

Efficient synthesis of theaflavin 3-gallate by a tyrosinase-catalyzed reaction with (-)-epigallocatechin gallate in a 1-octanol/buffer biphasic system. by A. Narai-Kanayama et al.