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ABSTRACT: Four potent CK2 inhibitors derived from CX-4945 are described. They are provided also of nanomolar activity against 
HDAC1, therefore having promising utility as dual-target agents for cancer. The linker length between the hydroxamic acid and the 
CX-4945 scaffold plays an important role in dictating balanced activity against the targeted enzymes. The seven-carbon linker 
(compound 15c) was optimal for inhibition of both CK2 and HDAC1. Remarkably, 15c showed 3.0 and 3.5 times higher inhibitory 
activity than the reference compounds CX-4945 (against CK2) and SAHA (against HDAC1), respectively. Compound 15c exhibited 
micromolar activity in cell-based cytotoxic assays against multiple cell lines. 

Cancer is a multifactorial complex disease that is caused by 
multiple dysfunctions in genes or pathways.1 Combination 
therapies directed to two or more molecular targets have been 
widely used in the treatment of this disease.2 Nevertheless, 
combination therapy has serious disadvantages such as patient 
incompliance, difficulty to predict side effects and to optimize 
the dose ratio, as well as unwanted drug-drug interactions, and 
unpredictable pharmacokinetics.2 Multi-target single agents are 
expected to improve the efficacy of the treatments, by 
exploiting synergistic interactions, avoiding problems of drug-
drug interactions, decreasing drug resistance, and making the 
pharmacokinetic studies easier to perform.3
Histone deacetylases (HDACs) are a family of epigenetic 
enzymes that control the transcription and regulation of genes 
as well as cell proliferation, differentiation, migration, death, 
and angiogenesis.4-6 Also, overexpression of HDACs has been 
found in many human cancers.7 Therefore, inhibiting HDACs 
have been recognized as a promising approach for treating 
cancer. To date, four HDAC inhibitors (HDACi) were 
approved. by the FDA:6 vorinostat (SAHA), romidepsin (FK-
228), belinostat, (PXD101) and panobinostat (LBH589), and 
another one was approved by the Chinese FDA:8 chidamide 
(tucidinostat, HBI-8000). On the other hand, almost 18 HDACi 
are in clinical trials.6 
Protein kinase 2 (CK2) is an ubiquitously expressed and 
constitutively active serine/threonine kinase that 
phosphorylates an impressive array of substrates including 
HDACs.9, 10 Overexpression of CK2 is involved in several 
human cancers and has also been linked to poor prognosis and 
disease progression.11 Several CK2 inhibitors have been 
discovered in the past, but among them only two inhibitors, CX-
4945 (NCT03904862) and CIGB-300 (NCT01639625) have 
recently entered into Phase II clinical trials as potential 
anticancer drugs.12

While many HDACi are in preclinical and clinical studies, they 
have been found to induce drug resistance13 and their results in 

the treatment of solid cancers have been disappointing.4-6 
Interestingly, a SAR study confirms that the cap group in 
HDACi is flexible and tolerates modification. Thus, the zinc-
binding group present in most of them can be easily linked to 
other anticancer scaffolds providing numerous multi-targeting 
agents with higher potency than the parent compounds.4-6, 14, 15 
Some examples are CUDC-101,16 CUDC-90717 and 4SC-20218 
(Figure 1) which have already entered clinical trials.14 These 
results strongly support that a single compound that 
simultaneously inhibits HDAC1 and other oncological target 
could be beneficial in cancer resistance over single-acting 
agents, through the interference with multiple pathways. 

NH
O

O

O

HN
OH

CUDC-101

EGFR: IC50 = 2.4 nM
HDAC1: IC50 = 4.4 nM
HER2: IC50 = 15.7 nM

N

H3CO

N

O

S N
N

N HN

O

OH

CUDC-907

PI3Ka: IC50 = 19 nM
HDAC1: IC50 = 1.7 nM

N
N

S
O

N

O

O

H
N

H2N

4SC-202, Domatinostat

KDM1A/LSD1: IC50 = 0.6 -1.2 µM
HDAC1: IC50 = 1.2 µM

Figure 1. HDACi based dual inhibitors in clinical trials

Protein Kinase 2 (CK2) regulates the dimerization of HDAC1 
and HDAC2 during mitosis19. Under hypoxic conditions, CK2 
phosphorylates HDAC leading to HDAC activation. Activated 
HDAC contributes to tumor growth and vasculogenesis by 
Hippel-Lindau protein (pVHL) downregulation and, hence, to 
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the increased expression and stabilization of hypoxia-inducible 
factor HIF-1 protein.20 Since both CK2 and HDAC are 
involved in the related cancer-relevant biological pathways,21-24 
we anticipated that simultaneously inhibiting these two targets 
by a multi-target single molecule should improve efficacy 
compared to single-target agents.
In previous publications,25,26 we developed a series of dual 
CK2/HDAC1 inhibitors using TBB and DMAT as a scaffolds 
to promote CK2 inhibition and a hydroxamate zinc binding 
group (ZBG) to interact with the zinc present in the active site 
of HDAC1 and simulating the structure of SAHA, a potent 
inhibitor of HDAC1. The synthesized dual-acting agents 
exhibited promising inhibitory activities with the best 
compound showing IC50 of 5 M for both enzymes and 
micromolar activity in cell-based assays (Figure 2).
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Figure 2. Design strategy for dual CK2/HDAC1 inhibitors. 

Encouraged by these results, we have designed a new series of 
CK2/HDAC1 dual inhibitors where the TBB scaffold has been 
substituted by CX-4945, a 500- fold more potent CK2 inhibitor 
than TBB.12, 27 Herein we describe the computational design and 
synthesis of these compounds, together with some promising 
preliminary assays of their biological activity.

RESULTS AND DISCUSSION

Computational docking and molecular dynamics

The binding to the target proteins was analyzed by means of 
docking and molecular dynamics (MD). The binding mode to 
CK2 of 15a-d was similar to that of CX-4945 in the reference 
crystal structure28 (PDB code 3PE1) (Figure S1, Supporting 
information). The carboxylic acid moiety interacts with the side 
chain of Lys68 and the backbone NH of Asp175; whereas, the 
pyridine nitrogen interacts with the backbone NH of Val116 in 
the hinge region. The linkers oriented the hydroxamic moieties 
towards the entrance of the nucleotide-binding site establishing 
different hydrogen bonds with the amino acids side chains 
depending on the length of the linker (Figure S2, Supporting 
information). The stability of the binding mode of compound 
15c (Figure 3) was assessed by a MD simulation that proved 
that, despite the high mobility of the linker, the initial binding 
mode and the interactions of the CX-4945 moiety were 

maintained, whereas the original hydrogen bonds established by 
the hydroxamic acid varied, but always maintained an 
interaction with the entrance of the binding site (Figure S3, 
Supporting information). These results demonstrate that the 
incorporation of an alkyl chain with a hydroxamic acid to the 
CX-4945 core does not impair the proper orientation of the 
molecules in the ATP binding site, as well as the establishment 
of the essential interactions that guarantee the high potency 
found for the reference compound CX-4945. 

The binding of compounds 15a-d to HDAC1 was similar to that 
of SAHA (Vorinostat®) to different HDACs in the reference 
crystal structures.29,30,31 (Figure S4, Supporting information). 
All compounds established with HDAC1 a bidentate chelation 
to the catalytic Zn2+ ion stabilized by hydrogen bonds with the 
side chains of His140 and Tyr303, and oriented the CX-4945 
moiety to establish different interactions with amino acids in the 
surface of the protein that also varied depending on the length 
of the linker (Figure S5, Supporting information). The stability 
of the binding mode of compound 15c to HDAC1 (Figure 4) 
was also assessed by means of MD simulations. During the 
simulation the CX-4945 moiety explored the surface of the 
protein establishing different interactions through the 
carboxylic acid moiety but mainly establishing π-stacking 
interactions with the side chain of Phe205 (Figure S6, 
Supporting information). The movement brought about by the 
linker and the CX-4945 moiety destabilized some of the initial 
hydrogen bonding interactions between the hydroxamate 
moiety and the side chains of His140 and Tyr303; however, a 
new and stable hydrogen bond is established with the side chain 
of His141. These results suggested that the interaction between 
the CX-4945 cap and residue Phe205, and an optimal linker 
length to establish bidentate Zn2+ coordination is important for 
the HDAC1 inhibitory potency. 

These results predict an overall good affinity of 15a-d for CK2 
and HDAC1, so they were forwarded for synthesis and 
enzymatic studies.

Figure 3. PyMOL stick and cartoon representation of the best 
docking pose of compound 15c to CK2. For the sake of clarity, 
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only polar hydrogens are shown, and hydrogen bonds have been 
highlighted with dashed lines.

Figure 4. PyMOL stick and cartoon representation of the best 
docking pose of compound 15c to HDAC1. For the sake of 
clarity, only polar hydrogens are shown, and hydrogen bonds 
have been highlighted with dashed lines.

Chemistry
A convergent strategy was developed for the synthesis of this 
new generation of dual inhibitors. First, chloroquinoline 8 
which possesses a chlorine atom that allows the substitution 
with different nucleophiles was synthesized. Then, different 
amine benzyloxy-protected compounds 12a-d were selected 
and synthesized in order to assess the linker that best fits in the 
catalytic site of HDAC1 (Scheme 1).
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Scheme 1. Convergent strategy for dual inhibitor synthesis.

Compound 8 was efficiently synthesized adapting the 
procedure described in the literature32 (Scheme 2). Compounds 

3 and 6 were synthesized from commercially available 
carboxylic acids 1 and 2 as described in Scheme 2. Then, lactam 
7 was obtained through a one-pot Suzuki 
coupling/intramolecular amide cyclization between the boronic 
ester 6 and the ethyl ester 3. Treatment of lactam 7 with 
phosphorous oxychloride afforded chloroquinoline 8 which was 
ready for the substitution with the different amines 12a-d.
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Scheme 2. Synthesis of compound 8. 
Reagents and conditions: a) MeOH, H2SO4, reflux, 12 h; b) 
KOAc, Pd(dppf)Cl2, Bis(pinacolate)diboron, DCM, Dioxane, 
80 ºC, overnight; c) H2, Pd/C 10%, EtOAc, RT, 12 h; d) MeOH, 
H2SO4, reflux, 12 h; e) NaOAc, Pd(dppf)Cl2, DMC, Dioxane, 
125 ºC, 12 h; f) neat POCl3, reflux, 2h.

Amines 12a-b were prepared as depicted in scheme 3. 
Nucleophilic substitution of the commercially available 
bromo carboxylic acids 9a-d gave the corresponding azido 
carboxylic acids 10a-d.  Amide coupling of 10a-d with the O-
benzyl-hydroxylamine followed by selective catalytic 
hydrogenation of the formed azides 11a-d, gave the desired 
amines 12a-d. The use of ethyl acetate as solvent is the key 
condition to achieve selective reduction of the azide, without 
deprotecting the benzyl group present in the molecule. When 
more polar solvents such as methanol were used both reductions 
occurred.
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Scheme 3. Synthesis of amine (benzyloxy)amino 
compounds 12a-d as HDAC1 scaffold.
Reagents and conditions: a) NaN3, DMF, 77 ºC, 48 h; b) 
HCl.H2N-OBn, HBTU, DIPEA, DMF, RT, 12 h; c) H2, Pd/C, 
EtOAc, RT, 2 h.
Finally, as depicted in scheme 4, chloroquinoline 8 and amines 
12a-d were reacted to yield methyl benzo[c][2,6]naphthyridine-
8-carboxylates 13a-d. After the O-debenzylation by catalytic 
hydrogenation at high pressure in methanol, these compounds 
were further converted to the corresponding carboxylic acids 
15a-d that were purified by HPLC and isolated as 
trifluoroacetic salts with the necessary purity (>95%) for 
biological assays.
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Scheme 4. Synthesis of dual inhibitors 15a-d isolated as TFA 
salts.
Reagents and conditions: a) DMF, K2CO3; 135 ºC, 55 min,  
MW irradiation; b) for 14a-c: H2, Pd/C 10%, MeOH, 4 bar, RT, 
12 h, for 14d: H2 atmosphere and MeOH:THF 1:1 as solvent, 
12 h; c) LiOH, RT, 96 h.

Enzymatic inhibitory evaluation
The inhibitory activities of the synthesized compounds were 
determined against CK2 and HDAC1 and the IC50 values are 
collected in Table 1. The activity towards human recombinant 
HDAC1 was tested using a fluorometric method.25 CK2 
inhibition was measured by a luminometric assay using ADP-
Glo Kinase Assay (Promega).33 

Table 1. Inhibitory activity (IC50, nM) on HDAC1, HDAC6 
and CK2

Cpd HDAC1 HDAC6 CK2
15a 190 ± 100 3.5 ± 3.3
15b 140 ± 20 14 ± 19
15c 3.3 ± 1.6 13 ± 1 1.7 ± 1.0
15d 130 ± 30 19 ± 24
TSA 5.6 ± 2.0

SAHA 33.534 33.134

CX-4945 1.8 ± 1.2

The four compounds presented an inhibitory activity on CK2 in 
the low nanomolar range. This result demonstrates that the 
introduction of a carbon chain containing the hydroxamic group 
in the CX-4945 scaffold does not interfere in the interaction of 
these compounds with the active site of CK2 and supports our 
hypothesis that CX-4945 is an appropriate scaffold for the 
design of dual CK2/HDAC1 inhibitors.
The best result was found for 15c, with a value of IC50 = 1.7 
nM, similar to that obtained for the control compound (CX-
4945). What is more interesting, 15c is also a potent inhibitor 
of HDAC1, with a value of IC50 = 3.3 nM, which is 3.4-fold 
lower than the value obtained for SAHA in our hands. In the 
design of dual inhibitors, it is especially important to achieve a 
good balance in the activity against the two target enzymes. 
This is the case of 15c, a promising compound with a 
remarkable potency for both enzymes.
Interestingly, this compound showed potent activity in HDAC6 
(see table 1). SAHA is also highly potent against both HDAC1 
(IC50: 34 nM)  and HDAC6 (IC50:  33 nM) while is remarkably 
less potent in other isoforms such as HDAC4 (IC50:  >1000 nM)  
and HDAC8 (IC50:  776 nM).34 
When the chain connecting the two selected pharmacophores 
was shortened (compound 15b) or elongated (compound 15d) 
the inhibitory potency in CK2 was maintained, while some 
activity in HDAC1 was lost. These results demonstrated that the 
best length for a dual interaction is provided by a seven-carbon 
chain. Our efforts in the design of the next series of inhibitors 
will concentrate in the modification of the nature of the 
connecting chain, keeping the same length, and the 
modification of the ZBG. 

Cytotoxic activity in cells
The cytotoxicity of the four compounds 15a-d in comparison 
with reference compounds SAHA and CX-4945 under identical 
conditions was investigated by using the resazurin assay.35 In 
vitro cytotoxicity for CX-4945 was reported already against a 
panel of cancer cell lines, including LNCaP, PC3, MCF-7 and 
A549 and in vivo efficacy was tested in PC3 xenografts.32 
Similarly, the HDAC inhibitor SAHA showed low micromolar 
cytotoxicity against LNCaP, PC3, MCF-7 and A549 cell 
lines.36-38 To directly compare the potency of our compounds 
with CX-4945 and SAHA, we selected these four human cancer 
cell lines, namely lung (A549), breast (MCF-7), and prostate 
(PC3 and LNCaP) cell lines (Table 2).

Table 2. IC50 values of compounds 15a-d, SAHA and CX-4945 
against four human tumor cell lines.

IC50 values (M)
Cpd LNCaP PC3 MCF-7 A549
15a >100 >100 >100 >100
15b >100 >100 >100 >100
15c 16.31  

0.7
40.42  

4.4
52.48  

10.0
104.73  

7.9
15d 66.70  

5.0
>100 >100 >100
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SAHA 0.69  0.1 2.03  0.1 1.26  0.1 3.14  0.2
CX-4945 6.52  0.6 10.87  

0.6
9.41  0.3 11.60  

1.8

Interestingly, only 15c showed activity in the cell experiments, 
which is in accordance with the docking and enzymatic assay 
results. The best activity was observed in LNCaP, an androgen-
sensitive human prostate adenocarcinoma cell line, with an IC50 
of 16.31 M. The activity in this cell line was lower than the 
activities obtained for the parent compounds. Considering the 
results of inhibitory activity of 15c in isolated enzymes, we 
postulate that the lower activity exerted by 15c in cells could be 
due to a low permeability, which we will try to overcome in the 
next series of inhibitors.
In order to evaluate the effect on the cytotoxicity of the TFA 
salts,39, 40 we carried out a cell assay on LNCaP cell line using 
CX-4945 as a TFA salt. At the concentrations used in the 
cytotoxicity study we observed slight differences compared to 
the free compound. (CX-4945 6.52 M; CX-4945 as a TFA salt 
3.70 M).
In conclusion, we found four remarkably potent CK2 inhibitors, 
showing that the introduction of chains of different lengths 
provided with hydroxamate groups, does not affect the 
interaction of the CX-4945 ring with the active site of CK2.
The presence of the hydroxamate allows the interaction with 
HDAC1, providing only one promising dual CK2/HDAC1 
inhibitory agent 15c, with nanomolar activity in both enzymes. 
The modelling work has provided plausible binding modes that 
can account for these results.
Preliminary assays in human cell lines confirm the interest of 
this compound as a cytotoxic agent. Future studies are 
necessary to improve the pharmacokinetic profile of this new 
hit compound and examine its activity in other human cell lines.
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