ACS Medicinal Chemistry Letters

Subscriber access provided by Bibliothèque de l'Université Paris-Sud

New dual CK2/HDAC1 inhibitors with nanomolar inhibitory activity against both enzymes

Loganathan Rangasamy, Irene Ortín, José María Zapico, Claire Coderch, Ana Ramos, and Beatriz de Pascual-Teresa

ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.9b00561 • Publication Date (Web): 07 Apr 2020 Downloaded from pubs.acs.org on April 9, 2020

Just Accepted

Letter

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7

8 9 10

11

12 13

14

15

16 17

18

19

20

21

26

27

28

29

30

31

32

33

34

35

57

58 59

60

New dual CK2/HDAC1 inhibitors with nanomolar inhibitory activity against both enzymes

Loganathan Rangasamy,[‡] Irene Ortín,[‡] José María Zapico, Claire Coderch, Ana Ramos,* Beatriz de Pascual-Teresa.*

Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.

KEYWORDS. Multi-target drugs, CK2, HDAC1, Dual inhibitors, docking, molecular dynamics

ABSTRACT: Four potent CK2 inhibitors derived from CX-4945 are described. They are provided also of nanomolar activity against HDAC1, therefore having promising utility as dual-target agents for cancer. The linker length between the hydroxamic acid and the CX-4945 scaffold plays an important role in dictating balanced activity against the targeted enzymes. The seven-carbon linker (compound **15c**) was optimal for inhibition of both CK2 and HDAC1. Remarkably, **15c** showed 3.0 and 3.5 times higher inhibitory activity than the reference compounds CX-4945 (against CK2) and SAHA (against HDAC1), respectively. Compound **15c** exhibited micromolar activity in cell-based cytotoxic assays against multiple cell lines.

Cancer is a multifactorial complex disease that is caused by multiple dysfunctions in genes or pathways.¹ Combination therapies directed to two or more molecular targets have been widely used in the treatment of this disease.² Nevertheless, combination therapy has serious disadvantages such as patient incompliance, difficulty to predict side effects and to optimize the dose ratio, as well as unwanted drug-drug interactions, and unpredictable pharmacokinetics.² Multi-target single agents are expected to improve the efficacy of the treatments, by exploiting synergistic interactions, avoiding problems of drugdrug interactions, decreasing drug resistance, and making the pharmacokinetic studies easier to perform.³

36 Histone deacetylases (HDACs) are a family of epigenetic 37 enzymes that control the transcription and regulation of genes 38 as well as cell proliferation, differentiation, migration, death, and angiogenesis.⁴⁻⁶ Also, overexpression of HDACs has been 39 found in many human cancers.7 Therefore, inhibiting HDACs 40 have been recognized as a promising approach for treating 41 cancer. To date, four HDAC inhibitors (HDACi) were 42 approved. by the FDA:6 vorinostat (SAHA), romidepsin (FK-43 228), belinostat, (PXD101) and panobinostat (LBH589), and 44 another one was approved by the Chinese FDA:8 chidamide 45 (tucidinostat, HBI-8000). On the other hand, almost 18 HDACi 46 are in clinical trials.6

47 Protein kinase 2 (CK2) is an ubiquitously expressed and 48 constitutively active serine/threonine kinase that phosphorylates an impressive array of substrates including 49 HDACs.9, 10 Overexpression of CK2 is involved in several 50 human cancers and has also been linked to poor prognosis and 51 disease progression.¹¹ Several CK2 inhibitors have been 52 discovered in the past, but among them only two inhibitors, CX-53 4945 (NCT03904862) and CIGB-300 (NCT01639625) have 54 recently entered into Phase II clinical trials as potential 55 anticancer drugs.12 56

While many HDACi are in preclinical and clinical studies, they have been found to induce drug resistance¹³ and their results in

the treatment of solid cancers have been disappointing.⁴⁻⁶ Interestingly, a SAR study confirms that the cap group in HDACi is flexible and tolerates modification. Thus, the zincbinding group present in most of them can be easily linked to other anticancer scaffolds providing numerous multi-targeting agents with higher potency than the parent compounds.^{4-6, 14, 15} Some examples are CUDC-101,¹⁶ CUDC-907¹⁷ and 4SC-202¹⁸ (Figure 1) which have already entered clinical trials.¹⁴ These results strongly support that a single compound that simultaneously inhibits HDAC1 and other oncological target could be beneficial in cancer resistance over single-acting agents, through the interference with multiple pathways.

Figure 1. HDACi based dual inhibitors in clinical trials

Protein Kinase 2 (CK2) regulates the dimerization of HDAC1 and HDAC2 during mitosis¹⁹. Under hypoxic conditions, CK2 phosphorylates HDAC leading to HDAC activation. Activated HDAC contributes to tumor growth and vasculogenesis by Hippel-Lindau protein (pVHL) downregulation and, hence, to

the increased expression and stabilization of hypoxia-inducible factor HIF-1 α protein.²⁰ Since both CK2 and HDAC are involved in the related cancer-relevant biological pathways,²¹⁻²⁴ we anticipated that simultaneously inhibiting these two targets by a multi-target single molecule should improve efficacy compared to single-target agents.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

In previous publications,^{25,26} we developed a series of dual CK2/HDAC1 inhibitors using TBB and DMAT as a scaffolds to promote CK2 inhibition and a hydroxamate zinc binding group (ZBG) to interact with the zinc present in the active site of HDAC1 and simulating the structure of SAHA, a potent inhibitor of HDAC1. The synthesized dual-acting agents exhibited promising inhibitory activities with the best compound showing IC₅₀ of 5 μ M for both enzymes and micromolar activity in cell-based assays (Figure 2).

Figure 2. Design strategy for dual CK2/HDAC1 inhibitors.

Encouraged by these results, we have designed a new series of CK2/HDAC1 dual inhibitors where the TBB scaffold has been substituted by CX-4945, a 500- fold more potent CK2 inhibitor than TBB.^{12,27} Herein we describe the computational design and synthesis of these compounds, together with some promising preliminary assays of their biological activity.

RESULTS AND DISCUSSION

Computational docking and molecular dynamics

The binding to the target proteins was analyzed by means of docking and molecular dynamics (MD). The binding mode to CK2 of **15a-d** was similar to that of CX-4945 in the reference crystal structure²⁸ (PDB code 3PE1) (Figure S1, Supporting information). The carboxylic acid moiety interacts with the side chain of Lys68 and the backbone NH of Asp175; whereas, the pyridine nitrogen interacts with the backbone NH of Val116 in the hinge region. The linkers oriented the hydroxamic moieties towards the entrance of the nucleotide-binding site establishing different hydrogen bonds with the amino acids side chains depending on the length of the linker (Figure S2, Supporting information). The stability of the binding mode of compound **15c** (Figure 3) was assessed by a MD simulation that proved that, despite the high mobility of the linker, the initial binding mode and the interactions of the CX-4945 moiety were

maintained, whereas the original hydrogen bonds established by the hydroxamic acid varied, but always maintained an interaction with the entrance of the binding site (Figure S3, Supporting information). These results demonstrate that the incorporation of an alkyl chain with a hydroxamic acid to the CX-4945 core does not impair the proper orientation of the molecules in the ATP binding site, as well as the establishment of the essential interactions that guarantee the high potency found for the reference compound CX-4945.

The binding of compounds 15a-d to HDAC1 was similar to that of SAHA (Vorinostat®) to different HDACs in the reference crystal structures.^{29,30,31} (Figure S4, Supporting information). All compounds established with HDAC1 a bidentate chelation to the catalytic Zn²⁺ ion stabilized by hydrogen bonds with the side chains of His140 and Tyr303, and oriented the CX-4945 moiety to establish different interactions with amino acids in the surface of the protein that also varied depending on the length of the linker (Figure S5, Supporting information). The stability of the binding mode of compound 15c to HDAC1 (Figure 4) was also assessed by means of MD simulations. During the simulation the CX-4945 moiety explored the surface of the protein establishing different interactions through the carboxylic acid moiety but mainly establishing π -stacking interactions with the side chain of Phe205 (Figure S6, Supporting information). The movement brought about by the linker and the CX-4945 moiety destabilized some of the initial hydrogen bonding interactions between the hydroxamate moiety and the side chains of His140 and Tyr303; however, a new and stable hydrogen bond is established with the side chain of His141. These results suggested that the interaction between the CX-4945 cap and residue Phe205, and an optimal linker length to establish bidentate Zn²⁺ coordination is important for the HDAC1 inhibitory potency.

These results predict an overall good affinity of **15a-d** for CK2 and HDAC1, so they were forwarded for synthesis and enzymatic studies.

Figure 3. PyMOL stick and cartoon representation of the best docking pose of compound 15c to CK2. For the sake of clarity,

only polar hydrogens are shown, and hydrogen bonds have been

highlighted with dashed lines.

Figure 4. PyMOL stick and cartoon representation of the best docking pose of compound **15c** to HDAC1. For the sake of clarity, only polar hydrogens are shown, and hydrogen bonds have been highlighted with dashed lines.

Chemistry

A convergent strategy was developed for the synthesis of this new generation of dual inhibitors. First, chloroquinoline **8** which possesses a chlorine atom that allows the substitution with different nucleophiles was synthesized. Then, different Ω -amine benzyloxy-protected compounds **12a-d** were selected and synthesized in order to assess the linker that best fits in the catalytic site of HDAC1 (Scheme 1).

Scheme 1. Convergent strategy for dual inhibitor synthesis.

Compound **8** was efficiently synthesized adapting the procedure described in the literature³² (Scheme 2). Compounds

3 and 6 were synthesized from commercially available carboxylic acids 1 and 2 as described in Scheme 2. Then, lactam 7 was obtained through a one-pot Suzuki coupling/intramolecular amide cyclization between the boronic ester 6 and the ethyl ester 3. Treatment of lactam 7 with phosphorous oxychloride afforded chloroquinoline 8 which was ready for the substitution with the different amines 12a-d.

Scheme 2. Synthesis of compound 8.

Reagents and conditions: a) MeOH, H₂SO₄, reflux, 12 h; b) KOAc, Pd(dppf)Cl₂, Bis(pinacolate)diboron, DCM, Dioxane, 80 °C, overnight; c) H₂, Pd/C 10%, EtOAc, RT, 12 h; d) MeOH, H₂SO₄, reflux, 12 h; e) NaOAc, Pd(dppf)Cl₂, DMC, Dioxane, 125 °C, 12 h; f) neat POCl₃, reflux, 2h.

Amines **12a-b** were prepared as depicted in scheme 3. Nucleophilic substitution of the commercially available Ω -bromo carboxylic acids **9a-d** gave the corresponding azido carboxylic acids **10a-d**. Amide coupling of **10a-d** with the *O*-benzyl-hydroxylamine followed by selective catalytic hydrogenation of the formed azides **11a-d**, gave the desired amines **12a-d**. The use of ethyl acetate as solvent is the key condition to achieve selective reduction of the azide, without deprotecting the benzyl group present in the molecule. When more polar solvents such as methanol were used both reductions occurred.

Scheme 3. Synthesis of Ω -amine (benzyloxy)amino compounds 12a-d as HDAC1 scaffold.

Reagents and conditions: a) NaN₃, DMF, 77 °C, 48 h; b) HCl.H₂N-OBn, HBTU, DIPEA, DMF, RT, 12 h; c) H₂, Pd/C, EtOAc, RT, 2 h.

Finally, as depicted in scheme 4, chloroquinoline 8 and amines **12a-d** were reacted to yield methyl benzo[c][2,6]naphthyridine-8-carboxylates **13a-d**. After the *O*-debenzylation by catalytic hydrogenation at high pressure in methanol, these compounds were further converted to the corresponding carboxylic acids **15a-d** that were purified by HPLC and isolated as trifluoroacetic salts with the necessary purity (>95%) for biological assays.

Scheme 4. Synthesis of dual inhibitors 15a-d isolated as TFA salts.

Reagents and conditions: a) DMF, K_2CO_3 ; 135 °C, 55 min, MW irradiation; b) for **14a-c**: H₂, Pd/C 10%, MeOH, 4 bar, RT, 12 h, for **14d**: H₂ atmosphere and MeOH:THF 1:1 as solvent, 12 h; c) LiOH, RT, 96 h.

Enzymatic inhibitory evaluation

The inhibitory activities of the synthesized compounds were determined against CK2 and HDAC1 and the IC₅₀ values are collected in Table 1. The activity towards human recombinant HDAC1 was tested using a fluorometric method.²⁵ CK2 inhibition was measured by a luminometric assay using ADP-Glo Kinase Assay (Promega).³³

Table 1. Inhibitory activity (IC₅₀, nM) on HDAC1, HDAC6 and CK2

Cpd	HDAC1	HDAC6	CK2
15 a	190 ± 100		3.5 ± 3.3
15b	140 ± 20		14 ± 19
15c	3.3 ± 1.6	13 ± 1	1.7 ± 1.0
15d	130 ± 30		19 ± 24
TSA	5.6 ± 2.0		

SAHA	33.5 ³⁴	33.1 ³⁴	
CX-4945			1.8 ± 1.2

The four compounds presented an inhibitory activity on CK2 in the low nanomolar range. This result demonstrates that the introduction of a carbon chain containing the hydroxamic group in the CX-4945 scaffold does not interfere in the interaction of these compounds with the active site of CK2 and supports our hypothesis that CX-4945 is an appropriate scaffold for the design of dual CK2/HDAC1 inhibitors.

The best result was found for **15c**, with a value of $IC_{50} = 1.7$ nM, similar to that obtained for the control compound (CX-4945). What is more interesting, **15c** is also a potent inhibitor of HDAC1, with a value of $IC_{50} = 3.3$ nM, which is 3.4-fold lower than the value obtained for SAHA in our hands. In the design of dual inhibitors, it is especially important to achieve a good balance in the activity against the two target enzymes. This is the case of **15c**, a promising compound with a remarkable potency for both enzymes.

Interestingly, this compound showed potent activity in HDAC6 (see table 1). SAHA is also highly potent against both HDAC1 (IC₅₀: 34 nM) and HDAC6 (IC₅₀: 33 nM) while is remarkably less potent in other isoforms such as HDAC4 (IC₅₀: >1000 nM) and HDAC8 (IC₅₀: 776 nM).³⁴

When the chain connecting the two selected pharmacophores was shortened (compound **15b**) or elongated (compound **15d**) the inhibitory potency in CK2 was maintained, while some activity in HDAC1 was lost. These results demonstrated that the best length for a dual interaction is provided by a seven-carbon chain. Our efforts in the design of the next series of inhibitors will concentrate in the modification of the nature of the connecting chain, keeping the same length, and the modification of the ZBG.

Cytotoxic activity in cells

The cytotoxicity of the four compounds **15a-d** in comparison with reference compounds **SAHA** and **CX-4945** under identical conditions was investigated by using the resazurin assay.³⁵ In vitro cytotoxicity for CX-4945 was reported already against a panel of cancer cell lines, including LNCaP, PC3, MCF-7 and A549 and in vivo efficacy was tested in PC3 xenografts.³² Similarly, the HDAC inhibitor SAHA showed low micromolar cytotoxicity against LNCaP, PC3, MCF-7 and A549 cell lines.³⁶⁻³⁸ To directly compare the potency of our compounds with CX-4945 and SAHA, we selected these four human cancer cell lines, namely lung (A549), breast (MCF-7), and prostate (PC3 and LNCaP) cell lines (Table 2).

Table 2. IC_{50} values of compounds 15a-d, SAHA and CX-4945 against four human tumor cell lines.

		IC ₅₀ values (µM)			
Cpd	LNCaP	PC3	MCF-7	A549	
15a	>100	>100	>100	>100	
15b	>100	>100	>100	>100	
15c	16.31 ± 0.7	40.42 ± 4.4	52.48 ± 10.0	104.73 ± 7.9	
15d	66.70 ± 5.0	>100	>100	>100	

2 3 4

5

6

7

8

9

10

11

12

13

14

15

17

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 40 41

42 43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

SAHA	0.69 ± 0.1	2.03 ± 0.1	1.26 ± 0.1	3.14 ± 0.2
CX-4945	6.52 ± 0.6	10.87 ± 0.6	9.41 ± 0.3	11.60 ± 1.8

Interestingly, only **15c** showed activity in the cell experiments, which is in accordance with the docking and enzymatic assay results. The best activity was observed in LNCaP, an androgensensitive human prostate adenocarcinoma cell line, with an IC₅₀ of 16.31 μ M. The activity in this cell line was lower than the activities obtained for the parent compounds. Considering the results of inhibitory activity of 15c in isolated enzymes, we postulate that the lower activity exerted by 15c in cells could be due to a low permeability, which we will try to overcome in the next series of inhibitors.

In order to evaluate the effect on the cytotoxicity of the TFA salts,^{39, 40} we carried out a cell assay on LNCaP cell line using 16 CX-4945 as a TFA salt. At the concentrations used in the cytotoxicity study we observed slight differences compared to the free compound. (CX-4945 6.52 µM; CX-4945 as a TFA salt 18 3.70 µM).

In conclusion, we found four remarkably potent CK2 inhibitors, showing that the introduction of chains of different lengths provided with hydroxamate groups, does not affect the interaction of the CX-4945 ring with the active site of CK2.

The presence of the hydroxamate allows the interaction with HDAC1, providing only one promising dual CK2/HDAC1 inhibitory agent 15c, with nanomolar activity in both enzymes. The modelling work has provided plausible binding modes that can account for these results.

Preliminary assays in human cell lines confirm the interest of this compound as a cytotoxic agent. Future studies are necessary to improve the pharmacokinetic profile of this new hit compound and examine its activity in other human cell lines.

ASSOCIATED CONTENT

Supporting Information

Synthetic procedures, spectroscopic and analytical data for all compounds; in vitro enzymatic assay, resazurin assay and computational methods are described.

REFERENCES

Wu, S.; Zhu, W.; Thompson, P.; Hannun, Y. A., Evaluating intrinsic and non-intrinsic cancer risk factors. Nat Commun 2018, 9 1. (1), 3490.

Lopez, J. S.; Banerji, U., Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin 2 Oncol 2017, 14 (1), 57-66.

Zhou, J.; Jiang, X.; He, S.; Jiang, H.; Feng, F.; Liu, W.; Qu, W.; Sun, H., Rational design of multitarget-directed ligands: 3. strategies and emerging paradigms. J Med Chem 2019, 62 (20), 8881-8914.

Stazi, G.; Fioravanti, R.; Mai, A.; Mattevi, A.; Valente, S., Histone deacetylases as an epigenetic pillar for the development of 4 hybrid inhibitors in cancer. Curr Opin Chem Biol 2019, 50, 89-100.

Luan, Y.; Li, J.; Bernatchez, J. A.; Li, R., Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J Med Chem 2019, 5. 62 (7), 3171-3183.

Suraweera, A.; O'Byrne, K. J.; Richard, D. J., Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment 6. of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 2018, 8, 92.

- 7. Li, Y.; Seto, E., HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 2016, 6 (10). 8. https://en.wikipedia.org/wiki/Chidamide. (accessed March 17th, 2020).
- Perea, S. E.; Baladrón, I.; Valenzuela, C.; Perera, Y., CIGB-300: A peptide-based drug that impairs the Protein Kinase CK2-9 mediated phosphorylation. Semin Oncol 2018, 45 (1-2), 58-67.

The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

* E-mail: For Ana Ramos aramgon@ceu.es and for Beatriz de Pascual-Teresa bpaster@ceu.es ORCID Beatriz de Pascual-Teresa: 0000-0002-1101-0373 Ana Ramos: 0000-0003-2984-4672 Loganathan Rangasamy: 0000-0002-1339-0330 Irene Ortin: 0000-0001-8507-2641 José M^a Zapico: 0000-0003-1980-4749 Claire Coderch: 0000-0001-7229-8289

Author Contributions

L.R and I. O contributed equally to this work. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENT

This work was supported by MICIU/FEDER, UE grant number RTI2018-093539-B-I00. This project received funding from the European Union's Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant agreement number DUALITY 746225.

ABBREVIATIONS

HDAC, histone deacetylase; CK2, Protein kinase type 2; SAHA, suberoylanilide hydroxamic acid (Vorinostat); TBB, 4,5,6,7tetrabromo-2H-benzotriazole; DMAT, 2-dimethylamino-4,5,6,7tetrabromo-1H-benzimidazole; dppf, 1 1'-Bis(diphenylphosphino)ferrocene; DMF, dimethylformamide; MW, microwave; RT, room temperature; THF, tetrahydrofurane; ZBG, Zinc Binding Group; TFA, trifluoroacetic acid; TSA, Trichostatin A; HBTU, O-(Benzotriazol-1-yl)-N,N,N',N'tetramethyluronium hexafluorophosphate; DIPEA, N N-Diisopropylethylamine; DCM, dichloromethane; THF, tetrahydrofurane; PDB, protein data bank; ATP, adenosine 5'triphosphate.

10. Masłyk, M.; Janeczko, M.; Martyna, A.; Kubiński, K., CX-4945: the protein kinase CK2 inhibitor and anti-cancer drug shows anti-fungal activity. *Mol Cell Biochem* **2017**, *435* (1-2), 193-196.

11. Trembley, J. H.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K., Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. *Cell Mol Life Sci* **2009**, *66* (11-12), 1858-67.

- 12. Qiao, Y.; Chen, T.; Yang, H.; Chen, Y.; Lin, H.; Qu, W.; Feng, F.; Liu, W.; Guo, Q.; Liu, Z.; Sun, H., Small molecule modulators targeting protein kinase CK1 and CK2. *Eur J Med Chem* **2019**, *181*, 111581.
- 13. Ni, X.; Li, L.; Pan, G., HDAC inhibitor-induced drug resistance involving ATP-binding cassette transporters (Review). *Oncol Lett* **2015**, *9* (2), 515-521.
- 14. Schobert, R.; Biersack, B., Multimodal HDAC inhibitors with improved anticancer activity. *Curr Cancer Drug Targets* **2018**, *18* (1), 39-56.

15. Hesham, H. M.; Lasheen, D. S.; Abouzid, K. A. M., Chimeric HDAC inhibitors: Comprehensive review on the HDAC-based strategies developed to combat cancer. *Med Res Rev* **2018**, *38* (6), 2058-2109.

- 16. <u>https://clinicaltrials.gov/ct2/results?cond=&term=CUDC-101&cntry=&state=&city=&dist=</u>. (accessed March 17th, 2020).
- 17. <u>https://clinicaltrials.gov/ct2/show/NCT02674750</u>. (accessed March 17th, 2020).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

21

31

32

42

43

44

59

60

- 18. <u>https://clinicaltrials.gov/ct2/results?cond=&term=4SC-202&cntry=&state=&city=&dist</u>= (accessed March 17th, 2020).
- 19. Khan, D. H.; He, S.; Yu, J.; Winter, S.; Cao, W.; Seiser, C.; Davie, J. R., Protein kinase CK2 regulates the dimerization of histone deacetylase 1 (HDAC1) and HDAC2 during mitosis. *J Biol Chem* **2013**, *288* (23), 16518-28.
- 20. Pluemsampant, S.; Safronova, O. S.; Nakahama, K.; Morita, I., Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumors. *Int J Cancer* **2008**, *122* (2), 333-41.
- 21. Patil, H.; Wilks, C.; Gonzalez, R. W.; Dhanireddy, S.; Conrad-Webb, H.; Bergel, M., Mitotic activation of a novel histone deacetylase 3-linker histone H1.3 protein complex by protein kinase CK2. *J Biol Chem* **2016**, *291* (7), 3158-72.
- 18 22. Kim, H. S.; Chang, Y. G.; Bae, H. J.; Eun, J. W.; Shen, Q.; Park, S. J.; Shin, W. C.; Lee, E. K.; Park, S.; Ahn, Y. M.; Park, W. S.; Lee, J. Y.; Nam, S. W., Oncogenic potential of CK2α and its regulatory role in EGF-induced HDAC2 expression in human liver cancer. *FEBS J* 2014, 281 (3), 851-61.
 - 23. Chen, M. C.; Chen, C. H.; Chuang, H. C.; Kulp, S. K.; Teng, C. M.; Chen, C. S., Novel mechanism by which histone deacetylase inhibitors facilitate topoisomerase IIα degradation in hepatocellular carcinoma cells. *Hepatology* **2011**, *53* (1), 148-59.
- inhibitors facilitate topoisomerase fla degradation in hepatocellular carcinoma cells. *Hepatology* 2011, 53 (1), 148-59.
 Wang, H.; Song, C.; Ding, Y.; Pan, X.; Ge, Z.; Tan, B. H.; Gowda, C.; Sachdev, M.; Muthusami, S.; Ouyang, H.; Lai, L.;
 Francis, O. L.; Morris, C. L.; Abdel-Azim, H.; Dorsam, G.; Xiang, M.; Payne, K. J.; Dovat, S., Transcriptional regulation of JARID1B/KDM5B histone demethylase by ikaros, histone deacetylase 1 (HDAC1), and casein kinase 2 (CK2) in B-cell acute lymphoblastic leukemia. *J Biol Chem* 2016, *291* (8), 4004-18.
- 26 25. Purwin, M.; Hernández-Toribio, J.; Coderch, C.; Panchuk, R.; Skorokhyd, N.; Filipiak, K.; de Pascual-Teresa, B.; Ramos, A.,
 27 Design and synthesis of novel dual-target agents for HDAC1 and CK2 inhibition. *RSC Advances* 2016, 6 (71), 66595-66608.
- 26. Martínez, R.; Geronimo, B. D.; Pastor, M.; Zapico, J. M.; Coderch, C.; Panchuk, R.; Skorokhyd, N.; Maslyk, M.; Ramos, A.;
 29 de Pascual-Teresa, B., Multitarget Anticancer Agents Based on Histone Deacetylase and Protein Kinase CK2 inhibitors. *Molecules* 2020, 25 (7), 1497.
 30 27. Siddiani Jain A.; Drugin D.; Staring N.; Chus D.; Pierre F.; OlDring S. F.; Plicardt, L.; Orneri M.; Hang, N.; Hang, C.;
 - 27. Siddiqui-Jain, A.; Drygin, D.; Streiner, N.; Chua, P.; Pierre, F.; O'Brien, S. E.; Bliesath, J.; Omori, M.; Huser, N.; Ho, C.; Proffitt, C.; Schwaebe, M. K.; Ryckman, D. M.; Rice, W. G.; Anderes, K., CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. *Cancer Res* **2010**, *70* (24), 10288-98.
- Battistutta, R.; Cozza, G.; Pierre, F.; Papinutto, E.; Lolli, G.; Sarno, S.; O'Brien, S. E.; Siddiqui-Jain, A.; Haddach, M.;
 Anderes, K.; Ryckman, D. M.; Meggio, F.; Pinna, L. A., Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer. *Biochemistry* 2011, 50 (39), 8478-88.
- 29. Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.; Shuen, M.; Loppnau, P.; Mazitschek, R.; Kwiatkowski, N. P.; Lewis, T. A.; Maglathin, R. L.; McLean, T. H.; Bochkarev, A.; Plotnikov, A. N.; Vedadi, M.; Arrowsmith, C. H., Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. *J Biol Chem* 2008, *283* (17), 11355-63.
- 38 30. Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J. D.; Jennings, A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi, E.; Tang,
 39 J.; Sang, B. C.; Verner, E.; Wynands, R.; Leahy, E. M.; Dougan, D. R.; Snell, G.; Navre, M.; Knuth, M. W.; Swanson, R. V.; McRee,
 40 D. E.; Tari, L. W., Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. *Structure* 2004, *12* (7), 132534.
 - 31. Lauffer, B. E.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D. F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C. M.; Lupardus, P. J.; Kaminker, J. S.; Heise, C. E.; Steiner, P., Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. *J Biol Chem* **2013**, *288* (37), 26926-43.
- 32. Pierre, F.; Chua, P. C.; O'Brien, S. E.; Siddiqui-Jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe,
 M. K.; Stefan, E.; Vialettes, A.; Whitten, J. P.; Chen, T. K.; Darjania, L.; Stansfield, R.; Anderes, K.; Bliesath, J.; Drygin, D.; Ho, C.;
 Omori, M.; Proffitt, C.; Streiner, N.; Trent, K.; Rice, W. G.; Ryckman, D. M., Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the
 treatment of cancer. *J Med Chem* 2011, 54 (2), 635-54.
- 49 33. Liu, S.; Hsieh, D.; Yang, Y. L.; Xu, Z.; Peto, C.; Jablons, D. M.; You, L., Coumestrol from the national cancer Institute's natural
 50 product library is a novel inhibitor of protein kinase CK2. *BMC Pharmacol Toxicol* 2013, *14*, 36.
- 51 34. Yu, C. C.; Pan, S. L.; Chao, S. W.; Liu, S. P.; Hsu, J. L.; Yang, Y. C.; Li, T. K.; Huang, W. J.; Guh, J. H., A novel small molecule hybrid of vorinostat and DACA displays anticancer activity against human hormone-refractory metastatic prostate cancer through dual inhibition of histone deacetylase and topoisomerase I. *Biochem Pharmacol* 2014, *90* (3), 320-30.
- 35. Nikolić, S.; Rangasamy, L.; Gligorijević, N.; Aranđelović, S.; Radulović, S.; Gasser, G.; Grgurić-Šipka, S., Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands. *J Inorg Biochem* 2016, 160, 156-65.
 36. Butler, L. M.; Agus, D. B.; Scher, H. I.; Higgins, B.; Rose, A.; Cordon-Cardo, C.; Thaler, H. T.; Rifkind, R. A.; Marks, P. A.;
- Butler, L. M.; Agus, D. B.; Scher, H. I.; Higgins, B.; Rose, A.; Cordon-Cardo, C.; Thaler, H. T.; Rifkind, R. A.; Marks, P. A.;
 Richon, V. M., Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. *Cancer Res* 2000, *60* (18), 5165-70.

37. Munster, P. N.; Troso-Sandoval, T.; Rosen, N.; Rifkind, R.; Marks, P. A.; Richon, V. M., The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. *Cancer Res* **2001**, *61* (23), 8492-7.

38. Leoni, F.; Zaliani, A.; Bertolini, G.; Porro, G.; Pagani, P.; Pozzi, P.; Donà, G.; Fossati, G.; Sozzani, S.; Azam, T.; Bufler, P.; Fantuzzi, G.; Goncharov, I.; Kim, S. H.; Pomerantz, B. J.; Reznikov, L. L.; Siegmund, B.; Dinarello, C. A.; Mascagni, P., The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. *Proc Natl Acad Sci U S A* **2002**, *99* (5), 2995-3000.

39. Sikora, K.; Jaśkiewicz, M.; Neubauer, D.; Bauer, M.; Bartoszewska, S.; Barańska-Rybak, W.; Kamysz, W., Counter-ion effect on antistaphylococcal activity and cytotoxicity of selected antimicrobial peptides. *Amino Acids* **2018**, *50* (5), 609-619.

40. Tipps, M. E.; Iyer, S. V.; John Mihic, S., Trifluoroacetate is an allosteric modulator with selective actions at the glycine receptor. *Neuropharmacology* **2012**, *63* (3), 368-73.

For Table of Contents Use Only

