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Scheme 1. Retrosynthetic Plan for a-C-Glycosyltryptophan.
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An a-C-iodoethynylglucose derivative was coupled
with an L-serine-derived zinc-copper reagent to give a-
C-glucosylpropargyl glycine, which underwent palladi-
um catalyzed-heteroannulation with o-iodoaniline to
give not a-C-glucosyl-tryptophan but a-C-glucosyl-iso-
tryptophan. This is the ˆrst observation of complete
reverse regioselectivity to Larock's proposal.

Key words: C-glycosylamino acid; propargyl glycine;
indole; iso-tryptophan; palladium catalyst

C-Glycosylamino acids have attracted considerable
interest for their stable mimic of N- and O-linked
glycosylamino acids and glycosidase inhibitors to
elucidate the biological roles of the carbohydrate
moiety of glycopeptide and glycoprotein.1) In the
course of our synthetic studies on a-C-mannosyltryp-
tophan (1),2–4) a novel C-glycosylamino acid found in
proteins,5,6) we aimed to establish a general synthetic
method for the glucose and galactose analogs of 1 for
a trace analysis of the carbohydrate moiety of this
sugar chain. Our initial synthetic plan for glucose
analog 2 is shown in Scheme 1, which exploits the
palladium-catalyzed heteroannulation developed by
Larock7,8) between o-iodoaniline 4 and C-glucosyl-
propargyl glycine 3 as the key reaction. The synthesis
of acetylene counterpart 3 was envisaged by coupling
between sugar acetylene 59,10) and an L-serine deriva-
tive such as 6 or 7. Dondoni11) and van Boom12) have
independently reported the recent syntheses of a and

b-C-glycosylpropargyl glycine derivatives in diŠerent
ways. These reports prompted us to disclose our un-
reported results of a new convergent synthesis for a-
C-glucosylpropargyl glycine 3, and the unexpected
regioselectivity observed in the palladium-catalyzed
heteroannulation between 3 and 4.

The synthesis of a-C-glucosylpropargyl glycine
was ˆrst examined. Initial attempts to couple lithium
or magnesium acetylide generated from ethynylglu-
cose 10 (5: R＝Bn) with aziridine carboxylic acid 613)

or 3-iodo-L-serine derivative 714) failed, because of b-
elimination and preferential attack by acetylide to the
carbonyl groups of the carbamate and ester.15,16) We
next turned our attention to an alternative coupling
method with reverse polarity (Scheme 2); that is,
iodoacetylene 11 as an electrophile and L-serine der-
ived organozinc-copper reagent 9 as a nucleophile ac-
cording to the Knochel17,18) and Jackson19,20) reports.
Iodoethynylglucose 11 was prepared by iodination21)

of a-ethynylglucose 10,11,22) which had been synthe-
sized by highly a-selective C-glycosidation of glucose
derivative with tinacetylene under our established
conditions,2) while L-serine derived Zn-Cu reagent 9
had been prepared from iodoalanine 8 according to
the literature.23,24) These reagents were coupled
together in THF to give a-C-glucosylpropargyl gly-
cine 12 in a moderate yield along with ethynylglucose
10 as a by-product.25) The method described here
should be e‹cient and ‰exible for the synthesis of a
wide variety of C-glycosylpropargyl glycines.26)D
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Scheme 2. Synthesis of C-Glucosylpropargyl Glycine 12.

Scheme 3.

Table. Heteroannulation between Glucosylpropargyl Glycine 12
and o-Iodoaniline 4

o-lodoaniline Product
Entry

R R Yield (z)

1 4a H 13a H complex mixture
2 4b Ac 13b Ac 30
3 4c Boc 13c Boc 30
4 4d Ts 13d Ts 89
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With the precursor for the heteroannulation in
hand, we examined palladium-catalyzed indole syn-
thesis under the conditions reported by Larock7,8)

(Scheme 3 and Table). When unprotected o-iodoani-
line 4a was employed as a coupling partner, a
complex mixture was obtained (entry 1). In sharp
contrast, the reactions with N-acetyl and N-Boc-
protected o-iodoaniline 4b and 4c respectively gave
13b (30z yield) and 13c (30z yield) as single
products, but in low yields (entries 2 and 3). We
ˆnally found that o-iodo-tosylanilide 4d was the best
coupling partner to aŠord product 13d in about a
90z yield (entry 4). To our surprise, the structures of
these products were determined to be not desired
tryptophan 14, but iso-tryptophan 1327,28) from an
analysis of the NOESY spectra,29) in which correla-
tion between aromatic protons of the Ts group and
the a-proton of the amino acid moiety was observed.
Larock et al. have suggested that the regiochemistry
of this annulation was controlled by steric balance
between two substituents of acetylene to aŠord a
product having a sterically hindered substituent at
the 2-position of indole in high selectivity.7,8,30) As the
carbohydrate moiety of 12 seemed to be larger, a
tryptophan type of product (14) was expected.
However, only iso-tryptophan adducts 13b, 13c and
13d were obtained in these speciˆc cases. To our
knowledge, this is the ˆrst example of complete
reverse regioselectivity in Larock's heteroannulation.

This unexpected result implies unknown important
factor(s) controlling the regioselectivity in this heter-
oannulation. In most of the substrates for the Larock
indole synthesis so far reported, one terminus of the
acetylenes was substituted by a silyl group.31–35) As
tryptophan synthesis by means of the heteroannula-
tion has been reported,36–38) an amino acid functional
group should not interfere with the regioselectivity.
Work on deˆning the origin and mechanism for this
reverse selectivity is currently underway in our
laboratory.

In summary, we developed an e‹cient synthetic
route to C-glycosylpropargyl glycine and C-glycosyl-
iso-tryptophan. Although the heteroannulation
strategy was revealed to be unsuitable for the synthe-
sis of a-C-glycosyltryptophan, the resulting novel C-
glycosylamino acids might be possible candidates for
biologically active compounds such as enzyme inhibi-

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
8:

53
 2

4 
O

ct
ob

er
 2

01
4 



22752275Synthesis of Novel a-C-Glycosylamino Acids

tors.39,40)

Experimental

Infrared spectra were recorded with a Jasco
FTWIR-8300 spectrophotometer and are reported in
wave number (cm„1). Proton nuclear magnetic
resonance (1H-NMR) spectra were recorded with a
Brucker ARX-600 (600 MHz), a Brucker ARX-400
(400 MHz) or a Varian Gemini-2000 (300 MHz) spec-
trometers, and carbon nuclear magnetic resonance
(13C-NMR) spectra were recorded with a ARX-600
(150 MHz), a ARX-400 (100 MHz) or a Varian
Gemini-2000 (75 MHz) spectrometers. Optical rota-
tion values were measured by a Jasco DIP-370 digital
polarimeter, and mass spectra (EI) were recorded by
a Jeol Mstation spectrometer.

2-Iodoethynyl-2,3,4,6-tetra-O-benzyl-a-D-glu-
copyranoside (11). To a solution of iodine (454 mg,
1.79 mmol) in benzene (2.4 ml) at 459C was added
morpholine (0.47 ml, 5.37 mmol) in benzene
(0.57 ml). The dark orange iodo-morpholine com-
plex formed rapidly. a-1-Ethynylglucose 10 (966 mg,
1.79 mmol) in benzene (3.3 ml) was added, and the
mixture was stirred at 459C for 24 hr. After cooling
to rt, the hydroiodide salt was removed by suction
ˆltration through ˆlter paper, and the ˆltrate was
diluted with ether. The organic layer was successively
washed with a saturated NH4Cl solution (×2), satu-
rated NaHCO3 solution (×2) and brine (×2), passed
through a short column packed with anhydrous
Na2SO4, and concentrated. The residue was puriˆed
by silica gel (30 g) column chromatography
(CH2Cl2:hexane＝1:1ª2:1) to aŠord 11 (1.02 g,
86z) as a colorless oil. [a]D

23+93.0 (c 1.11, CHCl3).
IR (KBr) nmax cm„1: 3031, 2865, 2178, 1455, 1088. 1H-
NMR (CDCl3, 300 MHz) d: 3.60 (1H, dd, J＝9.5,
6 Hz, H-2), 3.62 (1H, t, J＝9.5 Hz, H-4), 3.65 (1H,
dd, J＝11, 2 Hz, H-6), 3.75 (1H, dd, J＝11, 3.5 Hz,
H-6), 3.92 (1H, t, J＝9.5 Hz, H-3), 3.93–3.97 (1H,
m, H-5), 4.47(1H, d, J＝10 Hz, CHEHFPh), 4.47
(1H, d, J＝12 Hz, CHAHBPh), 4.60 (1H, d,
J＝12 Hz, CHAHBPh), 4.67 (1H, d, J＝12.5 Hz,
CHCHDPh), 4.72 (1H, d, J＝12.5 Hz, CHCHDPh),
4.82 (1H, d, J＝10 Hz, CHEHFPh), 4.83 (1H, d,
J＝10.5 Hz, CHGHHPh), 4.88 (1H, d, J＝6 Hz, H-1),
4.99 (1H, d, J＝10.5 Hz, CHGHHPh), 7.10–7.38
(20H, m, C6H5×4). 13C-NMR (CDCl3, 75 MHz) d:
6.0, 68.1, 68.4, 72.9, 73.5, 73.8, 75.3, 75.7, 77.3,
79.0, 83.0, 89.5, 127.66, 127.78, 127.87, 127.98,
128.03, 128.06, 128.14, 128.4, 128.5, 128.6, 137.9,
138.1, 138.8. MS (FAB) mWz 675 (M+H). Anal.
Calcd. for C36H35IO5: C, 64.10; H, 5.23z. Found: C,
64.21; H, 5.37z.

(S)-2-tert-Butoxycarbonylamino-5-(2?,3?,4?,6?-
tetra-O-benzyl-a-D-glucopyranosyl)-pentynoic acid

methyl ester (12). A 20-ml two-necked round-
bottomed ‰ask was charged with zinc-sand (349 mg,
5.34 mmol, Kanto Chemicals) and connected to a
vacuumWargon line. The ‰ask was evacuated and
then ˆlled with argon. This evacuationŴlling cycle
was conducted three times. Dry THF (0.39 ml) and
1,2-dibromoethane (0.019 ml, 0.223 mmol) were
added, and the resulting suspension was heated at
609C for 3 min. After cooling to room temperature,
TMSCl (0.023 ml, 0.178 mmol) was added, and the
mixture was sonicated for 30 min. Iodoalanine 8
(586 mg, 1.78 mmol) in dry THF (2.89 ml) was added
via a cannula tubing, and the mixture was sonicated
at 409C for 8 hr. (Iodoalanine was converted to the
zinc reagent as judged by TLC.) The solution of the
zinc reagent was cooled to 09C, and a solution pre-
pared from CuCN (159 mg, 1.78 mmol) and LiCl
(151 mg, 3.56 mmol) in dry THF (2.62 ml) was added
via a cannula tubing. The mixture was stirred at 09C
for 10 min and then cooled to „789C. The resulting
zinc-copper reagent (9) was added to a stirred
solution of the a-1-iodoethynylglucose 11 (307 mg,
0.445 mmol) in THF (2.70 ml) at „789C in a 30-ml
two-necked round-bottomed ‰ask via a cannula
tubing. The reaction mixture was stirred at „789C
for 3 hr, and then at 49C for an additional 12 hr un-
der argon. The reaction was quenched with a saturat-
ed NH4Cl solution, then the mixture was extracted
with AcOEt (×3). The combined organic extract was
successively washed with H2O (×2), a saturated
NH4Cl solution (×2) and brine (×2), dried over
Na2SO4, and concentrated. The residue was puriˆed
by silica gel (30 g) column chromatography
(Et2O:hexane＝1:4ª1:2) to aŠord 12 (145 mg, 43z)
and a-1-ethynylglucose 10 (125 mg, 50z) as a color-
less oil. [a]D24+72.0 (c 1.05, CHCl3). IR (KBr) nmax

cm„1: 3353, 3031, 2876, 2240, 1749, 1718, 1455,
1089. 1H-NMR (CDCl3, 400 MHz) d: 1.38 (9H, s,
OC(CH3)3), 2.79 (1H, ddd, J＝16, 5, 2 Hz, H-b),
2.87 (1H, ddd, J＝16, 4, 2 Hz, H-b), 3.58 (1H, dd,
J＝10, 9 Hz, H-4?), 3.61 (1H, dd, J＝9, 5.5 Hz,
H-2?), 3.64 (1H, dd, J＝11, 2 Hz, H-6?), 3.68 (3H, s,
COOCH3), 3.71 (1H, dd, J＝11, 3.5 Hz, H-6?), 3.88
(1H, t, J＝9 Hz, H-3?), 3.88 (1H, ddd, J＝10,
3.5, 2 Hz, H-5?), 4.47 (1H, d, J＝12 Hz, CHAHBPh),
4.48 (1H, d, J＝10.5 Hz, CHCHDPh), 4.52 (1H, br
dd, J＝8.5, 4.5 Hz, H-a) 4.58 (1H, d, J＝12 Hz,
CHAHBPh), 4.69 (2H, s, CHEHFPh), 4.70 (1H, dd,
J＝5.5, 2 Hz, H-1?), 4.81 (1H, d, J＝10.5 Hz,
CHCHDPh), 4.81 (1H, d, J＝10.5 Hz, CHGHHPh),
4.98 (1H, d, J＝10.5 Hz, CHGHHPh), 5.54 (1H, d,
J＝8.5 Hz, NH ), 7.12–7.15 (2H, m, aromatic),
7.24–7.39 (18H, m, aromatic). 13C-NMR (CDCl3, 75
MHz ) d: 23.3, 28.2, 52.1, 52.6, 66.7, 68.5, 72.8,
73.5, 75.0, 75.7, 77.3, 78.2, 79.0, 80.1, 83.1, 84.5,
127.7, 127.7, 127.9, 128.0, 128.0, 128.1, 128.1,
128.4, 128.5, 138.0, 138.4, 155.3, 171.3. MS (FAB)
mWz 750 (M+H). Anal. Calcd. for C45H51NO9: C,
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72.07; H, 6.86; N, 1.87z. Found: C, 72.09; H, 6.77;
N, 2.00z.

1-Acetyl-N-(tert-butoxycarbonyl)-3-(2?,3?,4?,6?-
tetra-O-benzyl-a-D-glucopyranosyl)-L-iso-trypto-
phan methyl ester (13b). A 5-ml two-necked round-
bottomed ‰ask was charged with glucosy-a-1-
ethynylalanine 12 (29.3 mg, 0.039 mmol), o-iodoa-
cetanilide 4b (5.1 mg, 0.0195 mmol), Pd(OAc)2

(1.3 mg, 5.85×10„3 mmol), PPh3 (1.5 mg, 5.85×
10„3 mmol), n-Bu4NCl (5.4 mg, 0.0195 mmol) and
Na2CO3 (10.3 mg, 0.0975 mmol) and connected to a
vacuumWargon line. The ‰ask was evacuated and
then ˆlled with argon, this evacuationŴlling cycle
being conducted three times. These reagents were dis-
solved in DMF (0.88 ml). The mixture was stirred at
909C for 16 hr. After cooling to rt, the reaction was
quenched with a saturated NH4Cl solution, and the
mixture was extracted with AcOEt (×3). The com-
bined organic extract was successively washed with a
saturated NH4Cl solution (×2), H2O (×2) and brine
(×2), passed through a short column packed with
Na2SO4, and concentrated. The residue was puriˆed
by preparative thin-layer chromatography (Et2O:
hexane＝3:1) to aŠord 13b (5.4 mg, 31z) as a yellow
oil. [a]D

26 +8.2 (c 0.38, CHCl3). IR (KBr) nmax cm„1:
3338, 3029, 2865, 1730, 1677, 1457, 1093. 1H-NMR
(CDCl3, 400 MHz) d: 1.67 (3H, s, COCH3), 1.73
(9H, s, OC(CH3)3), 3.64 (1H, dd, J＝14, 4.5 Hz,
H-b), 3.65 (1H, t, J＝2 Hz, H-2?), 3.70 (3H, s,
COOCH3), 3.75 (1H, dd, J＝14, 12 Hz, H-b), 3.82
(1H, dd, J＝11, 3 Hz, H-6?), 3.87 (1H, dd, J＝11,
3.5 Hz, H-6?), 3.89 (1H, dd, J＝5.5, 2 Hz, H-3?),
4.01 (1H, dd, J＝8.5, 5.5 Hz, H-4?), 4.10 (1H, d,
J＝12 Hz, CHAHBPh), 4.31 (1H, d, J＝12 Hz,
CHAHBPh), 4.32 (1H, ddd, J＝8.5, 3.5, 3 Hz, H-5?),
4.46 (1H, d, J＝12 Hz, CHCHCPh), 4.50 (1H, d,
J＝12 Hz, CHEHFPh), 4.54 (1H, d, J＝12 Hz,
CHEHFPh), 4.58 (1H, d, J＝12 Hz, CHCHDPh),
4.60 (1H, d, J＝12 Hz, CHGHHPh), 4.71 (1H, d, J＝
12 Hz, CHGHHPh), 4.85 (1H, ddd, J＝12, 8, 4.5 Hz,
H-a), 5.40 (1H, d, J＝2 Hz, H-1?), 6.90 (1H, d,
J＝8 Hz, aromatic), 6.90 (1H, d, J＝8 Hz, aromatic),
7.05–7.17 (5H, m, H-6, H-7 & aromatic), 7.23–7.38
(16H, m, H-5 & aromatic), 7.61 (1H, d, J＝8.5 Hz,
NH ), 8.09 (1H, d, J＝8.5 Hz, H-4). 13C-NMR
(CDCl3, 100 MHz) d: 22.6, 28.3, 29.2, 51.4, 52.1,
68.5, 68.7, 72.2, 72.9, 73.1, 73.3, 73.4, 76.2, 78.4,
80.9, 84.8, 116.2, 116.9, 117.4, 122.6, 124.1, 127.8,
127.8, 127.9, 128.0, 128.4, 128.6, 134.9, 136.0,
137.3, 137.9, 138.3, 150.3, 170.4, 173.1. MS(FAB)
mWz 883 (M+H). HRMS(FAB): calcd. for
C53H59N2O10 (M+H), 883.4170; found, 883.4101.

N,1-bis(tert-Butoxycarbonyl)-3-(2?,3?,4?,6?-tetra-
O-benzyl-a-D-glucopyranosyl)-L-iso-tryptophan
methyl ester (13c). This was prepared in a 30z yield
by coupling 12 (22 mg, 0.030 mmol) and 4c (10.0 mg,

0.030 mmol) in a similar manner to that described for
13b. [a]D

25+6.2 (c 0.39, CHCl3). IR (KBr) nmax cm„1:
3336, 3031, 2865, 1733, 1455, 1091. 1H-NMR
(DMSO-d6, at 809C, 600 MHz) d: 1.14 (9H, s,
OC(CH3)3), 1.68 (9H, s, OC(CH3)3), 3.43 (1H, dd,
J＝14, 6 Hz, H-b), 3.52–3.57 (1H, m, H-b), 3.55
(3H, s, COOCH3), 3.74 (1H, t, J＝2.5 Hz, H-2?),
3.75 (1H, dd, J＝10.5, 4 Hz, H-6?), 3.78(1H, dd, J＝
10.5, 5 Hz, H-6?), 3.92 (1H, dd, J＝8, 5.5 Hz, H-4?),
4.00 (1H, dd, J＝5.5, 2.5 Hz, H-3?), 4.03 (1H, d, J＝
12 Hz, CHAHBPh), 4.14 (1H, ddd, J＝8, 5, 4 Hz,
H-5?), 4.39 (1H, d, J＝12 Hz, CHAHBPh), 4.48–4.52
(1H, m, H-a), 4.50 (1H, d, J＝12 Hz, CHCHDPh),
4.53 (1H, d, J＝12 Hz, CHCHDPh), 4.58 (1H, d,
J＝11.5 Hz, CHEHFPh), 4.69 (1H, d, J＝12 Hz,
CHGHHPh), 4.71 (1H, d, J＝11.5 Hz, CHEHFPh),
4.71 (1H, d, J＝12 Hz, CHGHHPh), 5.38 (1H, d, J＝
2.5 Hz, H-1?), 6.84 (1H, d, J＝7 Hz, aromatic), 7.06
(1H, t, J＝7.5 Hz, aromatic), 7.10 (1H, t, J＝8 Hz,
H-6), 7.23 (1H, t, J＝8 Hz, H-5), 7.25–7.38 (19H, m,
aromatic & NH ), 7.50 (1H, d, J＝8 Hz, H-7), 8.01
(1H, d, J＝8 Hz, H-4). 13C-NMR (DMSO-d6, at
809C, 150 MHz) d: 27.9, 28.0, 28.1, 51.7, 53.0, 68.2,
69.6, 71.9, 72.2, 72.7, 74.3, 76.0, 78.5, 79.5, 80.0,
80.1, 80.9, 115.1, 122.2, 123.8, 127.3, 127.4, 127.5,
127.6, 127.7, 127.9, 128.2, 128.28, 128.34, 133.7,
135.8, 138.6, 150.0, 172.4. HRMS(FAB): calcd. for
C56H65N2O11 (M+H), 941.4588; found, 941.4560.

N-(tert-Butoxycarbonyl)-1-(4-toluenesulfonyl)-3-
(2?,3?,4?,6?-tetra-O-benzyl-a-D-glucopyranosyl)-L-
iso-tryptophan methyl ester (13d). This was prepared
in an 89z yield by coupling 12 (73 mg, 0.098 mmol)
and 4d (18.2 mg, 0.0488 mmol) in a similar manner
to that described for 13b. [a]D

26+47 (c 0.16, CHCl3).
IR (KBr) nmax cm„1: 3349, 3030, 2867, 1748, 1713,
1454, 1367, 1175, 1090. 1H-NMR (DMSO-d6, at
809C, 600 MHz) d: 1.19 (9H, s, OC(CH3)3), 2.09
(3H, s, ArCH3), 3.48 (1H, dd, J＝5.5, 14.5 Hz, H-b),
3.57 (3H, s, COOCH3), 3.65 (1H, dd, J＝10,
14.5 Hz, H-b), 3.64 (1H, t, J＝2.5 Hz, H-2?), 3.70
(1H, dd, J＝4.5, 11 Hz, H-6?), 3.72(1H, dd,
J＝5, 11 Hz, H-6?), 3.76 (1H, d, J＝12 Hz,
CHAHBPh), 3.83(1H, dd, J＝5.5, 7.5 Hz, H-4?), 3.89
(1H, dd, J＝2.5, 5.5 Hz, H-3?), 4.03 (1H, d,
J＝12 Hz, CHAHBPh), 4.06 (1H, ddd, J＝4.5, 5,
7.5 Hz, H-5?), 4.46 (1H, d, J＝12 Hz, CHCHDPh),
4.49 (1H, d, J＝12 Hz, CHCHDPh), 4.51 (1H, d,
J＝11.5 Hz, CHEHFPh), 4.58 (2H, s, CHGHHPh),
4.63 (1H, d, J＝11.5 Hz, CHEHFPh), 4.62 (1H, m,
H-a), 5.31 (1H, d, J＝2.5 Hz, H-1?), 6.69 (2H, d, J＝
7.5 Hz, aromatic), 7.04 (2H, t, J＝7.5 Hz, aromatic),
7.10 (1H, t, J＝8 Hz, H-6), 7.10 (2H, d, J＝8.5 Hz,
H-3! of Ts), 7.09–7.11 (1H, aromatic), 7.20 (1H, d,
J＝8 Hz, NH ), 7.26 (1H, t, J＝8 Hz, H-5),
7.23–7.31(15H, m, aromatic), 7.46 (1H, d, J＝8 Hz,
H-7), 7.51 (2H, d, J＝8.5 Hz, H-2! of Ts), 8.01 (1H,
d, J＝8 Hz, H-4). 13C-NMR (DMSO-d6, at 809C,
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150 MHz) d: 20.8, 28.1, 28.9, 51.8, 54.2, 68.0, 69.4,
71.9, 72.1, 72.3, 72.7, 74.2, 75.9, 78.6, 79.4, 79.8,
114.6, 121.6, 124.6, 127.3, 127.3, 127.3, 127.4,
127.5, 127.6, 127.7, 128.2, 128.3, 134.1, 136.3,
138.5, 145.1, 172.3. MS(FAB) mWz 995 (M+H).
HRMS(FAB): calcd. for C58H63N2O11S (M+H),
995.4153; found, 995.4075.
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