

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 7581-7582

Tetrahedron Letters

A total synthesis of (–)-bestatin using Shibasaki's asymmetric Henry reaction

Naminita Gogoi, Joshodeep Boruwa and Nabin C. Barua*

Natural Products Chemistry Division, Regional Research Laboratory (CSIR), Jorhat 785 006, Assam, India

Received 25 April 2005; revised 19 August 2005; accepted 26 August 2005 Available online 13 September 2005

Abstract—A total synthesis of the potent aminopeptidase inhibitor (–)-bestatin has been achieved using Shibasaki's asymmetric Henry reaction catalyzed by an optically active rare earth lanthanum-(R)-binaphthol complex in 26% overall yield. © 2005 Published by Elsevier Ltd.

The α -hydroxy β -amino acid (AHBA) moiety is a common structural fragment in numerous natural products.¹ The presence of this moiety and the stereochemistry of the hydroxy as well as the amino group play a vital role in the biological activity of the molecules containing it. Moreover, a number of their amide derivatives, isolated from bacterial cultures display significant activity against aminopeptidases.² One such molecule (–)-bestatin **1** (Fig. 1), a dipeptide, was isolated from *Streptomyces olivoreticulithe* by Umezawa et al. in 1976.³

This potent aminopeptidase inhibitor also exhibits immunomodulatory activity⁴ and is used clinically as

Figure 1.

0040-4039/\$ - see front matter @ 2005 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2005.08.153

an adjuvant in cancer chemotherapy⁵ and in hypertension.⁶ Structure-modification studies on bestatin and similar molecules like phebestin 2^7 and probestin 3^8 indicated that the presence of *syn*-amino alcohol fragments and the 2*S*-configuration of the α -hydroxy group are important factors for tight interaction with the enzyme.⁹

The biological activity of bestatin has attracted considerable interest in its total synthesis.¹⁰ However, most of the reported syntheses still have difficulties in controlling the stereochemistry at the C-2 and C-3 stereogenic centres for the introduction of the desired (2S,3R)-configuration of the *N*-terminal component.

In continuation of our interest on the synthesis of pharmacologically important natural products using aliphatic nitro compounds,¹¹ we report here a potentially significant route to (-)-bestatin that is not only considerably shorter and higher in yield, but also experimentally much simpler involving Shibasaki's asymmetric Henry reaction as the key step.

Treatment of ethyl glyoxalate with 2-phenyl-1-nitroethane as per the procedure described by Shibasaki et al.¹² at -50 °C in the presence of the La-(*R*)-BINOL catalyst¹³ (10 mol %) in THF provided (2*S*,3*R*)-4 in 81% yield and 93% ee¹⁴ as the sole product (Scheme 1). The assigned C-2, C-3 relative stereochemistry rested on the observed coupling constant ($J_{2,3} = 3.6$ Hz). Our attempt to reduce selectively the nitro group in the presence of the ester using NaBH₄ (2.5 equiv) and Pd–C in THF¹⁵ was unsuccessful and resulted in reduction of the ester to an alcohol with survival of the nitro group. We then

Keywords: AHBA; Aminopeptidase; Asymmetric Henry reaction; La-BINOL complex.

^{*} Corresponding author. Tel.: +91 376 2370121; fax: +91 376 2370011; e-mail: ncbarua12@rediffmail.com

Scheme 1.

tried the reaction with NaBH₄ in the presence of Cu(OAc)₂,¹⁶ but we observed only decomposition of the starting material. Therefore, the nitroaldol product was acetylated under standard conditions and the resulting nitroacetate hydrogenated with 10% Pd–C at 1 atm H₂ in methanol in the presence of NaBH₄ (0.5 equiv) furnished the aminoacetate (2*S*,3*R*)-5 in 60% yield. Boc-protection of the amino group provided (2*S*,3*R*)-6 in 92% yield. Coupling of the protected β-amino α-hydroxy acid (2*S*,3*R*)-6 with the benzyl ester of L-leucine and subsequent hydrogenation delivered (2*S*,3*R*)-7 in 77% yield over two steps. Finally, deprotection of both the protecting groups in two-steps furnished the target molecule, which had physical and spectral properties identical with those reported in the literature.^{3a}

In conclusion, we have demonstrated a short and efficient route to (-)-bestatin, which may also be applicable to several other substituted analogues such as phebestin and probestin, or molecules like statin, norstatin, microgenin, etc.

Acknowledgements

The authors are thankful to the Director, RRL Jorhat, for providing facilities. J.B. also thanks CSIR, New Delhi, for the Research Fellowship.

References and notes

- (a) Cole, D. C. *Tetrahedron* **1994**, *50*, 9517; (b) Cardillo, G.; Tomasini, C. *Chem. Soc. Rev.* **1996**, *29*, 117.
- (a) Umezawa, K.; Ikeda, Y.; Uchihata, Y.; Naganawa, H.; Kondo, S. J. Org. Chem. 2000, 65, 459; (b) Babine, R. L.; Bender, S. E. Chem. Rev. 1997, 97, 1359.

- (a) Umezawa, H.; Aoyagi, T.; Suda, H.; Hamada, M.; Takeuchi, T. J. Antibiot. 1976, 29, 97; (b) Nishino, N.; Powers, J. C. Biochemistry 1979, 18, 4340.
- Nakamura, H.; Suda, H.; Takita, T.; Aoyagi, T.; Umezawa, H.; Iitaka, Y. J. Antibiot. 1976, 29, 102.
- Ino, K.; Goto, S.; Nomura, S.; Isobe, K.-I.; Nawa, A.; Okamoto, T.; Tomoda, Y. *Anticancer Res.* 1995, 15, 2081.
- 6. Dzoljicacute, E.; Varagicacute, V. M. Fundam. Clin. Pharmacol. 1987, 1, 307.
- Nagai, M.; Kojima, F.; Naganawa, H.; Hamada, M.; Aoyagi, T.; Takeuchi, T. J. Antibiot. 1997, 50, 82.
- Aoyagi, T.; Yoshida, S.; Nakamura, Y.; Shigihara, Y.; Hamada, M.; Takeuchi, T. J. Antibiot. 1990, 43, 143.
- 9. Harbeson, S. L.; Rich, D. H. Biochemistry 1988, 27, 7301.
- (a) Kudyba, I.; Raczko, J.; Jurczak, J. J. Org. Chem. 2004, 69, 2844; (b) Lee, J. H.; Lee, B. W.; Jang, K. C.; Jeong, I.-Y.; Yang, M. S.; Lee, S. G.; Park, K. H. Synthesis 2003, 829; (c) Righi, G.; D'Achille, C.; Pescatore, G.; Bonini, C. Tetrahedron Lett. 2003, 44, 6999; (d) Nemoto, H.; Ma, R.; Suzuki, I.; Shibuya, M. Org. Lett. 2000, 26, 4245; (e) Palomo, C.; Aizpurua, J. M.; Cuevas, C. J. Chem. Soc., Chem. Commun. 1994, 1957; (f) Herranz, R.; Vinuesa, S.; Castro-Pichel, J.; Perez, C. J. Chem. Soc., Perkin Trans. 1 1992, 13, 1825; (g) Pearson, W. H.; Hines, J. V. J. Org. Chem. 1989, 54, 4235.
- Borah, J. C.; Gogoi, S.; Boruwa, J.; Kalita, B.; Barua, N. C. *Tetrahedron Lett.* 2004, 45, 3689, and references cited therein.
- 12. Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. **1992**, 114, 4418.
- 13. Sasai, H.; Suzuki, T.; Itoh, N.; Shibasaki, M. Tetrahedron Lett. 1993, 34, 851.
- 14. The enantiomeric excess (ee) was measured by HPLC analysis carried out using a Waters 510 HPLC system. Chiracel OD packed in a SS column of 4.6 mm i.d. \times 250 m was used. Isocratic elution was applied with a mobile phase consisting of *n*-hexane 90% and isopropanol 10% at a flow rate of 0.8 mL/min and a pressure of 125 psi with UV detection at 243 nm.
- 15. Petrini, M.; Ballini, R.; Rosini, G. Synthesis 1987, 713.
- 16. Cowan, J. A. Tetrahedron Lett. 1986, 27, 1205.