Palladium Catalysts for Cross-Coupling of Ortho-Substituted Aryl Triflates with Grignard Reagents

Takashi Kamikawa and Tamio Hayashi*

Department of Chemistry, Faculty of Science, Kyoto University, Sakyo, Kyoto 606-01, Japan

Fax 81-75-753-3988; E-mail thayashi@th1.orgchem.kuchem.kyoto-u.ac.jp

Received 14 November 1996

February 1997

Abstract: Dichloro[(2-dimethylamino)propyldiphenylphosphine]palladium (PdCl₂(alaphos)) and dichloro[1,3-bis(diphenylphosphino)propane]palladium (PdCl₂(dppp)) were found to be much more effective catalysts than PdCl₂(PPh₃)₂ and other palladium complexes for crosscoupling of sterically congested aryl triflates with aryl and alkynyl Grignard reagents.

During our recent studies on enantioposition-selective cross-coupling of aryl ditriflates with the Grignard reagents, l it was found that the palladium complexes coordinated with $\beta\text{-}(\text{dimethylamino})\text{alkyl-diphenylphosphines}$ are highly effective as catalysts for the Grignard cross-coupling of aryl triflates containing sterically bulky groups at ortho-position. Here we wish to report the effects of phosphine ligands on the catalytic activity of the palladium-catalyzed cross-coupling of sterically congested aryl triflates with aryl and alkynyl Grignard reagents, the ligand effects being different from those observed for the cross-coupling of non-congested aryl halides or triflates. 2,3

Scheme

In a typical experiment (Scheme), to a mixture of 2-phenylphenyl triflate mmol), dichloro[(2-dimethylamino)propyldiphenylphosphine]palladium (PdCl₂(alaphos)) (0.05 mmol), and lithium bromide (1.0 mmol) in ether was added phenylmagnesium bromide (2.0 mmol) in ether at 0 °C, and the mixture was stirred at 30 °C for 3 h. Acidic hydrolysis and preparative TLC on silica gel gave 95% yield of 1.2diphenylbenzene (2a) (entry 1 in Table 1). The reaction was much slower with the palladium catalysts coordinated with triphenylphosphine ligands, PdCl₂(PPh₃)₂ and Pd(PPh₃)₄, which gave 2a in low yields after a prolonged reaction time (entries 2 and 3), though the triphenylphosphine-palladium complexes have been often used for the cross-coupling of aryl halides with several organometallic reagents.² The cross-coupling was also slow with dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium (PdCl₂(dppf)), which is one of the most effective catalysts for the Grignard cross-coupling of aryl bromides and the related reactions⁴ (entry 4). Of the palladium catalysts containing α , ω bis(diphenylphosphino)alkanes (entries 5-7), dichloro[1,3-bis(diphenylphosphino)propane]palladium (PdCl2(dppp)) was most catalytically active, a little more active than PdCl₂(alaphos), in the reaction with the phenyl Grignard reagent to give **2a** in 97% yield. The chemical yield of **2a** obtained with PdCl₂(alaphos) or PdCl₂(dppp) shown above is higher than that obtained by the reaction of **1** with phenylboronic acid in the presence of Pd(PPh₃)₄ (entry 9).⁵ For the cross-coupling with alkynyl Grignard reagents, PdCl₂(alaphos) was found to be the only catalyst giving high yields of the alkynylation products (**2b**: 93%, **2c**: 99%) (entries 10, 15). Other palladium or nickel complexes were all much less catalytically active than PdCl₂(alaphos) for the alkynylation (entries 11-14).

Table 1. Effects of Phosphine Ligands on the Cross-Coupling of Aryl Triflate 1 with Grignard Reagents^{a)}

entry	catalyst	Grignard	time (h)	yield (%) of 2b)
1	PdCl ₂ (alaphos)	PhMgBr	3	95 (2a)
2	PdCl ₂ (PPh ₃) ₂	PhMgBr	24	25 (2a)
3	Pd(PPh ₃) ₄	PhMgBr	24	2 (2a)
4	PdCl ₂ (dppf)	PhMgBr	24	10 (2a)
5	PdCl ₂ (dppe)	PhMgBr	14	93 (2a)
6	PdCl ₂ (dppp)	PhMgBr	1	97 (2a)
7	PdCl ₂ (dppb)	PhMgBr	3	95 (2a)
8	NiBr ₂ (PPh ₃) ₂	PhMgBr	24	97 (2a)
9 c)	Pd(PPh ₃) ₄	PhB(OH) ₂	24	67 (2a)
10	PdCl ₂ (alaphos)	PhC≡CMgBr	6	93 (2b)
11	PdCl ₂ (PPh ₃) ₂	PhC≡CMgBr	24	30 (2b)
12	PdCl ₂ (dppp)	PhC≡CMgBr	6	0 (2b)
13	PdCl ₂ (dppf)	PhC≡CMgBr	24	3 (2b)
14	NiBr ₂ (PPh ₃) ₂	PhC≡CMgBr	6	0 (2b)
15	PdCl ₂ (alaphos)	Ph₃SiC≡CMgBr	10	99 (2c)
•				

a) The cross-coupling was carried out with 2 equiv of Grignard reagent in the presence of 1 equiv of LiBr and 5 mol % palladium catalyst at 30 °C. In ether (entries 1-8). In ether/toluene = 5/1 (entries 10-14). In ether/toluene = 3/1 (entry 15). b) Isolated yield by silica gel chromatography. c) In the presence of $K_3 PO_4$ in refluxing dioxane.

The high catalytic activity observed here for $PdCl_2(alaphos)$ is ascribed, at least partly, to the high basicity of the alaphos ligand which is a chelating ligand with a trialkylamino group and an alkyldiphenylphosphino group. The high basicity will accelerate the oxidative addition of sterically congested aryl triflate to a palladium(0) species. The oxidative addition is one of the key steps in the catalytic cycle of the transition metalcatalyzed cross-coupling reactions. Higher basicity of α, ω -bis(diphenylphosphino)alkanes than PPh3 or dppf may be also related to the higher catalytic activity of the palladium complexes of dppe, dppp, and dppb than those of triarylphosphines.

The palladium catalysts, $PdCl_2(alaphos)$ and $PdCl_2(dppp)$, were also effective for the reaction of 2-phenylphenyl triflate (1) with some other aryl Grignard reagents (entries 1-7, in Table 2). The triflate group in 1 was successfully substituted with 4-methylphenyl, 4-chlorophenyl, and 2-methylphenyl groups by use of these palladium catalysts. The nickel complex $NiBr_2(PPh_3)_2$ can not be used for the cross-coupling of aryl triflates or Grignard reagents containing chloride on the aromatic ring, the chloride being reactive towards the nickel-catalyzed cross-coupling leading to polymeric products (entries 5, 10). The sterically congested aryl triflates 3-6, which contain substituents at ortho-position(s) also underwent the cross-coupling with phenyl, 2-methylphenyl, and triphenylsilylethynyl Grignard reagents to give the corresponding cross-coupling products in high yields by use of $PdCl_2(alaphos)$ or $PdCl_2(dppp)$ catalyst.

Table 2. Cross-Coupling of Aryl Triflates with Grignard Reagents^{a)}

entry	trifla	te Rin RMgBr	catalyst	product	time (h)	yield (%) ^{b)}
1	1	4-MeC ₆ H ₄	PdCl ₂ (alaphos)	Me	4	93
2		4-MeC ₆ H ₄	PdCl ₂ (dppp)		1	92
3		4-CIC ₆ H ₄	PdCl ₂ (alaphos)	CI	2	92
4		4-CIC ₆ H ₄	PdCl ₂ (dppp)		1	91
5		4-CIC ₆ H ₄	NiBr ₂ (PPh ₃) ₂		1	5
6		2-MeC ₆ H ₄	PdCl ₂ (alaphos)		3	92
7		2-MeC ₆ H ₄	PdCl ₂ (dppp)		1	93
8	3	2-MeC ₆ H ₄	PdCl ₂ (alaphos)	Me Â	4	84 ^{c)}
9		2-MeC ₆ H ₄	PdCl ₂ (PPh ₃) ₂		24	66 ^{c)}
10		2-MeC ₆ H ₄	NiBr ₂ (PPh ₃) ₂	Me	1	19 ^{c)}
11 ^{d)}		Ph₃SiC≡C	PdCl ₂ (alaphos)	CI SiPh ₃	14	99
12	4	₽h	PdCl ₂ (alaphos)	OMe	5	95
13		Ph	PdCl ₂ (dppp)		1	97
14		Ph	PdCl ₂ (PPh ₃) ₂		24	12
15	5	Ph	PdCl ₂ (dppp)	Me Me	14	94 ^{e)}
16		2-MeC ₆ H ₄	PdCl ₂ (dppp)	Me Me	18	65 ^{e)}
17	6	Ph	PdCl ₂ (dppp)		14	91

a) The cross-coupling was carried out with 2 equiv of Grignard reagent in ether in the presence of 1 equiv of LiBr and 5 mol % palladium catalyst at 30 °C. b) Isolated yield by silica gel chromatography. c) Contaminated with a small amount of 2,2'-dimethylbiphenyl and the yield was calibrated by ¹H NMR. d) Solvent is ether/toluene = 3/1. e) GLC yield.

Acknowledgment. This work was supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

References and Notes

- (a) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y.
 J. Am. Chem. Soc. 1995, 117, 9101. (b) Kamikawa, T.; Uozumi, Y.;
 Hayashi, T. Tetrahedron Lett. 1996, 37, 3161.
- For reviews on palladium- or nickel-catalyzed cross-coupling reactions: (a) Farina, V. In Comprehensive Organometallic Chemistry II;
 Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford,
 1995; Vol. 12, pp 161-240. (b) Tsuji, J. Palladium Reagents and Catalysts; Wiley: New York, 1995.
- 3. For a review on cross-coupling of triflates: Ritter, K. Synthesis 1993, 735.
- (a) Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158. (b) For a review on the catalytic reactions with PdCl₂(dppf): Gan, K.-S., Hor, T. S. A. In Ferrocene; Togni, A., Hayashi, T., Eds.; VCH: Weinheim, 1995; pp 3-96.
- (a) Watanabe, T.; Miyaura, N.; Suzuki, A. Synlett 1992, 207.
 (b) Oh-e, T.; Miyaura, N.; Suzuki, A. Synlett 1990, 221.
- Nickel complexes have been reported to be effective catalysts for the cross-coupling of aryl triflates: Sengupta, S.; Leite, M.; Raslan, D. S.; Quesnelle, C.; Snieckus, V. J. Org. Chem. 1992, 57, 4066.