

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 4450-4455

Identification and optimization of novel 1,3,4-oxadiazole EP₁ receptor antagonists

Adrian Hall,^{a,*} Susan H. Brown,^a Anita Chowdhury,^a Gerard M. P. Giblin,^a Mairi Gibson,^a Mark P. Healy,^a David G. Livermore,^a Richard J. McArthur Wilson,^b Alan Naylor,^a D. Anthony Rawlings,^a Shilina Roman,^a Emma Ward^b and Caroline Willay^a

^aNeurology and Gastrointestinal Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK

^bDepartment of Screening and Compound Profiling, GlaxoSmithKline, Third Avenue, Harlow, Essex CM19 5AW, UK

Received 2 May 2007; revised 31 May 2007; accepted 2 June 2007 Available online 8 June 2007

Abstract—A novel series of oxadiazole EP₁ receptor antagonists was identified by replacing the amide of a known glycine sulfonamide derivative with a 1,3,4-oxadiazole. Optimization of the substitution patterns on the three aromatic rings led to the identification of high affinity EP₁ receptor antagonists. The derivative with highest affinity displayed a binding IC₅₀ of 2.5 nM (pIC₅₀ 8.6). © 2007 Elsevier Ltd. All rights reserved.

The EP₁ receptor is one of four receptor subtypes that is activated by prostaglandin E_2 (PGE₂).¹ Preclinical evidence has shown that EP₁ receptor antagonism could provide a potential treatment for several conditions such as inflammatory pain,² neuropathic pain,³ postoperative pain,⁴ over active bladder⁵ and ischaemic stroke.⁶

We have previously reported some of our efforts to identify novel EP₁ receptor antagonists.^{2,7–11} To this end, we recently disclosed a new series of glycine sulfonamides,¹² exemplified by **1a** (Fig. 1), which was identified as part of a high throughput screen (HTS). Optimization of this series gave compounds such as **1b** and **1c** (Fig. 1).¹²

Compounds from the glycine sulfonamide series generally suffered from poor metabolic stability (when assessed in rat and human liver microsomes in vitro). Incubation of compounds from this series with human liver microsomes allowed qualitative metabolite identification by mass spectrometry. The major routes of metabolism were oxidation of the alkyl groups on the A- and B-rings and dealkylation of the amide. Thus, we wished to replace the amide of this series and establish whether the metabolically labile alkyl groups on the A- and B-rings could be replaced by halogens or trifluoromethyl groups.

Herein, we describe our work within this series, where we have replaced the amide in compounds of type 1a-c with an oxadiazole. This change resulted in a novel series of EP₁ antagonists which we hoped would have better metabolic stability and better developability characteristics than the amides typified by 1a-c.

The first step in this project was to understand the role of the amide in compounds such as **1b**. Thus, in order to investigate if the amide was an important pharmacophore we synthesized the ester **1d** (Table 1). Based on the modest decrease in affinity of **1d** relative to **1b** we hypothesized that the amide and ester were acting as hydrogen bond acceptors (HBA). The decreased affinity of **1d** could be explained by the weaker hydrogen bond acceptor ability of the ester moiety relative to the amide.¹³

Thus, we sought to replace the amide of **1b** (or the ester of **1d**) with a heterocycle with HBA potential such as the 1,3,4-oxadiazole. We felt that the vicinal arrangement of the lone pairs of electrons on the nitrogen atoms would

Keywords: EP₁ antagonist; Amide isostere; Oxadiazole.

^{*} Corresponding author. Tel.: +44 1279 643464; e-mail: adrian.2.hall@gsk.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.06.014

Figure 1. Profile of HTS hit 1a and optimized derivatives 1b and 1c, with standard deviations in parentheses.

Table 1. Binding data for amide 1b and corresponding ester 1d

Compound	L	Х	Binding pIC ₅₀ ^a
1b	NH	OMe	7.6 ± 0.1
1d	0	OMe	7.2 ± 0.2

^a Values are means of three experiments.

mimic the lone pairs of electrons on the carbonyl oxygen atom¹⁴ whilst improving metabolic stability.

Before undertaking the synthesis of the oxadiazole derivatives we carried out molecular overlays with the minimized structures of **1c** and an oxadiazole analogue (**2c**), using FLO,¹⁵ Figure 2. This indicated a good overlap of the three phenyl rings (A, B, and C), including pendant functionality, and the sulfonamide moieties. Furthermore, the carbonyl group of the amide was very close to the nitrogen atoms of the oxadiazole, implying that a similar HBA interaction could possibly be formed by the oxadiazole.

Based on these observations we initiated the synthesis of oxadiazole analogues.

Compound affinities were determined using a $[{}^{3}H]$ -PGE₂ binding assay at the human EP₁ receptor recombinantly expressed in CHO cell membranes.⁷ Compounds were also profiled in a functional assay using the recombinant EP₁ receptor in CHO cells to measure their ability to block the intracellular Ca²⁺ mobilization driven by PGE₂ (Ca²⁺ mobilization measured by FLIPR).⁷

Figure 2. Molecular overlay of amide 1c with oxadiazole 2c.

Table 2. SAR for substitution of the C-ring

Compound	Х	Binding pIC ₅₀ ^a	FLIPR pK _i ^a
2a	Н	6.0 ± 0.1	6.4 ^b
2b	Cl	6.4 ± 0.1	$6.5 \pm 0.2^{\circ}$
2c	OMe	6.9 ± 0.1	6.2 ± 0.4
2d	OEt	6.9 ± 0.1	7.4 ± 0.1

^a Values are means of at least three experiments.

^b Single experiment.

^c Mean of two experiments.

Thus, in the first round of synthesis we fixed the tosyl group (ring A) and the *ortho*-ethyl aniline (ring B), found in compounds **1b** and **1c**, and investigated substitution of the right hand side phenyl ring (ring C), (Table 2) utilising functionality that had proven beneficial for activity within the glycine sulfonamide series.¹² As expected, the 4-chloro, 4-methoxy and 4-ethoxy derivatives **2b–d** showed higher activity than the unsubstituted derivative **2a** (Table 2). Pleasingly, analogue **2c** (binding pIC₅₀ 6.9, IC₅₀ 126 nM) displayed a 5-fold decrease in affinity (binding assay) relative to the amide **1b** (binding pIC₅₀ 7.6, IC₅₀ 25 nM) and only a 2-fold decrease in affinity relative to the ester **1d** (binding pIC₅₀ 7.2, IC₅₀ 63 nM).

Replacement of the ester/amide by 1,2,4-oxadiazoles was also briefly investigated. Neither of the regioisomeric 1,2,4-oxadiazole analogues of **2b** gave an advantage over the parent (**2b**) in terms of binding affinity (results not shown), hence we focused on the 1,3,4-oxadiazoles.

Encouraged by the results in Table 2, we fixed a 4-alkoxy substituent on the C-ring and investigated optimization of the substituents on the aniline moiety (B-ring) (Table 3).

These results demonstrated a marked improvement in activity, as measured by binding affinity and functional antagonism, was possible by adding a second substituent in the 3-position of ring B. A chlorine atom in the 3-position proved optimal for affinity, whereas in the 2-position a methyl group or chlorine atom resulted in equal activity (Table 3).

Table 3. Initial exploration of substitution of the aniline moiety, B-ring

Compound	Х	Y	Binding pIC_{50}^{a}	FLIPR pK_i^a
3a	2-Me, 3-CF ₃	OMe	7.2 ± 0.2	6.4 ± 0.1
3b	2-Me, 3-Cl	OMe	8.2 ± 0.2	7.4 ± 0.2
3c	2-Me, 3-Cl	OEt	8.4 ± 0.3	7.3 ± 0.4
3d	2,3-diCl	OMe	8.1 ± 0.2	7.4 ± 0.2
3e	2,3-diCl	OEt	8.2 ± 0.1	7.5 ± 0.2

^a Values are means of at least three experiments.

Fixing the 2-methyl-3-chloro aniline as ring B, we explored a wider range of substituents on various positions of the C-ring (Table 4). Initial results showed that the alkoxy groups present in compounds 3a-e could be replaced by related electron donating groups such as the dimethylamino group present in analogue 4a. We also found that the 4-trifluoromethyl group, as in 4b, was an effective replacement for the 4-alkoxy group, thereby demonstrating that electron donating groups were not required for activity. Based on this result we investigated a range of halogenated C-ring analogues. Although the monofluorinated derivatives 4c-e were less active, the 2-chloro analogue 4f showed promising activity. Addition of a second chlorine atom retained activity, compounds 4h-i (Table 4).

Returning to the 2,3-dichloro aniline (B-ring), we sought to investigate potential replacements for the methyl group on the sulfonamide A-ring (Table 5). Replacement of the methyl group in **3d** by a chlorine atom, as

Table 4. SAR for substitution of the C-ring

Compound	Y	Binding pIC ₅₀ ^a	FLIPR pK _i ^a
4a	4-NMe ₂	7.9 ± 0.1	7.7 ± 0.4
4b	$4-CF_3$	7.3 ± 0.1	6.8 ± 0.2
4c	4-F	6.7 ± 0.1	6.3 ± 0.3
4d	2-F	6.3 ± 0.3	6.2 ± 0.4
4e	3-F	6.5 ± 0.2	6.3 ± 0.2
4f	2-Cl	7.1 ± 0.2	6.4 ± 0.1
4g	3-C1	6.8 ± 0.1	5.7 ± 0.2
4h	2,6-diCl	7.2 ± 0.2	6.3 ± 0.3
4i	2,4-diCl	7.2 ± 0.1	6.0 ± 0.3

Table 5. SAR for replacement of the 4-methyl group on the A-ring

Compound	Х	Y	Binding pIC ₅₀ ^a	FLIPR pK_i^a
3d	Me	OMe	8.1 ± 0.2	7.4 ± 0.2
5a	Cl	OMe	7.7 ± 0.1	7.2 ± 0.1^{b}
3e	Me	OEt	8.2 ± 0.1	7.5 ± 0.2
5b	CF_3	OEt	8.6 ± 0.1	8.2 ± 0.5

^a Values are means of at least three experiments.

^b Value is a mean of two experiments.

in **5a**, resulted in a moderate decrease in binding affinity but negligible change in activity in the functional assay. However, replacement of the methyl group in **3e** with a trifluoromethyl group, compound **5b**, led to a marked improvement in affinity in the binding assay and increased activity in the functional assay (Table 5).

Finally, in order to ascertain whether the methylene linker was optimal we investigated various isosteric and homologated linkers (Table 6). Replacement of the methylene group by an oxygen atom was poorly tolerated (**6a**) in the binding assay although this compound still retained activity in the functional assay (FLIPR). However, the amino replacements **6b–d** retained activity in both assays. Analogue **6d** again highlighted the beneficial effect of the 4-trifluoromethyl group on the A-ring. Finally, the homologated analogues **6e–g** also retained activity of the homologated analogues in the glycine sulfon-amide series where it was found that both benzyl and phenethyl amides were active (Table 6).¹²

Table 6. SAR for derivatives with alternative linker groups

Compound	Х	Y	L	Binding pIC ₅₀ ^a	FLIPR p <i>K</i> _i ^a
6a	Me	2-Et	0	<6	7.0 ± 0.4
6b	Me	2-Me, 3-Cl	NH	7.5 ± 0.3	7.1 ± 0.2
6c	Me	2,3-diCl	NH	7.4 ± 0.2	7.3 ± 0.1
6d	CF_3	2,3-diCl	NH	8.1 ± 0.0	7.2 ± 0.2
6e	Me	2-Et	CH_2O	7.6 ± 0.1	6.9 ± 0.1
6f	Me	2-Et	CH_2NH	6.3 ± 0.1	6.1 ± 0.2
6g	Me	2-Me, 3-Cl	CH_2NH	7.7 ± 0.1	7.1 ± 0.2

^a Values are means of at least three experiments.

^a Values are means of at least three experiments.

The synthesis of analogues was carried out as described in Schemes 1–4. All final compounds were characterized by LC/MS and ¹H NMR spectroscopy.

Reaction of an appropriately substituted aniline, 7, with a sulfonyl chloride, 8, gave the corresponding sulfonamides 9. Alkylation with ethyl bromoacetate gave esters 10. Condensation with hydrazine gave the hydrazides 11 which were converted directly to the 1,3,4-oxadiazoles $2-5^{16}$ by reaction with substituted phenyl acetic acids in neat phosphorus oxychloride under microwave conditions at 100 °C (Scheme 1).

The oxygen-linked derivative **6a** was prepared as described in Scheme 2. Reaction of 4-methoxyphenyl chloroformate, **12**, with *tert*-butyl carbazate followed by deprotection gave 13. Amide formation with glycine sulfonamide derivative 14 under standard conditions gave 15, which was dehydrated with Burgess reagent¹⁷ under microwave conditions to give 6a.

The amino-linked derivatives 6b-d were prepared as described in Scheme 3. Reaction of an appropriately substituted phenyl isocyanate derivative, 16, with hydrazine gave the amino urea derivative 17. Condensation of 17 with the glycine sulfonamide derivatives 14a in phosphorus oxychloride under microwave irradiation at 100 °C furnished the oxadiazoles 6b-d.

The homologated oxy and amino analogues **6e-g** were prepared as described in Scheme 4. Condensation of

Scheme 1. Reagents and condition: (a) DCM, pyridine; (b) NaH, DMF, ethyl bromoacetate; (c) hydrazine hydrate, heat or microwave; (d) phenylacetic acid derivative, POCl₃, μ-wave, 100 °C, 30 min.

Scheme 2. Reagents and conditions: (a) EtOH, 2 M NaOH; (b) BocNHNH₂, EtOAc, TEA, 0 °C; (c) TFA then sat. NaHCO₃; (d) EDAC, HOBt, *N*-ethylmorpholine, DMF; (e) Burgess reagent, THF, μ-wave, 130 °C, 15 min.

Scheme 3. Reagents and conditions: (a) EtOH, 2 M NaOH; (b) DCM, hydrazine hydrate, -60 °C to rt; (c) POCl₃, µ-wave, 100 °C, 20 min.

Scheme 4. Reagents and conditions: (a) 11, POCl₃, µ-wave, 100 °C, 20-40 min.

the required carboxylic acid derivative (18) with hydrazide 11 in neat phosphorus oxychloride under microwave irradiation at 100 °C yielded the desired oxadiazoles.

In conclusion, we have generated a novel series of 1,3,4-oxadiazole EP1 receptor antagonists by replacing the amide group in a previously described series by a biosteric oxadiazole. Optimization of this series revealed that a 2,3-disubstituted aniline gave higher affinity than the starting 2-ethyl aniline. The tosyl group was best replaced by a 4-trifluoromethylbenzenesulfonyl group which led to a significant increase in binding affinity. The optimal compound in terms of in vitro activity was derivative 5b, with a binding IC₅₀ of 2.5 nM (pIC₅₀ 8.6) and a functional K_i of 6.3 nM (FLIPR pK_i 8.2). Unfortunately the compounds described herein did not display sufficiently improved metabolic stability relative to the glycine sulfonamide series when assessed in rat and human liver microsomes in vitro.¹⁸

Acknowledgment

We thank Phil East for the metabolite identification.

References and notes

- (a) Coleman, R. A.; Smith, W. L.; Narumiya, S. *Pharmacol. Rev.* **1994**, *46*(2), 205; (b) Breyer, R. M.; Bagdassarian, C. K.; Myers, S. A.; Breyer, M. D. *Annu. Rev. Pharmacol. Toxicol.* **2001**, *41*, 661; (c) Narumiya, S.; Sugimoto, Y.; Ushikubi, F. *Physiol. Rev.* **1999**, *79*, 1193; (d) Coleman, R. A.; Kennedy, I.; Humphrey, P. P. A.; Bunce, K.; Lumley, P. In *Comprehensive Medicinal Chemistry*; Pergamon: Oxford, UK, 1990; Vol. 3, pp 643–714.
- Hall, A.; Atkinson, S.; Brown, S. H.; Chessell, I. P.; Chowdhury, A.; Clayton, N. M.; Coleman, T.; Giblin, G. M. P.; Gleave, R. J.; Hammond, B.; Healy, M. P.; Johnson, M. J.; Michel, A. D.; Naylor, A.; Novelli, R.; Skinner, L.; Spalding, D. J.; Tang, S. P. *Bioorg. Med. Chem. Lett.* 2006, *16*, 3657.
- Kawahara, H.; Sakamoto, T.; Takeda, S.; Onodera, H.; Imaki, J.; Ogawa, R. Anesth. Analg. 2001, 93, 1012.
- (a) Omote, K.; Kawamata, T.; Nakayama, Y.; Kawamata, M.; Hazama, K.; Namiki, A. *Anesth. Analg.* 2001, *92*, 233;
 (b) Omote, K.; Yamamoto, H.; Kawamata, T.; Nakayama, Y.; Namiki, A. *Anesth. Analg.* 2002, *95*, 1708.
- (a) Broten, T. P.; Nantel, F. J.; Metters, K. M.; Turner, M. WO2002/15902A1; (b) Schröder, A.; Newgreen, D.; Andersson, K.-E. J. Urol. 2004, 172, 1166.
- (a) Kawano, T.; Anrather, J.; Zhou, P.; Park, L.; Wang, G.; Frys, K. A.; Kunz, A.; Cho, S.; Orio, M.; Iadecola, C. *Nat. Med.* **2006**, *12*(2), 225; (b) Ahmad, A. S.; Saleem, S.; Ahmad, M.; Doré, S. *Toxicol. Sci.* **2006**, *89*(1), 265.

- Hall, A.; Bit, R. A.; Brown, S. H.; Chaignot, H. M.; Chessell, I. P.; Coleman, T.; Giblin, G. M. P.; Hurst, D. N.; Kilford, I. R.; Lewell, X. Q.; Michel, A. D.; Mohamed, S.; Naylor, A.; Novelli, R.; Skinner, L.; Spalding, D. J.; Tang, S. P.; Wilson, R. J. *Bioorg. Med. Chem. Lett.* 2006, 16, 2666.
- McKeown, S. C.; Hall, A.; Giblin, G. M. P.; Lorthioir, O.; Blunt, R.; Lewell, X. Q.; Wilson, R. J.; Brown, S. H.; Chowdhury, A.; Coleman, T.; Watson, S. P.; Chessell, I. P.; Pipe, A.; Clayton, N.; Goldsmith, P. *Bioorg. Med. Chem. Lett.* 2006, *16*, 4767.
- Giblin, G. M. P.; Bit, R. A.; Brown, S. H.; Chaignot, H. M.; Chessell, I. P.; Clayton, N. M.; Coleman, T.; Hall, A.; Hurst, D. N.; Michel, A. D.; Naylor, A.; Novelli, R.; Scoccitti, T.; Spalding, D. J.; Wilson, A. W.; Wilson, R. J. *Bioorg. Med. Chem. Lett.* 2007, 17, 385.
- (a) Hall, A.; Brown, S. H.; Chessell, I. P.; Chowdhury, A.; Clayton, N. M.; Coleman, T.; Giblin, G. M. P.; Hammond, B.; Healy, M. P.; Johnson, M. R.; Metcalf, A.; Michel, A. D.; Naylor, A.; Novelli, R.; Spalding, D. J.; Sweeting, J. *Bioorg. Med. Chem. Lett.* 2007, *17*, 732; (b) Hall, A.; Brown, S. H.; Chessell, I. P.; Chowdhury, A.; Clayton, N. M.; Coleman, T.; Giblin, G. M. P.; Hammond, B.; Healy, M. P.; Johnson, M. R.; Metcalf, A.; Michel, A. D.; Naylor, A.; Novelli, R.; Spalding, D. J.; Sweeting, J.; Winyard, L. *Bioorg. Med. Chem. Lett.* 2007, *17*, 916.
- Hall, A.; Atkinson, S.; Brown, S. H.; Chessell, I. P.; Chowdhury, A.; Giblin, G. M. P.; Goldsmith, P.; Healy, M. P.; Jandu, K. S.; Johnson, M. R.; Michel, A. D.;

Naylor, A.; Sweeting, J. A. Bioorg. Med. Chem. Lett. 2007, 17, 1200.

- McKeown, S. C.; Hall, A.; Blunt, R.; Brown, S. H.; Chessell, I. P.; Chowdhury, A.; Giblin, G. M. P.; Healy, M. P.; Johnson, M. R.; Michel, A. D.; Naylor, A.; Lewell, X.; Roman, S.; Watson, S. P.; Winchester, W. J.; Wilson, R. J. *Bioorg. Med. Chem. Lett.* 2007, 17, 1750.
- Abraham, M. H.; Duce, P. P.; Prior, D. V.; Barratt, D. G.; Morris, J. J.; Taylor, P. Y. J. Chem. Soc., Perkin Trans. 2 1989, 1355.
- The replacement of an ester by a 1,2,4-oxadiazole has been described in the literature (a) Tully, W. R.; Gardner, C. R.; Gillespie, R. J.; Westwood, R. J. Med. Chem. 1991, 34, 2060; (b) Andersen, K. E.; Jørgensen, A. S.; Bræstrup, C. Eur. J. Med. Chem. 1994, 29, 393; (c) Andersen, K. E.; Lundtm, B. F.; Jørgensen, A. S.; Bræstrup, C. Eur. J. Med. Chem. 1996, 31, 417.
- McMartn, C.; Bohacek, R.S. J. Computer-Aided Molecular Design, 1997, 11, 333. Overlay conducted using FLO+release date February 2003.
- 16. Analytical data for compound **3c**: ¹H NMR $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.42 (3H, t), 2.13 (3H, s), 2.45 (3H, s), 3.92–4.15 (4H, m), 4.74–4.98 (2H, m), 6.43 (1H, d), 6.77–6.92 (3H, m), 7.02–7.17 (2H, m), 7.20–7.40 (3H, m), 7.48–7.60 (2H, m); *m*/*z* [M+H]⁺ 512 and 514.
- (a) Burgess, E. M.; Penton, H. R.; Taylor, E. A. J. Org. Chem. 1973, 38, 26; (b) Burgess, E. M.; Penton, H. R., Jr.; Taylor, E. A.; Williams, W. M. Org. Synth. 1977, 56, 40.
- 18. Clarke, S. E.; Jeffrey, P. Xenobiotica 2001, 31, 591.