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Abstract: The monohydrocyanation of symmetrical azines to syn-
thesize α-hydrazinonitriles using potassium hexacyanoferrate(II) as
cyanide source and benzoyl chloride as a promoter under catalyst-
free conditions is described. The advantages of this protocol are the
environmentally friendly cyanide source, high yield, and simple
work-up procedure.
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α-Hydrazinonitriles are important organic intermediates
that can be easily transformed into α-hydrazino acids,1

and further into α-hydrazino peptides, α-amino acids, and
even nitrogen-containing heterocycles.2 Although α-hy-
drazinonitriles have been synthesized by substitution of
cyanohydrin with phenylhydrazine in ethanol3 and reduc-
tion of N-(cyanomethyl)-N-phenylnitrous amide with zinc
in acetic acid,4 a more general route is the hydrocyanation
of substances containing the C=N–N fragment, such as
N,N-dialkylhydrazones5 and N-acylhydrazones.6 Howev-
er, these hydrocyanation reactions usually use HCN7 or
KCN8 as cyanide sources. Clearly, these compounds are
highly toxic, unfriendly and unsafe for the environment.
Recently, the use of TMSCN as a cyanide source for hy-
drocyanation reactions has been investigated because of
the lower toxicity of this reagent compared to the alterna-
tives.6 However, TMSCN is sensitive to moisture and can
easily liberate highly toxic hydrogen cyanide. Therefore,
there remains a need to develop an environmentally
friendly cyanide source for the synthesis of α-hydrazino-
nitriles.

Potassium hexacyanoferrate(II), K4[Fe(CN)6], is mainly
used as a carburizing agent in the iron and steel industry,
however, it is also used in the food industry for metal pre-
cipitation and as an anticoagulant for table salt (NaCl).
K4[Fe(CN)6] is a byproduct of the coal chemical industry
and is commercially available on a ton scale. Furthermore,
it is even cheaper than KCN. Recently, K4[Fe(CN)6] has
been used as a cyanide source in substitution reactions to
synthesize benzonitriles,9 aroyl cyanides,10 benzyl cya-
nides,11 cinnamonitriles,12 dihaloacrylonitriles,13 and cya-
no-substituted heterocycles.14 Our recent research
interests focused on the cyanation of unsaturated com-

pounds by nucleophilic addition reactions using
K4[Fe(CN)6] as an environmentally friendly cyanide
source, which included the cyanation of aldehydes and ke-
tones to cyanohydrins,15 the cyanation of aldimines, keti-
mines, and sulfonylimines to α-aminonitriles,16 and the
cyanation of α,β-unsaturated ketones and esters to the cor-
responding β-cyano compounds.17 As an extension of
such research, in this work, we report the selective mono-
hydrocyanation of substrates including the C=N–N=C
fragment, azines, to synthesize α-hydrazinonitriles by us-
ing K4[Fe(CN)6] as an environmentally friendly cyanide
source under catalyst-free conditions.

Initially, the hydrocyanation of azines was attempted by
using benzalazine 1a (R1 = Ph, R2 = H; Scheme 1)18 as
substrate and K4[Fe(CN)6] as an environmentally friendly
cyanide source. The reaction was conducted under differ-
ent conditions including the use of Lewis acids, Lewis
bases, and organometallic compounds as catalysts or cat-
alyst-free conditions at different temperature in various
solvents. Unfortunately, no products were observed for
this reaction because of the stability of K4[Fe(CN)6].
However, in subsequent research, it was found that benzo-
yl chloride could react with K4[Fe(CN)6] to liberate CN–

and form benzoyl cyanide as an intermediate, which sub-
sequently reacted with 1a to give monohydrocyanation
product, α-hydrazinonitrile, in high yield. It was found
that for 1 mol of 1a, only 0.2 equiv of K4[Fe(CN)6] was
required, which indicated that all six CN– groups in
K4[Fe(CN)6] could be readily utilized in this reaction.
However, the dihydrocyanation product was not observed
under the studied conditions including the use of an ex-
cess amount of K4[Fe(CN)6], prolonged reaction time, and
elevated reaction temperature. 

Scheme 1  The monohydrocyanation of symmetrical azines using
K4[Fe(CN)6] as an environmentally friendly cyanide source

It was also confirmed that the solvent played a key role in
the reaction (Table 1). It was found that no α-hydrazino-
nitriles were obtained in solvents such as N,N-dimethyl-
formamide, dimethyl sulfoxide, or toluene (Table 1,
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entries 1–3). However, the reaction in methanol, ethanol,
acetonitrile or tetrahydrofuran afforded the desired prod-
uct in moderate to high yield (Table 1, entries 4–7), with
the best result being obtained in methanol (Table 1, entry
4).

Based on the above findings, a series of symmetrical
azines were employed in the monohydrocyanation using
K4[Fe(CN)6] in MeOH as an environmentally friendly cy-
anide source and benzoyl chloride as a promoter under
catalyst-free conditions (Table 2).19 It was found that sym-
metrical azines with electron-donating groups on the aro-
matic rings of R1 gave the products in high yield (Table 2,
entries 2–5). Whereas, symmetrical azines with electron-

withdrawing groups on the aromatic rings of R1 gave
slightly lower yield and required longer reaction time (Ta-
ble 2, entries 6–10). The substituents in the ortho- and
para-position of the aromatic rings had no clear effect on
the product yield. For symmetrical azines with R2 = Me,
the reactions slowed down significantly because of the
steric hindrance imparted by the methyl group, and the
yield was also lower than their analogues with R2 = H (Ta-
ble 2, entries 11 and 12).

A symmetrical azine with an aliphatic ring, 5,6-dihydro-
4H-1,2-diazepine (1m), reacted more rapidly and afforded
the monohydrocyanation product in 93% yield (Scheme
2). 

The monohydrocyanation of unsymmetrical azines
(Scheme 3), such as azine 1n (R = 2-Cl) and 1o (R = 4-Cl),
was also investigated under similar conditions. However,
mixtures of two kinds of monohydrocyanation products
were obtained in almost 1:1 ratio for each substrate in
79% (for 2n1 and 2n2) and 83% (for 2o1 and 2o2) overall
yield. This indicated that R groups on the aromatic rings
had no clear effect on the monohydrocyanation.

Table 1  Effect of Solvent on the Yield of Monohydrocyanation of 1a with K4[Fe(CN)6] as Cyanide Sourcea

Entry Solvent Time (h) Yield (%)b

1 DMF 16 0

2 DMSO 16 0

3 toluene 16 0

4 MeOH 6 85

5 EtOH 16 73

6 THF 18 50

7 MeCN 16 60

a Reaction conditions: 1a (1 mmol), K4[Fe(CN)6] (0.2 mmol), benzoyl chloride (1.2 mmol), solvent (20 mL).
b Isolated yield.
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Scheme 3  The monohydrocyanation of unsymmetrical azines using K4[Fe(CN)6] as an environmentally friendly cyanide source
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Table 2 Monohydrocyanation of Symmetrical Azines with K4[Fe(CN)6] as Cyanide Sourcea

Entry R1 R2 Product Time (h) Yield (%)b Mp (°C)

1 Ph H

2a

6 85 100–102

2 2-MeC6H4 H

2b

4 86 108–110

3 4-MeC6H4 H

2c

6 87 104–106

4 4-t-BuC6H4 H

2d

8 80 98–100

5 4-MeOC6H4 H

2e

10 85 93–95

6 2-ClC6H4 H

2f

16 76 112–114

7 4-ClC6H4 H

2g

18 77 103–105

8 4-F3CC6H4 H

2h

16 73 77–79
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A plausible mechanism for the monohydrocyanation of
azines using K4[Fe(CN)6] as a cyanide source is shown in
Scheme 4. First, K4[Fe(CN)6] reacts with benzoyl chlo-
ride to form benzoyl cyanide as an intermediate, which
was confirmed by its isolation and identification.15a Ben-
zoyl cyanide is attacked by methanol to yield nucleophilic
addition intermediate A. Intermediate A undergoes the
loss of methyl benzoate to produce hydrogen cyanide in
situ. Nucleophilic addition of hydrogen cyanide to azines
1 then yields α-hydrazinonitriles 2 as final products.

In summary, an environmentally friendly method has
been developed for the monohydrocyanation of symmet-
rical azines to synthesize α-hydrazinonitriles using
K4[Fe(CN)]6 as a cyanide source and benzoyl chloride as
a promoter. The advantages for this protocol are the use of
nontoxic, inexpensive cyanide source, simple work-up
procedures, and catalyst-free conditions. 
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9 2-FC6H4 H

2i

19 66 42–44

10 4-FC6H4 H

2j

20 70 139–141

11 Ph Me

2k

24 60 110–112

12 Ph Me

2l

24 63 140–142

a Reaction conditions: azine (1 mmol), K4[Fe(CN)6] (0.2 mmol), benzoyl chloride (1.2 mmol), MeOH (20 mL).
b Isolated yield.

Table 2 Monohydrocyanation of Symmetrical Azines with K4[Fe(CN)6] as Cyanide Sourcea (continued)
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Scheme 4  Proposed mechanism for monohydrocyanation of azines
using K4[Fe(CN)6] as a cyanide source
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