Straightforward Diastereoselective Synthesis of P-Chirogenic (1*R*)-1,8,8-Trimethyl-2,4diaza-3-phosphabicyclo[3.2.1]octane 3-Oxides: Application as Chiral NMR Solvating Agents

Magdalena Uzarewicz-Baig and René Wilhelm

Department of Chemistry, University of Paderborn, Paderborn, 33098, Germany

Received 29 September 2015; revised 2 December 2015; accepted 15 December 2015

ABSTRACT: A direct route to enantio- and diastereopure nitrogen-substituted phosphine oxides has been developed. The desired P-stereogenic compounds were obtained in good yields and high purity. The starting point of the synthesis was (+)-camphor, which is a readily available compound from the chiral pool. The new nitrogen-substituted phosphine oxides could be transformed from their pentavalent state to their trivalent form with N,O-bis(trimethylsilyl)acetamide, which makes them potential chiral ligands. It was possible to apply these compounds as chiral-solvating agents in chiral recognition experiments with a racemic alcohol and acid. © 2016 Wiley Periodicals, Inc. Heteroatom Chem. 27:121-134, 2016; View this article online at wileyonlinelibrary.com. DOI 10.1002/hc.21309

INTRODUCTION

Organophosphorus compounds are an important part of many research areas such as agrochemistry, medicinal chemistry, biochemistry, and organic synthesis [1]. The application of enantiopure

© 2016 Wiley Periodicals, Inc.

compounds is especially interesting for the synthesis of biologically active compounds and for the preparation of reagents [2]. Furthermore, enantiopure phosphorus compounds have been applied as organocatalysts [3] and largely as ligands in metalcatalyzed asymmetric reactions [4].

A special challenge is the synthesis of chiral phosphorus compounds incorporating a chirogenic phosphorus atom. Examples of different compounds **1–6** are shown in Fig. 1. For the synthesis of these compounds, different strategies are possible. Next to a standard resolution [5], kinetic and dynamic resolution [6] can be applied. Furthermore, asymmetric catalytic reactions can directly form a new P-stereogenic center [7]. Another alternative is to start the synthesis of these compounds with a starting material from the chiral pool. In the latter case, an asymmetric phosphorus center will lead to the construction of enantiopure diastereomers [8]. An example is the menthyl hydrogen phosphinate 6, which can also be further transformed to other chiral phosphorus compounds [9].

Especially structures containing phosphorusheteroatom bonds [10], which can be abbreviated as SPO (secondary phosphine oxides) or according to the suggestion of Ackermann HASPO (heteroatomsubstituted secondary phosphine oxides) like **4**, have recently received much attention [11]. The first heterocyclic compounds having both phosphorus and nitrogen atoms were prepared by Liebig and Wöhler

Correspondence to: René Wilhelm; e-mail: rene.wilhelm@ uni-paderborn.de.

Supporting Information is available in the online issue at www.wileyonlinelibrary.com.

FIGURE 1 Examples of chiral organophosphorus compounds.

[12]. Enantiopure or enantioenriched heterocycles containing a trivalent or pentavalent P-stereogenic phosphorus atom can be easily generated by cyclization of diamines, amino alcohols, or diols around phosphorus moieties. Phosphorus-heteroatom heterocycles are extremely attractive compounds because in contrast to the classic phosphines they presented marked stability toward moisture and air and can be used as organocatalysts or as ligands in transition metal transformations [13].

One relevant class of P-stereogenic diaminophosphine oxides was discovered by Hamada and co-workers. They synthesized a new class of P-chirogenic phosphine oxides based on a chiral asymmetric diamine framework, called Pstereogenic diaminophosphine oxides: DIAPHOXs **5** [14]. These chiral ligands with a stereogenic center on a phosphorus atom [15] have been prepared from (*S*)-aspartic acid [16].

Diaminophosphine oxides have been applied as preligands in cross-coupling reactions [17] and Ni-catalyzed asymmetric hydrocarbamoylations of alkenes [18]. In addition, diaminophosphine oxides and aminophosphonic acids analogues have a high potential as biological active compounds [19].

Here, we present the straightforward synthesis of new enantiopure C_1 symmetric nitrogensubstituted SPOs with a P-stereogenic center via a diastereoselective route from camphor. The chirogenic phosphorus atom is embedded in a rigid bicyclic system being part of a six- and seven-membered ring.

RESULTS AND DISCUSSION

To synthesize the desired chiral nitrogen-substituted phosphine oxides, the starting diamines **7**–**15** were prepared from (+)-*cis*-(1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine (**25**). The latter can be synthesized according to the literature [20]

SCHEME 1 Synthesis of enantiopure camphor-based HAS-POs 16–24.

from (+)-camphoric acid, which was purchased from commercial sources. The symmetrical substituted diamines **7** and **8** were prepared according to a literature procedure [21]. Thereafter, a series of enantiopure secondary diamines **26** with two differently substituted nitrogen atoms were synthesized via an alkylation of monoarylated diamines [22] with mesitylmethylene chloride in the presence of triethylamine in acetonitrile under reflux (Scheme 1). The corresponding diamines **9–15** were obtained in yields between 50% and 70% as shown in Table 1. The use of the less sterically demanding benzyl bromide and chloride as electrophile with **9–15** in the reaction resulted in a mixture of products that could not be separated.

HASPOs are accessible from diamines [2a,13c, 23]. The new desired nitrogen-substituted SPOs were prepared in two steps from the diamines **7–15**, by treating these secondary diamines with PCl₃ and Et₃N at -60° C (Scheme 1). The temperature was slowly raised to room temperature in toluene. After filtration through MgSO₄, the heterocyclic chloride derivative was obtained. In the second step, H₂O and Et₃N were added to the chloride derivative at -60° C. The temperature was slowly raised to room temperature in toluene. After filtration through MgSO₄, the desired product was isolated. The presence of Et₃N as a base was required due to the formation of HCl, which can decompose the desired product [13h].

The products **16–24** were characterized by mass spectrometry and multinuclear NMR spectroscopy. ³¹P NMR chemical shifts were, respectively, in the

Entry	Diamine	Product ^a	³¹ Ρ, δ (ppm)
1	Ph NH NH	Ph N-P O Ph	10.1
	Ph 7 [21]	16 , 94 %	
2	NH NH Mes	N H N P O Mes	9.6
	8 [21]	17, 73 %	
3	NH NH	N H N P O	3.9
	Mes 9, 64 %	Mes 18, 89 %	
4	NH OMe		3.9
	Mes 10, 71 %	Mes 19, 97 %	
5	Ph NH NH	Ph N H N Pr O	3.9
	Mes 11, 62 %	`Mes 20, 88 %	
6	Mes NH NH	Mes N H N-P	1.9
	Mes 12, 61 %	Mes 21a, 36 %	
7	Mes NH NH	Mes N O N-P	-4.2
	Mes 12, 61 %	Mes 21b, 16 %	
8	K NH	N-P O	4.9
	Mes 13, 54 %	Mes 22, 86 %	
			(Continued)

TABLE 1Synthesis of Diamines and SPOs

 TABLE 1
 Continued

^aAbsolute configuration assigned by NOESY.

same range as those reported for related compounds [13c,13d]. The results with selected ³¹P NMR data are shown in Table 1.

From Table 1, it is possible to conclude that excellent yields can be obtained for the synthesis of the secondary phosphine oxides. The products were obtained as one diastereomer. It is remarkable that the reactions carried out on a larger scale gave cleaner desired products, which did not need any purification. Only one product obtained from diamine 12 was achieved as two diastereomers 21a (Table 1, entry 6) and 21b (Table 1, entry 7), which were separated by column chromatography. Figure 2 shows a ³¹P NMR of the diastereomers prior to separation and of **21b** after isolation. In general, ³¹P NMR resonances for the compounds were in the range of $\delta =$ 1.9–10 ppm. **21b** appeared at $\delta = -4.2$ ppm. The reason of the formation of two diastereomers from **12** can be due to the sterically demanding mesityl substituent present in the diamine. In all other derivatives, one ortho-position incorporates a small hydrogen atom. When a rotation around the N-arly bond is possible, the sterical hindrance induced by these aryl substituents can be smaller than that of a mesityl substituent.

The absolute configuration of the new Pstereogenic centers in the obtained products was established by NOESY. It can be assumed from the spectra that substrates containing the same substituent on the nitrogen atoms have *S* configuration on the phosphorus atom whereas ligands with two different substituents on the nitrogen atoms have *R* configuration on the phosphorus atom.

The ¹H NMR spectra showed that the proton attached to the phosphorus appeared as a characteristic doublet with a coupling $J_{P-H} = 617.0-649.9$ Hz. Additionally, NOESY studies revealed that the P–H

FIGURE 2 ³¹P NMR of 21a and 21b before separation and of 21b after separation.

bond in the ligands is on the same side as the Me_2C bridge. An example is given in Fig. 3 for compound **16**.

The exception is diastereomer **21b**, where the P– H bond is on the other side as the Me_2C bridge. The spectra are shown in Fig. 4.

Since just very few six- and seven-membered ring diaminophosphine oxides are known and for instance even seven-membered enantiopure binaphthyl-derived analogues are unknown, it was decided to study the behavior of the newly prepared compounds 16-24 in more detail. The pentavalent phosphorus species were activated in situ by N,O-bis(trimethylsilyl)acetamide (BSA) to induce P(V)-P(III) tautomerization to afford trivalent phosphorus compounds, trapped as TMS adducts (Scheme 2), which can be used as ligands in metal-catalyzed reactions. The generation of trivalent phosphorus compounds was monitored by ³¹P NMR spectroscopy. The principal investigation was performed with symmetric secondary substituted compound 16 and the addition of 4 equiv BSA to

toluene-D₈. The experiment was controlled at different times; however, the best result was obtained after 24 h. The reaction was much slower compared to five-membered ring diaminophosphine oxides like DIAPHOX **5** [14]. The ³¹P NMR showed that pentavalent ligand **16** (chemical shift: 8.1 ppm, toluene-D₈) reacted with BSA to provide the formation of a trivalent phosphorus species (chemical shift: 117.4 ppm, toluene-D₈) (Fig. 5).

Further investigation revealed that when asymmetric compound **20** with a chemical shift of 2.4 ppm reacted with BSA in toluene- D_8 , the generation of the trivalent phosphorus species, with a chemical shifted 104.9 ppm, could be performed faster than with compound **16** (Fig. 6).

A current research field is to develop efficient methods for the easy and fast measurement of the enantiomeric excess of chiral compounds [24]. The application of chiral-solvating reagents for NMR spectroscopy is a very useful method to achieve determination of the enantiomeric excesses of chiral organic molecules. The advantage of this convenient

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 F2 Chemical Shift (ppm)

FIGURE 4 ¹H NMR and NOESY of diastereomer 21b.

method is an easy performance without using any chiral derivatization of the analyte [25]. Many different kinds of chiral shift reagents, such as crown ethers, cyclodextrins, porphyrins, macrocycles, and others have been investigated [26].

SCHEME 2 BSA-induced P(V)-P(III) transformation.

Organophosphorus compounds derived from chiral C₂-symmetric diamines have been used as chiral-derivatizating reagents for NMR studies [27]. However, the potential of chiral HASPOs as chiralsolvating agents has not been investigated so far. Hence, the synthesized new compounds 16 and 18 were evaluated as chiral-solvating agents in dry toluene. The chiral shift experiments were carried out by measuring the ¹H NMR and ¹⁹F NMR spectra of a mixture of α -(trifluoromethyl)benzyl alcohol and 16 or 18, respectively, in a ratio of 1:1 in toluene at room temperature. While the symmetric substituted compound 16 showed no shift difference of the CF₃ group in the ¹⁹F NMR, compound 18 resulted in a shift difference of 7 Hz (Fig. 7). The interaction of the two compounds is caused by the formation of a hydrogen bond of the alcohol with the oxygen atom of the phosphine oxide.

The ¹H NMR spectra were also recorded for the mixtures mentioned above. Compound **18** interacted with the methine proton of α -trifluoromethyl benzyl alcohol and showed a shift difference of 7 Hz, whereas no shift difference was observed with **16** (Fig. 8).

Furthermore, mandelic acid was investigated with **16** and **18** and the signal of the proton at the asymmetric center showed a shift difference of 1 Hz with **16** and 6 Hz with **18** (Fig. 9).

CONCLUSION

A new class of chiral HASPOs was prepared from inexpensive camphoric acid, by treating the secondary diamine with different substituents with PCl₃ and Et₃N, followed by H₂O which provided the desired compounds in pure diastereomeric and enantiomeric form. Preliminary experiments indicated that trivalent phosphorus compounds are formed in the presence of BSA. This is beneficial for their application as ligands in metal-catalyzed asymmetric transformations. Furthermore, the new compounds could also be of interest as chiral-starting material for further transformations like a hydrophosphorylation to prepare new P,C-stereogenic tertiary

FIGURE 5 ³¹P NMR of 16 with BSA after 24 h.

FIGURE 6 ³¹P NMR of 20 with BSA after 24 h.

 α -hydroxyl phosphinates [28]. Finally, it was possible to show that the new compounds **16** and **18** can be applied as chiral-solvating agents. The phosphorus compounds proved to be versatile chiral-discriminating agents for different types of racemic compounds such as alcohols and acids.

EXPERIMENTAL

General

All reactions were carried out using Schlenk line techniques. All reagents which are not described below were purchased from commercial sources. Reactions were monitored by TLC. Flash column chromatography was performed on Silica gel 60 (230–400 mesh). Nuclear magnetic resonance data were recorded on a Bruker Advance 500 (¹H NMR: 500 MHz, ¹³C NMR: 126 MHz, ¹⁵N NMR: 51 MHz) and Bruker Advance 300 (³¹P NMR: 202 MHz, ¹⁹F NMR: 125 MHz) spectrometers. NMR chemical shifts δ are reported in parts per million (ppm) and are referenced to the residual solvent signal as the internal standard. The coupling constants *J* are given in hertz (Hz). NMR signals were assigned via COSY,

FIGURE 7 ¹⁹F NMR of α -(trifluoromethyl)benzyl alcohol in the presence of **16** and **18**.

HSQC, and HMBC. Melting points were taken on a Dr. Tottoli apparatus and are uncorrected. Infrared IR data were recorded on a FT-IR spectrometer Vertex from Bruker. Mass spectra were recorded with a Hewlett Packard 5989B at 70 eV. Analytical data are given as relative mass (m/z), and the brackets indicate the intensity in percent (%) related to the basic peak. High-resolution mass spectra were recorded on a Waters Quadrupole-ToF Synapt 2G. Optical rotations were measured using a 1-dm path length

FIGURE 8 ¹H NMR of α -(trifluoromethyl)benzyl alcohol in the presence of **16** and **18**.

(*c* is given as g/100 mL) on a Perkin-Elmer 241 MC polarimeter in the reported solvent. (+)-*cis*-(1R,3S)-1,2,2-Trimethylcyclopentane-1,3-diamine (**25**) was synthesized according to the literature [20] from (+)-camphoric acid, which was purchased from commercial sources. Diamines **7** and **8** [21] and monoarylated diamines [22] were prepared according to the literature.

General Procedure for the Alkylation of Monoarylated Diamines **26** *by Mesitylmethyl Chloride*

To the stirred mixture of monoarylated diamine **26** (1 equiv) and triethylamine (1.2 equiv) in acetonitrile at room temperature, mesitylmethyl chloride (1.1 equiv) was added. The resulting solution was refluxed overnight. After refluxing, the reaction mixture was cooled down and filtered and the filtrate was evaporated under reduced pressure.

The crude residue was purified by flash column chromatography.

(1R,3S)-1,2,2-Trimethyl-N¹-(2,4,6-trimethylbenzyl)- N^3 -(o-tolyl)-1,3-cyclopentanediamine (9). Prepared from monoarylated diamine (0.30 g, 1.29 mmol), triethylamine (0.22 mL, 1.58 mmol), and 2,4,6-trimethylbenzyl chloride (0.24 g, 1.42 mmol) in acetonitrile (10 mL). The crude product was purified via column chromatography (CH₂Cl₂/MeOH, 95:5), and the secondary diamine 9 was obtained as colorless oil (0.30 g, 0.82 mmol, 64%). ¹H NMR (500 MHz, CDCl₃) δ = 7.18 – 7.14 (m, 1H, H-5', o-tolyl), 7.06 (dd, J = 7.2, 0.6 Hz, 1H, H-6'), 6.96 (s, 2H, *H*-3", *H*-5", mesityl), 6.69 (d, *J* = 7.9 Hz, 1H, H-3'), 6.65 (td, J = 7.3, 1.0 Hz, 1H, H-4'), 4.97 (s, 1H, *H*-N1), 3.86 and 3.74 (two d, *J* = 10.7 Hz, 2H, NCH2, H-1^{'''}), 3.82–3.77 (m, 1H, H-3), 2.46 (s, 6H, 2^{''}-CH₃, 6"-CH₃), 2.39 (s, 3H, 4"-CH₃), 2.28–2.18 (m, 2H, H-4), 1.90 (s, 3H, 2'-CH₃), 1.80–1.71 (m, 2H, H-5), 1.36 (s, 3H, H-8), 1.14 and 1.02 (two s, 6H, H-6, H-7)

ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 146.6 (*C*-1' in *o*-tolyl), 136.8 (*C*-2", *C*-6" in mesityl), 136.4 (*C*-4"), 134.1 (*C*-1"), 130.2 (*C*-6'), 129.2 (*C*-3", *C*-5"), 126.9 (*C*-5'), 122.2 (*C*-2'), 115.6 (*C*-4'), 109.5 (*C*-3'), 65.5 (*C*-1), 62.1 (*C*-3), 48.8 (*C*-2), 40.2 (*C*-1"" in NHCH₂), 32.5 (*C*-4), 30.6 (*C*-5), 25.9 (*C*-6), 21.0 (4"-*C*H₃), 19.6 (2"-*C*H₃, 6"-*C*H₃), 19.0 (*C*-8), 17.5 (*C*-2'), 17.0 (*C*-7) ppm. ¹⁵N NMR (51 MHz, CDCl₃) δ = 83.8 (1N, *N*³), 53.5 (1N, *N*¹). IR (ATR) ν = 3360, 2958, 2914, 2865, 1601, 1576, 1507, 1477, 1448, 1384, 1370, 1316, 1257, 1217, 1158, 1070, 1051, 850, 742, 713 cm⁻¹. MS (ESI, + 3 kV): *m*/z (%) = 365 ([M + H]⁺, 100%). HRMS (ESI): Calcd. for C₂₅H₃₇N₂: 365.2956, found: 365.2957. [α]²⁰_D = +24 (*c* = 0.5, CH₂Cl₂).

(1R,3S)-N³-(2-Methoxyphenyl)-1,2,2-trimethyl- N^{1} -(2,4,6-trimethylbenzyl)-1,3-cyclopentanediamine (10). Prepared from monoarylated diamine (0.30 mg, 1.21 mmol), triethylamine (0.20 mL, 1.45 mmol, 1.2 equiv) and 2,4,6-trimethylbenzyl chloride (0.22 g, 1.33 mmol) in acetonitrile (10 mL). The crude product was purified via column chromatography $(CH_2Cl_2/MeOH, 95:5)$, and the secondary diamine 10 was obtained as yellow oil (0.32 g, 0.85 mmol, 71%). ¹H NMR (500 MHz, CDCl₃) $\delta = 6.95$ (s, 2H, H-3", H-5"), 6.91 - 6.87 (m, 1H, H-5'), 6.77 (dd, J = 7.9, 1.3 Hz, 1H, H-6'), 6.69 (dd, J = 8.0, 1.2Hz, 1H, H-3'), 6.63 (td, J = 7.7, 1.5 Hz, 1H, H-4'), 3.84 (d, J = 10.6 Hz, 1H, H-1^{'''}), 3.76 (dd, J = 8.4, 4.5 Hz, 1H, H-3), 3.72 (s, 3H, 2"-OCH₃), 3.70 (s, 1H, H-1^{'''}) 2.46 (s, 6H, 2^{''}-CH₃, 6^{''}-CH₃), 2.36 (s, 3H, 4''-CH₃), 2.20 – 2.11 (m, 2H, H-4), 1.76 – 1.64 (m, 2H, H-5), 1.33 (s, 3H, H-8), 1.09 (s, 3H, H-6), 0.97 (s, 3H, *H*-7) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 146.9 (C-2'), 138.8 (C-1'), 137.2 (C-2", C-6"), 136.3 (C-4"), 134.3 (C-1"), 129.0 (C-3", C-5"), 121.2 (C-5'), 115.1 (C-4'), 109.5 (C-6', C-3'), 65.0 (C-1), 61.9 (C-3), 55.2 (2'-OCH₃), 48.6 (C-2), 40.5 (C-1'''), 32.8 (C-4), 30.3 (C-5), 25.5 (C-6), 21.0 (4"-CH₃), 20.2 (C-8), 19.5 (2"-CH₃), 19.4 (6"-CH₃), 17.0 (C-7) ppm. ¹⁵N NMR $(51 \text{ MHz}, \text{CDCl}_3) \delta = 74.1 \text{ (bs, 1N, } N^1\text{), } 53.5 \text{ (bs, 1N, } N^1\text{), } 53.5 \text{ (bs, 1N, } N^1\text{), } 53.5 \text{ (bs, 1N, } N^1\text{), } S1.5 \text{ (bs, 1N$ N^3) ppm. IR (ATR) $\nu = 3424, 2958, 2865, 1596, 1517,$ 1453, 1370, 1336, 1252, 1223, 1174, 1110, 1027, 850, 732 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 381 ([M + H^+ , 100%). HRMS (ESI): Calcd. for C₂₅H₃₇N₂O: 381.2913, found: 381.2906. $[\alpha]^{20}_{D} = +12$ (c = 0.49, CH_2Cl_2).

(1R,3S)-1,2,2-Trimethyl-N¹-(2,4,6-

trimethylbenzyl)-N³-phenyl-1,3-cyclopentanediamine (**11**). Prepared from monoarylated diamine (0.30 g, 1.37 mmol), triethylamine (0.23 mL, 1.65 mmol) and 2,4,6-trimethylbenzyl chloride (0.26 g, 1.51 mmol)

in acetonitrile (10 mL). The crude product was purified via column chromatography $(CH_2Cl_2/MeOH, 95:5)$ and the secondary diamine 11 was obtained as yellow oil (0.30 g, 0.85 mmol, 62%). ¹H NMR (500 MHz, CDCl₃) $\delta = 7.27 - 7.23$ (m, 2H, H-3', H-5'), 7.03 (s, 2H, H-3", H- 5"), 6.75 - 6.71 (m, 1H, H-4'), 6.64 (dd, J = 8.6, 0.9 Hz, 2H, H-2', H-6'), 3.88 (d, J = 10.6 Hz, 1H, H-1^{'''}), 3.78 – 3.74 (m, 2H, H-1^{'''}, H-3), 2.52 (s, 6H, 2^{''}-CH₃, 6^{''}-CH₃), 2.43 (s, 3H, 4''-CH₃), 2.30 – 2.21 (m, 2H, H-4), 1.81 – 1.72 (m, 2H, H-5), 1.38 (s, 3H, H-8), 1.14 (s, 3H, H-6), 1.05 (s, 3H, *H*-7) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 148.7 (C-1'), 137.1 (2'-CH₃, 6"-CH₃'), 136.6 (C- 1"), 134.1 (C-4"), 129.3 (C-3", C-5"), 129.2 (C-3', C-5'), 116.2 (C-4'), 113.0 (C-2', C-6'), 65.5 (C-1), 62.7 (C-3), 48.7 (C-2), 40.6 (C-1'"), 32.3 (C-4), 30.1 (C-5), 26.1 (*C*- 6), 21.1 (4"-*C*H₃), 19.6 (2"-*C*H₃, 6"-*C*H₃), 19.4 (*C*-8), 17.1 (*C*-7) ppm. 15 N NMR (51 MHz, CDCl₃) δ = 53.46 (s, 1N, N^3) ppm. MS (ESI, +3 kV): m/z (%) = 351 ([M+H]⁺, 100%). HRMS (ESI): Calcd. for $C_{24}H_{35}N_2$: 351.2808, found: 351.2800. $[\alpha]^{20}_D = +71$ $(c = 0.5, CH_2Cl_2).$

 $(1R,3S)-N^{3}-Mesityl-1,2,2-trimethyl-N^{1}-(2,4,6-tri$ methylbenzyl)-1,3-cyclopentanediamine (12). Prepared from monoarylated diamine (0.30 g, 1.15 mmol), triethylamine (0.19 mL, 1.38 mmol) and 2,4,6-trimethylbenzyl chloride (0.21 g, 1.27 mmol) in acetonitrile (10 mL). The crude product was purified via column chromatography (CH₂Cl₂/MeOH, 95:5), and the secondary diamine 12 was obtained as colorless oil (0.28 g, 0.11 mmol, 61%). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 6.94 \text{ (s, 2H, } H-3'', H-5''), 6.84$ (s, 2H, H-3', H-5'), 3.89 (d, J = 10.9 Hz, 1H, H-1'''), 3.75 (d, J = 10.9 Hz, 1H, H-1^{'''}), 3.58 (dd, J = 8.1, 6.3 Hz, 1H, H-3), 2.48 (s, 6H, 2"-CH₃, 6"-CH₃), 2.36 (s, 3H, 4"-CH₃), 2.29 (s, 3H, 4'-CH₃), 2.28 (s, 6H, 2'-CH₃, 6'-CH₃), 2.18–2.01 (m, 2H, H-4, H-5), 1.67 (dqd, J = 12.0, 10.1, 5.8 Hz, 2H, H-4, H-5), 1.32 (s,3H, H-8), 1.12 (s, 3H, H-6), 1.10 (s, 3H, H-7) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 143.8$ (C-1'), 136.9 (C-1"), 136.3 (C-2", C-6"), 134.5 (C-4"), 129.8 (C-3', C-5'), 129.3 (C-4'), 129.1 (C-3", C-5"), 127.7 (C-2', C-6'), 65.8 (C-3), 64.4 (C-1), 48.1 (C-2), 40.9 (C-1'''), 34.0 (C-5), 30.0 (C-4), 23.8 (C-7), 21.0 (4'-CH₃), 20.6 (4"-CH₃), 20.5 (C-8), 19.6 (2'-CH₃, 6'-CH₃), 19.5 (2"-CH₃, 6"-CH₃), 16.9 (C-6) ppm. ¹⁵N NMR (51 MHz, CDCl₃) $\delta = 67.46$ (1N, N³), 54.62 (1N, N¹) ppm. IR (ATR) $\nu = 3379, 2962, 2864, 1610, 1583,$ 1477, 1368, 1297, 1226, 1156, 1121, 1085, 1023, 1004, 846, 737, 717, 686, 564 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 393 ([M + H]⁺, 100%). HRMS (ESI): Calcd. for C₂₇H₄₁N₂: 393.3268, found: 393.3270. $[\alpha]^{20}_D = -1$ (*c* = 0.48, CH₂Cl₂).

(1R,3S)-1,2,2-Trimethyl-N¹-(2,4,6-

trimethylbenzyl)-N³-(naphthalen-1-yl)-1,3cyclopentanediamine (13). Prepared from monoarylated diamine (0.30 g, 1.12 mmol), triethylamine (0.19 mL, 1.34 mmol), and 2,4,6trimethylbenzyl chloride (0.21 g, 1.23 mmol) in acetonitrile (10 mL). The crude product was purified via column chromatography (CH₂Cl₂/MeOH, 95:5), and the secondary diamine 13 was obtained as brown oil (0.24 g, 0.61 mmol, 54%). ¹H NMR (500 MHz, CDCl₃) δ = 7.80 (d, J = 8.0 Hz, 1H, H-8'), 7.48–7.43 (m, 1H, H-5'), 7.39 (dd, J = 9.9, 5.9 Hz, 1H, H-4'), 7.29 (d, J = 8.4 Hz, 1H, H-7'), 7.18 (d, J= 8.1 Hz, 1H, H-6'), 7.11 (t, J = 7.5 Hz, 1H, H-3'), 7.01 (s, 2H, H-3", H-5"), 6.64 (d, J = 7.6 Hz, 1H, H-2'), 3.91 (d, J = 10.6 Hz, 2H, H-1'''), 3.79 (d, J =10.8 Hz, 1H, H-3), 2.48 (s, 3H, 4''-CH₃), 2.41 (d, J =6.4 Hz, 6H, 2"-CH₃, 6"-CH₃), 2.23-2.09 (m, 2H, H-4), 1.91–1.75 (m, 2H, H-5), 1.40 (s, 3H, H-8), 1.18 (s, 3H, H-7), 1.09 (s, 3H, H-6) ppm. ¹³C NMR (126 MHz, $CDCl_3$) $\delta = 143.9 (C-1'), 137.6 (C-4''), 136.8 (C-1''),$ 136.5 (C-2"), 134.8 (C-6"), 134.0 (C-4'a), 129.5 (C-5'), 128.8 (C-3", C-5"), 128.3 (C-3'), 126.9 (C-6'), 125.5 (C-7'), 123.9 (C-8'), 121.1 (C-8'a), 115.4 (C-4'), 103.0 (C-2'), 66.0 (C-1), 62.9 (C-3), 49.2 (C-2), 40.0 (C-1''), 31.9 (C-5), 30.2 (C-4), 26.5 (4"-CH₃), 21.1 (C-11), 20.0 (2"-CH₃), 19.7 (6"-CH₃), 18.8 (C-7), 17.0 (C-6) ppm. IR (ATR) $\nu = 3326, 2958, 2867, 1579, 1524,$ 1482, 1405, 1385, 1371, 1230, 1074, 849, 764, 720 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 400 ([M + H]⁺, 10%). HRMS (ESI): Calcd. for C₂₈H₃₇N₂: 400.2878, found: 400.3000. $[\alpha]^{20}_D = -12$ (c = 0.47, CH₂Cl₂).

(1R,3S)-N³-([1,1'-Biphenyl]-2-yl)-1,2,2-trimethyl- N^{1} -(2.4.6-trimethylbenzyl)-1.3-cyclopentanediamine (14). Prepared from monoarylated diamine (0.30 g)1.02 mmol), triethylamine (0.17 mL, 1.22 mmol) and 2,4,6-trimethylbenzyl chloride (0.19 g, 1.12 mmol) in acetonitrile (10 mL). The crude product was purified via column chromatography (CH₂Cl₂/MeOH, 95:5), and the secondary diamine 14 was obtained as yellow oil (0.25 g, 0.58 mmol, 57%). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 7.46-7.43 \text{ (m, 2H, } H-6', H-4''),$ 7.36-7.28 (m, 4H, H-3", H-5", H-3', H-4'), 7.17 (dd, J = 7.4, 1.6 Hz, 1H, H-5'), 6.91 (s, 2H, H-3", H-5"), 6.81 (ddd, *J* = 8.4, 6.2, 2.6 Hz, 2H, *H*-2", *H*-6"), 4.49 (br s, 1H, *H*-N₃), 3.79 (d, J = 10.7 Hz, 2H, *H*-1^{''''}), 3.62 (d, J = 10.7 Hz, 1H, H-3), 2.39 (s, 3H, 4"-CH₃), 2.35 (s, 6H, 2"-CH₃, 6"-CH₃), 2.18–2.11 (m, 1H, *H*-4), 2.07–1.99 (m, 1H, *H*-5), 1.73 (ddd, J = 13.4, 9.7, 7.4 Hz, 1H, H-5), 1.56-1.47 (m, 1H, H-4), 1.33 (s, 3H, H-8), 1.08 (s, 3H, H-7), 0.85 (s, 3H, H-6) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 145.5$ (C-2'), 139.8 (C-1"), 137.1 (C-4"), 136.2 (C- 2", C-6"), 134.2 (C-3", C-5"), 130.5 (C-4'), 129.3 (C-2", C-6"), 129.1 (C-4"), 128.7 (C-3", C-5"), 127.8 (C-6'), 127.0 (C-5'), 116.2 (C-1'), 110.7 (C-3'), 64.4 (C-1), 62.0 (C-3), 48.2 (C-2), 40.7 (C-1"), 33.4 (C-5), 30.1 (C-4), 24.8 (4"-CH₃), 21.0 (C-8), 19.9 (2"-CH₃, 6"-CH₃), 19.5 (C-7), 16.9 (C-6) ppm. IR (ATR) ν = 3424, 2958, 2860, 1600, 1578, 1508, 1435, 1317, 849, 768, 739, 702 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 427 ([M + H]⁺, 100%). HRMS (ESI): Calcd. for C₃₀H₃₉N₂: 427.3116, found: 427.3113. [α]²⁰_D = -50 (c = 0.48, CH₂Cl₂).

(1R,3S)-N³-(2-Isopropylphenyl)-1,2,2-trimethyl- N^{1} -(2,4,6-trimethylbenzyl)-1,3-cyclopentanediamine (15). Prepared from monoarylated diamine (0.30 g, 1.15 mmol), triethylamine (0.19 mL, 1.40 mmol), and 2,4,6-trimethylbenzyl chloride (0.21 g, 1.27 mmol) in acetonitrile (10 mL). The crude product was purified via column chromatography (CH₂Cl₂/MeOH, 95:5), and the secondary diamine 15 was obtained as yellow oil (0.23 g, 0.59 mmol, 51%). ¹H NMR (500 MHz, CDCl₃) δ = 7.15–7.09 (m, 2H, H-3', H-5'), 6.95 (s, 2H, H-3", H- 5"), 6.69 (dd, J = 7.8, 5.1 Hz, 2H, H-4', H-6'), 5.20 (br s, 1H, N³H), 3.92-3.63 (m, 4H, H-1", H-3, 2'-CH), 2.44 (s, 6H, 2''-CH₃, 6''-CH₃), 2.38 (s, 3H, 4''-CH₃), 2.23 (ddd, J =18.2, 13.7, 10.5 Hz, 2H, H-5), 1.78–1.68 (m, 2H, H-4), 1.35 (s, 3H, H-8), 1.16 (d, J = 6.7 Hz, 3H, 2'-C-CH₃), 1.13 (s, J = 5.9 Hz, 3H, 2'-C-CH₃), 1.01 (s, 3H, H-7), 0.93 (s, 3H, *H*-6) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 146.3 (C-1'), 136.6 (C-4''), 136.3 (C-2''), 134.1 (C-''),132.1 (C-2"), 129.2 (C-3"), 126.6 (C-5"), 125.5 (C-3'), 124.9 (C-5'), 115.7 (C-4'), 109.7 (C-6'), 65.5 (C-1), 62.2 (C-3), 49.0 (C-2), 40.2 (C-1"), 32.5 (C-5), 30.6 (2'- CH), 27.3 (2'-CH-CH₃), 26.0 (2'-CH-CH₃), 22.1 (4["]-CH₃), 21.9 (C-8), 21.0 (2["]-CH₃), 19.5 (6["]-CH₃), 18.8 (C-6), 17.1 (C-7) ppm. IR (ATR) $\nu = 3370, 2963,$ 2870, 1601, 1579, 1508, 1453, 1386, 1369, 1312, 1258, 1219, 1160, 1084, 1037, 850, 739 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 393 ([M + H]⁺, 100%). HRMS (ESI): Calcd. for C₂₇H₄₁N₂: 393.3280, found: 393.3270. $[\alpha]^{20}_D = -16 \ (c = 0.48, \text{CH}_2\text{Cl}_2).$

General Procedure for the Preparation of Pentavalent Nitrogen-Substituted SPOs **16–24**. A solution of the suitable diamine (1 equiv) in toluene was added to the mixture of phosphorus trichloride (1.1 equiv) and triethylamine (2.5 equiv) in toluene at -60° C over 30 min. The solution was warmed to room temperature. After 2 h, the mixture was filtered through MgSO₄ and the filtrate was again cooled to -60° C. Triethylamine (1.1 equiv) and water (1 equiv) were added, and the cooling bath was removed. After 1 h, the reaction mixture was filtered again through MgSO₄ and the filtrate was concentrated under reduced pressure. The method of filtration for each compounds are given below.

(1R,3S,5S)-2,4-Dibenzyl-1,8,8-trimethyl-2,4diaza-3-phosphabicvclo[3.2.1]octane 3-oxide (16). Prepared from diamine 7 (0.60 g, 1.86 mmol), phosphorus trichloride (0.18 mL, 2.05 mmol), and triethylamine (0.66 mL, 4.65 mmol) in toluene (10 mL), and water (34.00 μ L, 1.86 mmol) and triethvlamine (0.28 mL, 2.05 mmol) after filtration. After evaporation, product 16 was obtained as a yellow solid (0.68 g, 1.75 mmol, 94%). mp: 118.3°C. ¹H NMR (500 MHz, CDCl₃) δ = 7.44–7.13 (m, 10H, Ar*H*), 7.30 (d, *J* = 619.9 Hz, 1H, *H*-3, P-*H*), 4.69 (dd, J = 12.4, 4.9 Hz, 1H, H-1"), 4.47 (dd, J = 15.4, 10.3Hz, 1H, *H*-1"), 4.23 (dd, *J* = 17.3, 10.5 Hz, 1H, *H*-1", NCH₂), and 4.08 (dd, J = 15.4, 7.3 Hz, 1H, H-1", NCH_2), 2.86 (dd, J = 15.6, 6.7 Hz, 1H, H- 5), 2.22 (ddd, *J* = 13.9, 10.1, 5.8 Hz, 1H, *H*-6,), 1.99–1.86 (m, 2H, *H*-6, *H*-7), 1.68 (ddd, *J* = 13.8, 11.0, 5.5 Hz, 1H, H-7), 1.04 (s, 6H, H-11, H-9, 2×CH₃), 0.78 (s, 3H, *H*-10, CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta =$ 141.2 (C-1'), 138.1 (C-1"), 128.6 (C-3', C-5'), 128.5 (C-3", C-5"), 128.4 (C-2', C-6'), 127.4 (C-2", C-6"), 127.0 (C-4'), 126.7 (C-4"), 71.4 (C-1"), 67.7 (C-1"), 50.1 (C-1), 47.3 (C-5), 45.6 (C-8), 36.6 (C-7), 29.2 (C-6), 24.4 (C-9), 19.5 (C-11), 18.4 (C-10) ppm. ³¹P NMR (202 MHz, CDCl₃) $\delta = 10.1$ ppm. IR (ATR) $\nu = 3429, 3056, 3022, 2949, 2336, 1604, 1493, 1453,$ 1373, 1201, 1113, 1092, 1066, 1027, 908, 876, 739, 698, 520, 481, 454 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 391 [M + Na]+, 100%). HRMS (ESI): Calcd. for $C_{22}H_{29}N_2ONaP$: 391.1930, found: 391.1915. $[\alpha]^{20}D$ = +19 (c = 0.60, EtOH).

(1R,3S,5S)-1,8,8-Trimethyl-2,4-

bis(2,4,6-trimethylbenzyl)-2,4-diaza-3-

phosphabicyclo[3.2.1]octane 3-oxide (17). Prepared from diamine 8 (0.20 g, 0.49 mmol), phosphorus trichloride (0.05 mL, 0.54 mmol), and triethylamine (0.17 mL, 1.23 mmol) in toluene (10 mL), and water (8.90 μ L, 0.49 mmol) and triethylamine (0.08 mL, 0.54 mmol) after filtration. After evaporation, product 17 was obtained as a yellow solid (0.16 g, 0.35 mmol, 73%). mp: 99.7°C. ¹H NMR (500 MHz, $CDCl_3$) $\delta = 6.83$ (d, J = 7.4 Hz, 4H, H-3', H-5', H-3'', H-5''), 6.32 (d, J = 629.4 Hz, 1H, P-H), 4.28 (dd, J = 11.5, 3.0 Hz, 1H, H-1"), 4.11 (dt, J = 21.3, 9.4Hz, 2H, *H*-1", *H*-1"), 3.96 (dd, *J* = 14.2, 7.4 Hz, 1H, H-1"), 2.59–2.50 (m, 1H, H-5), 2.46 (s, 6H, 4'-CH3, 4"-CH₃), 2.34 (m, 1H, H-7), 2.25 (d, *J* = 3.1 Hz, 12H, 2'-CH₃, 6'-CH₃, 2"-CH₃, 6"-CH₃), 2.00-1.81 (m, 3H, H-6, H-7, H-6), 1.32 (s, 3H, H-9), 0.92 (s, 3H, H-11), 0.80 (s, 3H, *H*-10) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 139.1 \ (C-4'), \ 138.2 \ (C-4''), \ 137.5 \ (C-1'), \ 136.9$

(C- 1"), 130.1 (C-2'), 130.0 (C-2"), 129.1 (C-3', C-5' C-3", C-5"), 128.6 (C-6'), 128.5 (C-6"), 69.7 (C-1), 65.2 (C-5), 47.1 (C-8), 43.1 (C-1"), 42.3 (C-1"), 35.4 (C-7), 28.0 (C-6), 24.9 (C-10), 21.0 (4'-CH₃), 20.9 (4"-CH₃), 20.4 (2'-CH₃), 20.0 (2"-CH₃), 18.9 (6'-CH₃, 6"-CH₃), 18.0 (C-9), 17.9 (C-11) ppm. ³¹P NMR (202 MHz, CDCl3) δ = 9.6 ppm. IR (ATR) ν = 2949, 2379, 1610, 1468, 1370, 1305, 1257, 1194, 1164, 1115, 1017, 894, 841, 747, 531 cm⁻¹. MS (ESI, +3 kV): *m/z* (%) = 453 ([M + H]⁺, 100%); 475 ([M + Na]⁺, 100%). HRMS (ESI): Calcd. for C₂₈H₄₂N₂OP: 453.3032, found: 453.3035; C₂₈H₄₁N₂ONaP: 475.2853, found: 475.2854. [α]²⁰_D = -12 (c = 0.50, EtOH).

(1R,3R,5S)-1,8,8-Trimethyl-4-(o-tolyl)-2-(2,4,6-trimethylbenzyl)-2,4-diaza-3-

phosphabicyclo[3.2.1]octane 3-oxide (18). Prepared from diamine 9 (0.26 g, 0.72 mmol), phosphorus trichloride (0.07 mL, 0.79 mmol), triethylamine (0.25 mL, 1.80 mmol) in toluene (10 mL), and water (13.00 μ L, 0.72 mmol) and triethylamine (0.11 mL, 0.79 mmol) after filtration. After evaporation, product 18 was obtained as a white solid (0.26 g, 0.64 mmol, 89%). mp: 170.5 °C. ¹HNMR (500 MHz, $CDCl_3$) $\delta = 7.15-7.04$ (m, 3H, H-4', H-5', H-6'), 6.31 (d, J 637.2 Hz, P-H), 6.91 (s, 1H, H-3'), 6.79 (s, 2H, H-3'', H-5''), 4.33 (dd, J = 11.7, 3.3 Hz, 1H, H-1''), 4.21-4.10 (m, 1H, H-1''), 3.08 (dd, J = 20.4, 5.5Hz, 1H, H-5), 2.72 (ddd, J = 14.2, 9.7, 4.9 Hz, 1H, *H*-6), 2.59 (ddd, *J* = 14.0, 9.7, 4.1 Hz, 1H, *H*-7), 2.48 (s, 6H, 2"-CH3, 6"-CH₃), 2.31 (s, 3H, 2'-CH₃), 2.20 (s, 3H, 4"-CH₃), 2.15–1.91 (m, 2H, H-6, H-7), 1.42 (s, 3H, H-9), 1.37 (s, 3H, H-11), 0.97 (s, 3H, H-10) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 141.8 (C-1'), 139.0 (C-2'), 137.4 (C-4"), 131.1 (C-3'), 129.1 (C-3", C-5"), 128.7 (C-1"), 128.6 (C-2", C-6"), 126.9 (C-4', C-5'), 126.7 (C-6'), 73.4 (C-11), 70.2 (C-5), 47.4 (C-8), 42.2 (C-1"), 35.4 (C-7), 30.0 (C-6), 24.9 (4"-CH3), 20.9 (6"-CH₃), 20.5 (4"-CH₃), 20.2 (C-11), 19.4 (2'-CH₃), 18.2 (C-9), 18.1 (C-10) ppm. ³¹P NMR (202 MHz, $CDCl_3$) $\delta = 3.9$ ppm. IR (ATR) $\nu = 3414, 2953,$ 2409, 1610, 1488, 1458, 1389, 1345, 1207, 1192, 1154, 1110, 1080, 1018, 976, 890, 852, 759, 724, 544, 454 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 411 ([M + $H]^+$, 58%); 433 ([M + Na]⁺, 100%). HRMS (ESI): Calcd. for C₂₅H₃₆N₂OP: 411.2565, found: 411.2563; $C_{25}H_{35}N_2ONaP$: 433.2385, found: 433.2391. [α]²⁰_D = +73 (c = 0.52, EtOH).

(1R,3R,5S)-4-(2-Methoxyphenyl)-1,8,8-

trimethyl-2-(2,4,6-trimethylbenzyl)-2,4-diaza-3-

phosphabicyclo[*3.2.1*]*octane 3-oxide* (**19**). Prepared from diamine **10** (0.15 g, 0.39 mmol), phosphorus trichloride (0.04 mL, 0.43 mmol), triethylamine (0.14 mL, 0.98 mmol) in toluene (10 mL), and

water (7.00 μ L, 0.39 mmol) and triethylamine (0.06 mL, 0.43 mmol) after filtration. After evaporation, product 19 was obtained as yellow oil (0.16 g, 0.38 mmol, 97%). ¹H NMR (500 MHz, CDCl₃) $\delta = 6.86$ (s, 2H, 2''-CH₃, 6''-CH₃), 6.80 (m, 1H, H-3'), 6.69 (d, J =7.7 Hz, 1H, *H*-6′), 6.60 (dd, *J* = 7.9, 1.2 Hz, 1H, *H*-4′), 6.55 (d, J = 7.1 Hz, 1H, H-5'), 6.36 (d, J = 645.2Hz, 1H, PH), 3.81–3.58 (m, 5H, H-1", 2'-O-CH₃), 2.52–2.44 (m, 1H, H-5), 2.38 (s, 6H, 2"-CH₃, 6"-CH₃), 2.28 (s, 3H, 4"-CH₃), 2.09 (dd, *J* = 25.7, 12.1 Hz, 2H, *H*-7, *H*-6), 1.62 (dd, *J* = 19.9, 10.9 Hz, 2H, *H*-7, *H*-6), 1.25 (s, 3H, H-9), 1.01 (s, 3H, H-11), 0.89 (s, 3H, *H*-10) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 146.8$ (C-2'), 138.9 (C-4"), 137.2 (C-1"), 136.1 (C-2", C-6"), 134.3(C-1'), 128.9 (C-3''), 128.1 (C-5''), 125.3 (C-5'),121.3 (C-4'), 115 (C-6'), 109.4 (C-2'), 64.9, (C-1), 61.8 (C-5), 55.1 (2'-OCH₃), 48.6 (C-8), 40.5 (C-1"), 32.8 (C-7), 30.2 (C-6), 25.4 (4"-CH₃), 20.9 (2"-CH₃, 6"-CH₃), 19.5 (C-9), 19.3 (C-10), 16.9 (C-11) ppm. ³¹P NMR (202 MHz, CDCl₃) δ = 3.9 ppm. IR (ATR) $\nu = 3424, 2958, 1599, 1515, 1455, 1371, 1224, 1113,$ 1029, 909, 850, 730 cm⁻¹. MS (ESI, +3 kV): m/z (%) $= 427 ([M + H]^+, 62\%); 449 ([M + Na]^+, 100\%).$ HRMS (ESI): Calcd. for C₂₅H₃₆N₂O₂P: 427.2514, found: 427.2525; C₂₅H₃₅N₂O₂NaP: 449.2334, found: 449.2343. $[\alpha]^{20}_D = +11 \ (c = 0.45, \text{ EtOH}).$

(1R,3R,5S)-1,8,8-Trimethyl-2-(2,4,6trimethylbenzyl)-4-phenyl-2,4-diaza-3-

phosphabicyclo[3.2.1]octane 3-oxide (20). Prepared from diamine 11 (0.27 g, 0.77 mmol), phosphorus trichloride (0.07 mL, 0.80 mmol), triethylamine (0.27 mL, 1.94 mmol) in toluene (10 mL), and water $(14.00 \ \mu L, 0.78 \ mmol)$ and triethylamine (0.12)mL, 0.86 mmol) after filtration. After evaporation, product 20 was obtained as a white solid (0.27 g, 0.68 mmol, 88%). mp: 154.3°C. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.28 - 7.18$ (m, 4H, H-2', H-6', H-3", H-5''), 6.84 (s, 2H, H-3', H-5'), 6.37 (d, J = 649.9, 1H, P-*H*), 4.34 (dd, J = 11.7, 2.9 Hz, 1H, *H*-1"), 4.23-4.11 (m, 1H, H-1''), 3.63 (dd, J = 18.6, 6.0Hz, 1H, H-5), 2.73–2.64 (m, 1H, H-6), 2.49 (s, 6H, 2"-CH₃, 6"-CH₃), 2.45–2.36 (m, 2H, H-7), 2.25 (s, 3H, 4"-CH₃), 1.95–1.87 (m, 1H, H-6), 1.44 (s, 3H, H-9), 1.24 (s, 3H, H-11), 1.06 (s, 3H, H-10) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 146.1 (*C*-1'), 139.1 (C-4"), 137.5 (C-1"), 129.3 (C-3'), 129.1 (C-5'), 128.3 (C-3", C-5"), 125.4 (C-2", C-6"), 123.4 (C-4'), 122.2 (C-2", C-6"), 71.5 (C-5), 70.7 (C-1), 46.9 (C-8), 42.4 (C-1"), 35.4 (C-7), 30.5 (C-6), 24.7 (4"-CH₃), 21.0 (2"-CH₃), 20.5 (6"-CH₃), 19.4 (C-11), 18.0 (C-9, C-10) ppm. ³¹P NMR (202 MHz, CDCl₃) $\delta = 3.9$ ppm. IR (ATR) $\nu = 3424, 2943, 2375, 1595, 1493, 1464,$ 1391, 1360, 1278, 1249, 1224, 1205, 1154, 1114, 1087, 1058, 1016, 963, 889, 850, 747, 693, 524, 464 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 397 ([M + H]⁺, 50%); 419 ([M + Na]⁺, 100%). HRMS (ESI): Calcd. for C₂₄H₃₄N₂OP: 397.2409, found: 397.2408; C₂₄H₃₃N₂ONaP: 419.2228, found: 419.2232. [α]²⁰_D = +39 (c = 0.46, EtOH).

4-Mesityl-1,8,8-trimethyl-2-(2,4,6-trimethylbenzyl)-2,4-diaza-3-

phosphabicyclo[3.2.1]octane 3-oxide (**21a/21b**). Prepared from diamine **12** (0.35 g, 0.89 mmol), phosphorus trichloride (0.09 mL, 0.98 mmol), triethylamine (0.31 mL, 2.22 mmol) in toluene (10 mL), and water (16.00 μ L, 0.89 mmol) and triethylamine (0.14 mL, 1.00 mmol) after filtration. After evaporation, product **21** was obtained as a yellow solid of two diastereoisomers, which were separated by column chromatography (*n*-hexane/EtOAc, 7:3).

(1R,3R,5S)-4-Mesityl-1,8,8-trimethyl-2-(2,4,6-trimethylbenzyl)-2,4-diaza-3phosphabicyclo[3.2.1]octane 3-oxide (21a). The product was obtained as a yellow solid (0.14 g, 0.32 mmol, 36%). mp: 144.7°C. ¹H NMR (500 MHz, $CDCl_3$) $\delta = 6.79$ (t, J = 20.3 Hz, 4H, H-3', H-5', H-3", H-5''), 6.62 (d, J = 627.9 Hz, 1H, P-H), 4.49 (dd, J = 12.8, 5.9 Hz, 1H, H-1"), 4.29–4.12 (m, 1H, H-1"), 3.09 (dd, J = 17.9, 5.0 Hz, 1H, H-5), 2.67-2.60 (m, 100)2H, H-6, H-7), 2.54 (s, 3H, 4'-CH₃), 2.47 (s, 6H, 2'-CH₃, 6'-CH₃), 2.26 (s, 3H, 4''-CH₃), 2.20 (d, J = 9.3Hz, 6H, 2"-CH₃, 6"-CH₃), 2.09–2.01 (m, 1H, H-6), 1.91–1.85 (m, 1H, H-7), 1.37 (s, 3H, H-9), 1.29 (m, 3H, H-11), 0.94 (s, 3H, H-10) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 139.7$ (C-1'), 138.3 (C-4"), 137.6 (C-1"), 137.1 (C-6"), 136.9 (C-1"), 136.6 (C-6'), 130.8 (C-3', C-5'), 130.5 (C-4'), 129.9 (C-3"), 129.2 (C-5"), 73.4 (C-5), 70.6 (C-1), 48.5 (C-8), 42.3 (C-1"), 35.8 (C-6), 30.6 (C-7), 25.9 (4'-CH₃), 22.1 (4"-CH₃), 21.5 (C-9), 20.9 (2"-CH₃), 20.7 (6"-CH₃), 20.7 (6'-CH₃), 20.6 (2'-CH₃), 18.9 (C-11), 18.8 (C-10) ppm. ³¹P NMR (202 MHz, CDCl₃) δ = 1.9 ppm. IR (ATR) ν = 3424, 2924, 2345, 2212, 1605, 1468, 1341, 1212, 1144, 1081, 1031, 968, 850, 728, 565 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 439 ([M + H]⁺, 100%). HRMS (ESI): Calcd. for C₂₇H₄₀N₂OP: 439.2878, found: 439.2874. $[\alpha]^{20}_D = +54$ (*c* = 0.56, EtOH).

(1R,3S,5S)-4-Mesityl-1,8,8-trimethyl-

2-(2,4,6-trimethylbenzyl)-2,4-diaza-3-

phosphabicyclo[3.2.1]octane 3-oxide (**21b**). The product was obtained as a white solid (0.06 g, 0.14 mmol, 16%). mp: 139.5°C. ¹H NMR (500 MHz, CDCl₃) δ = 6.79 (m, 4H, *H*-3, *H*-5, *H*-3″, *H*-5″), 6.69 (d, *J* = 617.0 Hz, 1H, P-*H*), 4.28 (t, *J* = 10.7 Hz, 1H, *H*-1″), 4.14 (dd, *J* = 11.1, 7.1 Hz, 1H, *H*- 1″), 3.19 (ddd, *J* = 11.2, 3.5, 1.9 Hz, 1H, *H*-5), 2.58–2.45 (m, 1H, *H*-6), 2.44 (s, 6H, 2′-CH₃, 6′-CH₃), 2.39

(s, 3H, 4'-CH₃), 2.31 (s, 3H, 4"-CH₃), 2.19 (s, 3H, 2"-CH₃), 2.18 (s, 3H, 6"-CH₃), 2.13-2.08 (m, 1H, H-7), 1.98–1.85 (m, 2H, H-6, H-7), 1.83 (s, 1H, H-10), 1.45 (s, 1H, H-9), 1.01 (s, 1H, H-11) ppm. ¹³C NMR $(126 \text{ MHz}, \text{CDCl}_3) \delta = 139.9 (C-1'), 139.1 (C-4''),$ 137.9 (C-1"), 136.9 (C-2"), 136.7 (C-6"), 136.4 (C-4'), 130.3 (C-3'), 129.7 (C-5'), 129.0 (C-3", C-5"), 127.8 (C-2'), 127.7 (C-6'), 73.2 (C-5), 70.0 (C-1), 48.5 (C-8), 43.3 (C-1"), 36.9 (C-6), 30.3 (C-7), 26.9 (4'-CH₃), 21.0 (4"-CH₃), 20.7 (C-11), 20.4 (2"-CH₃), 20.0 (6"-CH₃), 19.9 (6'-CH₃), 19.6 (2'-CH₃), 18.6 (C-9), 18.5 (C-10) ppm. ³¹P NMR (202 MHz, CDCl₃) $\delta = -4.2$ ppm. IR (ATR) $\nu = 3424$, 2924, 2345, 2212, 1605, 1468, 1341, 1212, 1144, 1081, 1031, 968, 850, 728, 565 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 439 ([M + H]⁺, 100%). HRMS (ESI): Calcd. for C₂₇H₄₀N₂OP: 439.2878, found: 439.2872. $[\alpha]^{20}_D = +40$ (c = 0.57, EtOH).

(1R,3R,5S)-1,8,8-Trimethyl-2-(2,4,6trimethylbenzyl)-4-(naphthalen-1-yl)-2,4-diaza-3-

phosphabicyclo[3.2.1]octane 3-oxide (22). Prepared from diamine 13 (0.17 g, 0.42 mmol), phosphorus trichloride (0.04 mL, 0.46 mmol), triethylamine (0.15 mL, 1.07 mmol) in toluene (10 mL), and water (7.60 μ L, 0.42 mmol) and triethylamine (0.06 mL, 0.43 mmol) after filtration. After evaporation, product 22 was obtained as brown oil (0.16 g, 0.36 mmol, 86 %). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.29$ (s, 1H, H-8'), 8.01 (s, 1H, H-5'), 7.83 (d, J = 8.1 Hz, 1H, H-6'), 7.73 (d, J = 6.6 Hz, 1H, H-7'), 7.48 (m, 1H, H-4'), 7.31–7.26 (m, 1H, H-3'), 7.22–7.19 (m, 1H, H-2'), 6.81 (s, 2H, H-3'', H-5''), 6.38 (d, J = 644.7 Hz, 1H, P-H), 4.41 (d, J = 10.4 Hz, 1H, H-1"), 4.29–4.20 (m, 1H, H-1"), 3.27 (d, J = 19.6 Hz, 1H, H-5), 2.55 (s, 6H, 2'-CH₃, 6'-CH₃), 2.20 (s, 3H, 4'-CH₃), 2.01 (m, 4H, H-6, H-7), 1.66 (s, 3H, H-9), 1.50 (s, 3H, H-11), 1.01 (s, 3H, H-10) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 139.1$ (C-1'), 138.8 (C-4"), 137.2 (C-1"), 135.0 (C-2", C-6"), 131.9 (C-4'a, C-8'a), 129.1 (C-5'), 128.8 (C-3", C-5"), 128.5 (C-3'), 127.2 (C-6'), 126.1 (C-7'), 125.0 (C-8'), 125.7 (C-4'), 122.9 (C-2'), 73.9 (C-5), 70.2 (C-1), 53.4 (C-8), 42.7 (C-1"), 36.0 (C-7), 29.7 (C-6), 24.9 (4'-CH₃), 20.9 (C-11), 20.5 (2'-CH₃, 6'-CH₃), 18.3 (C-9), 18.1 (C-10) ppm. ³¹P NMR (202 MHz, CDCl3) $\delta = 4.9$ ppm. IR (ATR) $\nu = 3429, 2949, 2390, 2218, 1725, 1610, 1592,$ 1573, 1464, 1392, 1267, 1197, 1150, 1113, 1079, 1052, 1014, 950, 885, 848, 796, 775, 726, 641, 571, 546, 519, 461, 429 cm⁻¹. MS (ESI, +3 kV): m/z $(\%) = 447 ([M + H]^+, 81\%); 469 ([M + Na]^+,$ 100%). HRMS (ESI): Calcd. for C₂₈H₃₆N₂OP: 447.2565, found: 447.2574; $C_{28}H_{35}N_2ONaP$: 469.2385, found: 469.2388. $[\alpha]^{20}_{D} = +48$ (c = 0.45, EtOH).

(1R,3R,5S)-1,8,8-Trimethyl-2-(2,4,6-

trimethylbenzyl)-4-([1,1'-biphenyl]-2-yl)-2,4-diaza-3phosphabicyclo[3.2.1]octane 3-oxide (23). Prepared from diamine 14 (0.15 g, 0.35 mmol), phosphorus trichloride (0.03 mL, 0.34 mmol), triethylamine (0.12 mL, 0.86 mmol) in toluene (10 mL), and water (6.00 μ L, 0.33 mmol) and triethylamine (0.05 mL, 0.36 mmol) after filtration. After evaporation, product 23 was obtained as a yellow solid (0.16 g, 0.34 mmol, 97%). mp: 139.1°C. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.64$ (d, J = 8.0 Hz, 1H, H-6'), 7.39-7.33 (m, 2H, H- 3", H-5"), 7.29-7.24 (m, 3H, H-2", H-4", H-3"), 7.21-7.16 (m, 3H, H-3', H-4', H-5'), 6.81 (s, 2H, H-3", H-5"), 6.23 (d, J = 642.7 Hz, 1H, P-H), 4.26 (dd, J = 11.7, 3.7 Hz, 1H, H-1"), 4.06 (dd, J = 20.8, 11.7 Hz, 1H, H-1"), 3.03–2.95 (m, 1H, H-5), 2.59 (ddd, J = 14.0, 9.7, 4.4 Hz, 1H, H-6), 2.40 (s, 6H, 2"-CH₃, 6"-CH₃), 2.26 (s, 3H, 4''-CH₃), 2.21 – 2.13 (m, 1H, H-7), 1.85 (dddd, J =15.9, 13.5, 11.9, 4.5 Hz, 2H, H-6, H-7), 1.28 (s, 3H, H-9), 0.77 (s, 3H, H-11), 0.61 (s, 3H, H-10) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 141.5 (C-2'), 141.3 (C-1"), 140.8 (C-4"), 139.0 (C-1"), 137.9 (C-2"), 137.4 (C-6"), 131.6 (C-3"), 130.4 (C-5"), 129.8 (C-4'), 129.1 (C-2'), 129.1 (C-6'), 128.5 (C-3"), 128.3 (C-5"), 128.2 (C-4"), 127.9 (C-6'), 127.1 (C-5'), 126.0 (C-1'), 125.3 (C-3'), 74.0 (C-1), 70.0 (C-1"), 47.3 (C-5), 42.5 (C-8), 35.7 (C-7), 29.3 (4"-CH₃), 24.7 (C-6), 21.5 (C-11), 21.0 (2"-CH₃), 20.5 (6"-CH₃), 18.5 (C-9), 18.0 (C-10) ppm. ³¹P NMR (202 MHz, CDCl₃) δ = 5.4 ppm. IR $(ATR) \nu = 3444, 2933, 2399, 1473, 1345, 1193, 1153,$ 1108, 1077, 1018, 976, 894, 850, 762, 749, 703, 559, 528 cm⁻¹. MS (ESI, +3 kV): m/z (%) = 473 ([M + $H]^+$, 24%); 495 ([M + Na]⁺, 52%). HRMS (ESI): Calcd. for C₃₀H₃₈N₂OP: 473.2722, found: 473.2737; $C_{30}H_{37}N_2ONaP$: 495.2541, found: 495.2559. $[\alpha]^{20}D$ = +41 (c = 0.45, EtOH).

(1R,3R,5S)-4-(2-Isopropylphenyl)-1,8,8-

trimethyl-2-(2,4,6-trimethylbenzyl)-2,4-diaza-3-phosphabicvclo[3.2.1]octane 3-oxide (24). Prepared from diamine 15 (0.15 g, 0.38 mmol), phosphorus trichloride (0.04 mL, 0.46 mmol), triethylamine (0.13 mL, 0.93 mmol) in toluene (10 mL), and water (6.70 μ L, 0.37 mmol) and triethylamine (0.06 mL, 0.43 mmol) after filtration. After evaporation, product 24 was obtained as a brown solid (0.14 g, 0.32 mmol, 84%). mp: 157.2°C. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.23 - 7.04$ (m, 3H, H-3', H-4', H-5'), 6.81 (d, J = 33.2 Hz, 3H, H-6', H-3", H-5"), 6.23 (d, J = 638.8 Hz, 1H, PH), 4.40–4.06 (m, 2H, H-1"), 3.45 (s, 1H, 2'-CH), 3.07 (dd, J = 20.7, 5.3 Hz, 1H, H-5), 2.81–2.53 (m, 2H, H-7), 2.47 (s, 6H, 2"-CH₃, 6''-CH₃), 2.19 (s, 3H, 4''-CH₃), 1.96 (dd, J = 43.6, 32.4 Hz, 2H, H-6), 1.47-1.32 (m, 6H, H-9, H-11),

1.31–1.13 (m, 6H, 2× 2'-CH-CH₃), 0.97 (s, 3H, H-10) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 147.6$ (C-1'), 139.9 (C-4"), 138.9 (C-1"), 137.5 (C-2", C-6"), 132.2 (C-3", C-5"), 129.1 (C-6'), 128.5 (C-2'), 127.4 (C-4'), 126.5 (C-3'), 126.3 (C-5'), 74.5 (C-5), 70.0 (C-1), 53.4 (2'-C), 47.8 (C-8), 42.6 (C-1"), 35.7 (C-6), 29.9 (C-7), 26.6 (2'-C-CH₃), 25.0 (2'-C-CH₃), 24.5 (4"-CH₃), 23.9 (C-9), 20.9 (2"-CH₃), 20.5 (6["-CH₃), 19.7 (C-10), 18.2 (C-11) ppm. ³¹P NMR (202 MHz, CDCl₃) δ = 5.4 ppm. IR (ATR) $\nu = 3438, 2958, 2384, 1612, 1582,$ 1483, 1443, 1387, 1349, 1308, 1217, 1151, 1112, 1079, 1055, 1016, 973, 890, 848, 754, 688, 548, 526, 506, 473, 446, 407 cm⁻¹. MS (ESI, +3 kV): m/z (%) $= 439 ([M + H]^+, 63\%); 461 ([M + Na]^+, 100\%).$ HRMS (ESI): Calcd. for C₂₇H₄₀N₂OP: 439.2878, found: 439.2880; C₂₇H₃₉N₂ONaP: 461.2698, found: 461.2700. $[\alpha]^{20}_D = +51$ (*c* = 0.46, EtOH).

REFERENCES

- (a) Moraies-Rojas, H.; Moss, R. A. Chem Rev 2002, 102, 2497–2522; (b) Quin, L. D. A Guide to Organophosphorus Chemistry; Wiley-Interscience: New York, 2000; (c) Rao, C. V. N.; Teerdha, C. R.; Aggarwal, A. K.; Manohar, V. R. Der Pharma Chem 2012, 4, 392–398.
- [2] (a) Koeller, K. J.; Spilling, C. D. Tetrahedron Lett 1991, 32, 6297–6300; (b) Köhn, M.; Breinbauer, R. Angew Chem, Int Ed 2004, 43, 3106–3116.
- [3] Methot, J. L.; Roush, W. R. Adv Synth Catal 2004, 346, 1035–1050.
- [4] Tang, W.; Zhang, X. Chem Rev 2003, 103, 3029–3069.
- [5] Han, Z. S.; Zhang, L.; Xu, Y.; Sieber, J. D.; Marsini, M. A.; Li, Z.; Reeves, J. T.; Fandrick, K. R.; Patel, N. D.; Desrosiers, J.-N.; Qu, B.; Chen, A.; Rudzinski, D. M.; Samankumara, L. P.; Ma, S.; Grinberg, N.; Roschangar, F.; Yee, N. K.; Wang, G.; Song, J. J.; Senanayake, C. H. Angew Chem, Int Ed 2015, 54, 5474–5477.
- [6] Ma, Y.-N.; Zhang, H.-Y.; Yang, S.-D. Org Lett 2015, 17, 2034–2037.
- [7] (a) Liu, L.; Zhang, A.-A.; Wang, Y.; Zhang, F.; Zuo, Z.; Zhao, W.-X.; Feng, C.-L.; Ma, W. Org Lett 2015, 17, 2046–2049; (b) Li, Z.-Q.; Wang, W.-Z.; Yan, S.-B.; Duan, W.-L. Angew Chem, Int Ed 2015, 54, 6265–6269.
- [8] (a) Jugé, S. Phosphorus, Sulfur Silicon Relat Elem 2008, 183, 233–248; (b) Pertusati, F.; McGuigan, C. Chem Commun 2015, 51, 8070–8073.
- [9] (a) Chen, T.; Han, L.-B. Synlett 2015, 26, 1153–1163;
 (b) Wang, W.-M.; Liu, L.-J.; Zhao, C.-Q.; Han, L.-B. Eur J Org Chem 2015, 2342–2345.
- [10] Drabowicz, J.; Krasowska, D.; Łopusiński, A.; Heugebaert, T. S. A.; Stevens, C. V. Selected Five-Membered Phosphorus Heterocycles Containing a Stereogenic Phosphorus; Springer-Verlag: Berlin, 2010.
- [11] Christiansen, A.; Selent, D.; Spannenberg, A.; Köckerling, M.; Reinke, H.; Baumann, W.; Jiao, H.; Franke, R.; Börner, A. Chem Eur J 2011, 17, 2120– 2129.

- [12] Gudat, D. Recent Developments in the Chemistry of N-Heterocyclic Phosphines; Springer-Verlag: Berlin, 2010.
- [13] (a) Grabulosa, A. P-Stereogenic Ligands in Enantioselective Catalysis; RSC: Cambridge, UK, 2010; (b) Gavrilov, K. N.; Shiryaev, A. A.; Zheglov, S. V.; Potapova, O. V.; Chuchelkin, I. V.; Novikov, I. M.; Rastorguev, E. A.; Davankov, V. A. Tetrahedron: Asymmetry 2013, 24, 409-417; (c) Brunel, J. M.; Constantieux, T.; Buono, G. J Org Chem 1999, 64, 8940-8942; (d) Gavrilov, K. N.; Bondarev, O. G.; Tsarev, V. N.; Shiryaev, A. A.; Lyubimov, S. E.; Kucherenko, A. S.; Davankov, V. A. Russ Chem Bull 2003, 52, 122-125; (e) Barta, K.; Hölscher, M.; Franciò, G.; Leitner, W. Eur J Org Chem 2009, 4102-4116; (f) Gavrilov, K. N.; Tsarev, V. N.; Shiryaev, A. A.; Bondarev, O. G.; Lyubimov, S. E.; Benetsky, E. B.; Korlyukov, A. A.; Antipin, M. Y.; Davankov, V. A.; Gais, H.-J. Eur J Inorg Chem 2004, 629-634; (g) Gavrilov, K. N.; Benetsky, E. B.; Grishina, T. B.; Zheglov, S. V.; Rastorguev, E. A.; Petrovskii, P. V.; Macaev, F. Z.; Davankov, V. A. Tetrahedron: Asymmetry 2007, 18, 2557-2564; (h) Gavrilov, K. N.; Benetskiy, E. B.; Grishina, T. B.; Rastorguev, E. A.; Maksimova, M. G.; Zheglov, S. V.; Davankov, V. A.; Schäffner, B.; Börner, A.; Rosset, S.; Bailat, G.; Alexakis, A. Eur J Org Chem 2009, 3923-3929; (i) Legrand, O.; Brunel, J. M.; Buono, G. Eur J Org Chem 1999, 1099-1105; (j) Legrand, O.; Brunel, J. M.; Buono, G. Tetrahedron 2000, 56, 595-603.
- [14] Nemoto, T. Chem Pharm Bull 2008, 56, 1213–1228.
- [15] Nemoto, T.; Masuda, T.; Matsumoto, T.; Hamada, Y. J Org Chem 2005, 70, 7172–7178.
- [16] (a) Nemoto, T.; Hamada, Y. Chem Rec 2007, 7, 150– 158; (b) Hamada, Y. Chem Pharm Bull 2012, 60, 1–20; (c) Nemoto, T.; Matsumoto, T.; Masuda, T.; Hitomi, T.; Hatano, K.; Hamada, Y. J Am Chem Soc 2004, 126, 3690–3691.
- [17] (a) Hu, F.; Kumpati, B. N.; Lei, X. Tetrahedron Lett 2014, 55, 7215–7218; (b) Ackermann, L.; Born, R.; Spatz, J. H.; Althammer, A.; Gschrei, C. J. Pure Appl Chem 2006, 78, 209–214; (c) Ackermann, L.; Kapdi, A. R.; Fenner, S.; Kornhaaß, C.; Schulzke, C. Chem Eur J 2011, 17, 2965–2971; (d) Jin, Z.; Li, Y.-J.; Ma, Y.-Q.; Qiu, L.-L.; Fang, J.-X.Chem Eur J 2012, 18, 446–450.
- [18] Donets, P. A.; Cramer, N. J Am Chem Soc 2013, 135, 11772–11775.
- [19] Kukhar, V. P.; Hudson, H. R. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity; Wiley: Chichester, UK, 2000.
- [20] Jaramillo, D.; Buck, D. P.; Collins, J. G.; Fenton, R. R.; Stootman, F. H.; Wheate, N. J.; Aldrich-Wright, J. R. Eur J Inorg Chem 2006, 839–849.
- [21] Reddy, P. V. G.; Tabassum, S.; Blanrue, A.; Wilhelm, R. Chem Commun 2009, 5910–5912.
- [22] Uzarewicz-Baig, M.; Koppenwallner, M.; Tabassum, S.; Wilhelm, R. Appl Organometal Chem 2014, 28, 552–558.
- [23] Ackermann, L.; Born, R. Angew Chem, Int Ed 2005, 44, 2444–2447.
- [24] Peña, C.; González-Sabín, J.; Alfonso, I.; Rebolledo, F.; Gotor, V. Tetrahedron: Asymmetry 2007, 18, 1981–1985.
- [25] (a) Tanaka, K.; Fukuda, N.; Fujiwara, T. Tetrahedron: Asymmetry 2007, 18, 2657–2661; (b) Pirkle, W. H.;

Sikkenga, D. L. J Org Chem 1977, 42, 1370–1374; (c) Deshmukh, M.; Dunach, E.; Juge, S.; Kagan, H. B. Tetrahedron Lett 1984, 25, 3467-3470; (d) Tanaka, K.; Ootani, M.; Toda, F. Tetrahedron: Asymmetry 1992, 3, 709-712; (e) Bilz, A.; Stork, T.; Helmchen, G. Tetrahedron: Asymmetry 1997, 8, 3999-4002; (f) Pakulski, Z.; Demchuk, O. M.; Kwiatosz, R.; Osinski, P. W.; Swierczynska, W.; Pietrusiewicz, K. M. Tetrahedron: Asymmetry 2003, 14, 1459–1462; (g) Hebbe, V.; Londez, A.; Goujon-Ginglinger, C.; Meyer, F.; Uziel, J.; Juge, S.; Lacour, J. Tetrahedron Lett 2003, 44, 2467-2471; (h) Koscho, M. E.; Pirkle, W. H. Tetrahedron: Asymmetry 2005, 16, 3345–3351; (i) Yang, D.; Li, X.; Fan, Y.-F.; Zhang, D.-W. J Am Chem Soc 2005, 127, 7996–7997; (j) Palomino-Schätzlein, M.; Virgili, A.; Gil, S.; Jaime, C. J Org Chem 2006, 71, 8114-8120; (k) Perez-Trujillo, M.; Virgili, A. Tetrahedron: Asymmetry 2006, 17, 2842–2846; (l) Cavalluzzi, M. M.; Bruno, C.; Lentini, G.; Lovece, A.; Catalano, A.; Carocci, A.; Franchini, C. Tetrahedron: Asymmetry 2009, 20, 1984–1863; (m) Altava, B.; Burguete, M. I.; Carbó, N.; Escorihuela, J.; Luis, S. V. Tetrahedron: Asymmetry 2010, 21, 982–989; (n) Moon, L. S.; Pal, M.; Kasetti, Y.; Bharatam, P. V.; Jolly, R. S. J Org Chem 2010, 75, 5487-5498; (o) Naziroglu, H. N.; Durmaz, M.; Bozkurt, S.; Sirit, A. Chirality 2011, 23, 463-471; (p) Uccello-Barretta, G.; Vanni, L.; Berni, M. G.; Balzano, F. Chirality 2011, 23, 417-423; (q) Tanaka, K.; Nakai, Y.; Takahashi, H. Tetrahedron: Asymmetry 2011, 22, 178-184; (r) Pham, N. H.; Wenzel, T. J. J Org Chem 2011, 76, 986–989; (s) Bozkurt, S.; Durmaz, M.; Naziroglu, H. N.; Yilmaz, M.; Sirit, A. Tetrahedron: Asymmetry 2011, 22, 541-549; (t) Parker, D. Chem Rev 1991, 91, 1441–1457; (u) Wenzel, T. J.; Chisholm, C. D. Chirality 2011, 23, 190-214; (v) Wolf, C.; Cook, A. M.; Dannatt, J. E. Tetrahedron: Asymmetry 2014, 25, 163-169; (w) Howard, J. A.; Nonn, M.; Fulop, F.; Wenzel, T. J. Chirality 2013, 25, 48–53; (x) Tabassum, S.; Gilani, M. A.; Wilhelm, R. Tetrahedron: Asymmetry 2011, 22, 1632-1639; (y) Heckel, T.; Winkel, A.; Wilhelm, R. Tetrahedron: Asymmetry 2013, 24, 1127-1133; (z) Drescher, M.; Felsinger, S.; Hammerschmidt, F.; Kählig, H.; Schmidt, S.; Wuggenig, F. Phosphorus, Sulfur Silicon Relat Elem 1998, 140, 79-93; (aa) Gorunova, O. N.; Novitskiy, I. M.; Livantsov, M. V.; Grishin, Y. K.; Kochetkov, K. A.; Dunina, V. V. J Organomet Chem 2015, 783, 96-104.

- [26] Tanaka, K.; Fukuda, N. Tetrahedron: Asymmetry 2009, 20, 111–114.
- [27] (a) Alexakis, A.; Mutti, S.; Mangeney, P. J Org Chem 1992, 57, 1224–1237; (b) Alexakis, A.; Mutti, S.; Normant, J. F.; Mangeney, P. Tetrahedron: Asymmetry 1990, 1, 437–440.
- [28] Sun, Y.-M.; Xin, N.; Xu, Z.-Y.; Liu, L.-J.; Meng, F.-J.; Zhang, H.; Fu, B.-C.; Liang, Q.-J.; Zheng, H.-X.; Sun, L.-J.; Zhao, C.-Q.; Han, L.-B. Org Biomol Chem 2014, 12, 9457–9465.